OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdgpu/amdgpu_gfx.c

753 lines
21 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
* Copyright 2008 Red Hat Inc.
* Copyright 2009 Jerome Glisse.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include "amdgpu.h"
#include "amdgpu_gfx.h"
#include "amdgpu_rlc.h"
#include "amdgpu_ras.h"
/* delay 0.1 second to enable gfx off feature */
#define GFX_OFF_DELAY_ENABLE msecs_to_jiffies(100)
/*
* GPU GFX IP block helpers function.
*/
int amdgpu_gfx_mec_queue_to_bit(struct amdgpu_device *adev, int mec,
int pipe, int queue)
{
int bit = 0;
bit += mec * adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
bit += pipe * adev->gfx.mec.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_gfx_bit_to_mec_queue(struct amdgpu_device *adev, int bit,
int *mec, int *pipe, int *queue)
{
*queue = bit % adev->gfx.mec.num_queue_per_pipe;
*pipe = (bit / adev->gfx.mec.num_queue_per_pipe)
% adev->gfx.mec.num_pipe_per_mec;
*mec = (bit / adev->gfx.mec.num_queue_per_pipe)
/ adev->gfx.mec.num_pipe_per_mec;
}
bool amdgpu_gfx_is_mec_queue_enabled(struct amdgpu_device *adev,
int mec, int pipe, int queue)
{
return test_bit(amdgpu_gfx_mec_queue_to_bit(adev, mec, pipe, queue),
adev->gfx.mec.queue_bitmap);
}
int amdgpu_gfx_me_queue_to_bit(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
int bit = 0;
bit += me * adev->gfx.me.num_pipe_per_me
* adev->gfx.me.num_queue_per_pipe;
bit += pipe * adev->gfx.me.num_queue_per_pipe;
bit += queue;
return bit;
}
void amdgpu_gfx_bit_to_me_queue(struct amdgpu_device *adev, int bit,
int *me, int *pipe, int *queue)
{
*queue = bit % adev->gfx.me.num_queue_per_pipe;
*pipe = (bit / adev->gfx.me.num_queue_per_pipe)
% adev->gfx.me.num_pipe_per_me;
*me = (bit / adev->gfx.me.num_queue_per_pipe)
/ adev->gfx.me.num_pipe_per_me;
}
bool amdgpu_gfx_is_me_queue_enabled(struct amdgpu_device *adev,
int me, int pipe, int queue)
{
return test_bit(amdgpu_gfx_me_queue_to_bit(adev, me, pipe, queue),
adev->gfx.me.queue_bitmap);
}
/**
* amdgpu_gfx_scratch_get - Allocate a scratch register
*
* @adev: amdgpu_device pointer
* @reg: scratch register mmio offset
*
* Allocate a CP scratch register for use by the driver (all asics).
* Returns 0 on success or -EINVAL on failure.
*/
int amdgpu_gfx_scratch_get(struct amdgpu_device *adev, uint32_t *reg)
{
int i;
i = ffs(adev->gfx.scratch.free_mask);
if (i != 0 && i <= adev->gfx.scratch.num_reg) {
i--;
adev->gfx.scratch.free_mask &= ~(1u << i);
*reg = adev->gfx.scratch.reg_base + i;
return 0;
}
return -EINVAL;
}
/**
* amdgpu_gfx_scratch_free - Free a scratch register
*
* @adev: amdgpu_device pointer
* @reg: scratch register mmio offset
*
* Free a CP scratch register allocated for use by the driver (all asics)
*/
void amdgpu_gfx_scratch_free(struct amdgpu_device *adev, uint32_t reg)
{
adev->gfx.scratch.free_mask |= 1u << (reg - adev->gfx.scratch.reg_base);
}
/**
* amdgpu_gfx_parse_disable_cu - Parse the disable_cu module parameter
*
* @mask: array in which the per-shader array disable masks will be stored
* @max_se: number of SEs
* @max_sh: number of SHs
*
* The bitmask of CUs to be disabled in the shader array determined by se and
* sh is stored in mask[se * max_sh + sh].
*/
void amdgpu_gfx_parse_disable_cu(unsigned *mask, unsigned max_se, unsigned max_sh)
{
unsigned se, sh, cu;
const char *p;
memset(mask, 0, sizeof(*mask) * max_se * max_sh);
if (!amdgpu_disable_cu || !*amdgpu_disable_cu)
return;
p = amdgpu_disable_cu;
for (;;) {
char *next;
int ret = sscanf(p, "%u.%u.%u", &se, &sh, &cu);
if (ret < 3) {
DRM_ERROR("amdgpu: could not parse disable_cu\n");
return;
}
if (se < max_se && sh < max_sh && cu < 16) {
DRM_INFO("amdgpu: disabling CU %u.%u.%u\n", se, sh, cu);
mask[se * max_sh + sh] |= 1u << cu;
} else {
DRM_ERROR("amdgpu: disable_cu %u.%u.%u is out of range\n",
se, sh, cu);
}
next = strchr(p, ',');
if (!next)
break;
p = next + 1;
}
}
static bool amdgpu_gfx_is_multipipe_capable(struct amdgpu_device *adev)
{
if (amdgpu_compute_multipipe != -1) {
DRM_INFO("amdgpu: forcing compute pipe policy %d\n",
amdgpu_compute_multipipe);
return amdgpu_compute_multipipe == 1;
}
/* FIXME: spreading the queues across pipes causes perf regressions
* on POLARIS11 compute workloads */
if (adev->asic_type == CHIP_POLARIS11)
return false;
return adev->gfx.mec.num_mec > 1;
}
void amdgpu_gfx_compute_queue_acquire(struct amdgpu_device *adev)
{
int i, queue, pipe, mec;
bool multipipe_policy = amdgpu_gfx_is_multipipe_capable(adev);
/* policy for amdgpu compute queue ownership */
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
queue = i % adev->gfx.mec.num_queue_per_pipe;
pipe = (i / adev->gfx.mec.num_queue_per_pipe)
% adev->gfx.mec.num_pipe_per_mec;
mec = (i / adev->gfx.mec.num_queue_per_pipe)
/ adev->gfx.mec.num_pipe_per_mec;
/* we've run out of HW */
if (mec >= adev->gfx.mec.num_mec)
break;
if (multipipe_policy) {
/* policy: amdgpu owns the first two queues of the first MEC */
if (mec == 0 && queue < 2)
set_bit(i, adev->gfx.mec.queue_bitmap);
} else {
/* policy: amdgpu owns all queues in the first pipe */
if (mec == 0 && pipe == 0)
set_bit(i, adev->gfx.mec.queue_bitmap);
}
}
/* update the number of active compute rings */
adev->gfx.num_compute_rings =
bitmap_weight(adev->gfx.mec.queue_bitmap, AMDGPU_MAX_COMPUTE_QUEUES);
/* If you hit this case and edited the policy, you probably just
* need to increase AMDGPU_MAX_COMPUTE_RINGS */
if (WARN_ON(adev->gfx.num_compute_rings > AMDGPU_MAX_COMPUTE_RINGS))
adev->gfx.num_compute_rings = AMDGPU_MAX_COMPUTE_RINGS;
}
void amdgpu_gfx_graphics_queue_acquire(struct amdgpu_device *adev)
{
int i, queue, me;
for (i = 0; i < AMDGPU_MAX_GFX_QUEUES; ++i) {
queue = i % adev->gfx.me.num_queue_per_pipe;
me = (i / adev->gfx.me.num_queue_per_pipe)
/ adev->gfx.me.num_pipe_per_me;
if (me >= adev->gfx.me.num_me)
break;
/* policy: amdgpu owns the first queue per pipe at this stage
* will extend to mulitple queues per pipe later */
if (me == 0 && queue < 1)
set_bit(i, adev->gfx.me.queue_bitmap);
}
/* update the number of active graphics rings */
adev->gfx.num_gfx_rings =
bitmap_weight(adev->gfx.me.queue_bitmap, AMDGPU_MAX_GFX_QUEUES);
}
static int amdgpu_gfx_kiq_acquire(struct amdgpu_device *adev,
struct amdgpu_ring *ring)
{
int queue_bit;
int mec, pipe, queue;
queue_bit = adev->gfx.mec.num_mec
* adev->gfx.mec.num_pipe_per_mec
* adev->gfx.mec.num_queue_per_pipe;
while (queue_bit-- >= 0) {
if (test_bit(queue_bit, adev->gfx.mec.queue_bitmap))
continue;
amdgpu_gfx_bit_to_mec_queue(adev, queue_bit, &mec, &pipe, &queue);
/*
* 1. Using pipes 2/3 from MEC 2 seems cause problems.
* 2. It must use queue id 0, because CGPG_IDLE/SAVE/LOAD/RUN
* only can be issued on queue 0.
*/
if ((mec == 1 && pipe > 1) || queue != 0)
continue;
ring->me = mec + 1;
ring->pipe = pipe;
ring->queue = queue;
return 0;
}
dev_err(adev->dev, "Failed to find a queue for KIQ\n");
return -EINVAL;
}
int amdgpu_gfx_kiq_init_ring(struct amdgpu_device *adev,
struct amdgpu_ring *ring,
struct amdgpu_irq_src *irq)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
int r = 0;
spin_lock_init(&kiq->ring_lock);
r = amdgpu_device_wb_get(adev, &kiq->reg_val_offs);
if (r)
return r;
ring->adev = NULL;
ring->ring_obj = NULL;
ring->use_doorbell = true;
ring->doorbell_index = adev->doorbell_index.kiq;
r = amdgpu_gfx_kiq_acquire(adev, ring);
if (r)
return r;
ring->eop_gpu_addr = kiq->eop_gpu_addr;
sprintf(ring->name, "kiq_%d.%d.%d", ring->me, ring->pipe, ring->queue);
r = amdgpu_ring_init(adev, ring, 1024,
irq, AMDGPU_CP_KIQ_IRQ_DRIVER0);
if (r)
dev_warn(adev->dev, "(%d) failed to init kiq ring\n", r);
return r;
}
void amdgpu_gfx_kiq_free_ring(struct amdgpu_ring *ring)
{
amdgpu_device_wb_free(ring->adev, ring->adev->gfx.kiq.reg_val_offs);
amdgpu_ring_fini(ring);
}
void amdgpu_gfx_kiq_fini(struct amdgpu_device *adev)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
amdgpu_bo_free_kernel(&kiq->eop_obj, &kiq->eop_gpu_addr, NULL);
}
int amdgpu_gfx_kiq_init(struct amdgpu_device *adev,
unsigned hpd_size)
{
int r;
u32 *hpd;
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
r = amdgpu_bo_create_kernel(adev, hpd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &kiq->eop_obj,
&kiq->eop_gpu_addr, (void **)&hpd);
if (r) {
dev_warn(adev->dev, "failed to create KIQ bo (%d).\n", r);
return r;
}
memset(hpd, 0, hpd_size);
r = amdgpu_bo_reserve(kiq->eop_obj, true);
if (unlikely(r != 0))
dev_warn(adev->dev, "(%d) reserve kiq eop bo failed\n", r);
amdgpu_bo_kunmap(kiq->eop_obj);
amdgpu_bo_unreserve(kiq->eop_obj);
return 0;
}
/* create MQD for each compute/gfx queue */
int amdgpu_gfx_mqd_sw_init(struct amdgpu_device *adev,
unsigned mqd_size)
{
struct amdgpu_ring *ring = NULL;
int r, i;
/* create MQD for KIQ */
ring = &adev->gfx.kiq.ring;
if (!ring->mqd_obj) {
/* originaly the KIQ MQD is put in GTT domain, but for SRIOV VRAM domain is a must
* otherwise hypervisor trigger SAVE_VF fail after driver unloaded which mean MQD
* deallocated and gart_unbind, to strict diverage we decide to use VRAM domain for
* KIQ MQD no matter SRIOV or Bare-metal
*/
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_VRAM, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd ob (%d)", r);
return r;
}
/* prepare MQD backup */
adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS])
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
}
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
/* create MQD for each KGQ */
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
/* prepare MQD backup */
adev->gfx.me.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.me.mqd_backup[i])
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
}
}
}
/* create MQD for each KCQ */
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
if (!ring->mqd_obj) {
r = amdgpu_bo_create_kernel(adev, mqd_size, PAGE_SIZE,
AMDGPU_GEM_DOMAIN_GTT, &ring->mqd_obj,
&ring->mqd_gpu_addr, &ring->mqd_ptr);
if (r) {
dev_warn(adev->dev, "failed to create ring mqd bo (%d)", r);
return r;
}
/* prepare MQD backup */
adev->gfx.mec.mqd_backup[i] = kmalloc(mqd_size, GFP_KERNEL);
if (!adev->gfx.mec.mqd_backup[i])
dev_warn(adev->dev, "no memory to create MQD backup for ring %s\n", ring->name);
}
}
return 0;
}
void amdgpu_gfx_mqd_sw_fini(struct amdgpu_device *adev)
{
struct amdgpu_ring *ring = NULL;
int i;
if (adev->asic_type >= CHIP_NAVI10 && amdgpu_async_gfx_ring) {
for (i = 0; i < adev->gfx.num_gfx_rings; i++) {
ring = &adev->gfx.gfx_ring[i];
kfree(adev->gfx.me.mqd_backup[i]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
}
for (i = 0; i < adev->gfx.num_compute_rings; i++) {
ring = &adev->gfx.compute_ring[i];
kfree(adev->gfx.mec.mqd_backup[i]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
ring = &adev->gfx.kiq.ring;
kfree(adev->gfx.mec.mqd_backup[AMDGPU_MAX_COMPUTE_RINGS]);
amdgpu_bo_free_kernel(&ring->mqd_obj,
&ring->mqd_gpu_addr,
&ring->mqd_ptr);
}
int amdgpu_gfx_disable_kcq(struct amdgpu_device *adev)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *kiq_ring = &kiq->ring;
int i;
if (!kiq->pmf || !kiq->pmf->kiq_unmap_queues)
return -EINVAL;
if (amdgpu_ring_alloc(kiq_ring, kiq->pmf->unmap_queues_size *
adev->gfx.num_compute_rings))
return -ENOMEM;
for (i = 0; i < adev->gfx.num_compute_rings; i++)
kiq->pmf->kiq_unmap_queues(kiq_ring, &adev->gfx.compute_ring[i],
RESET_QUEUES, 0, 0);
return amdgpu_ring_test_ring(kiq_ring);
}
int amdgpu_gfx_enable_kcq(struct amdgpu_device *adev)
{
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *kiq_ring = &adev->gfx.kiq.ring;
uint64_t queue_mask = 0;
int r, i;
if (!kiq->pmf || !kiq->pmf->kiq_map_queues || !kiq->pmf->kiq_set_resources)
return -EINVAL;
for (i = 0; i < AMDGPU_MAX_COMPUTE_QUEUES; ++i) {
if (!test_bit(i, adev->gfx.mec.queue_bitmap))
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of queue_mask needs updating */
if (WARN_ON(i > (sizeof(queue_mask)*8))) {
DRM_ERROR("Invalid KCQ enabled: %d\n", i);
break;
}
queue_mask |= (1ull << i);
}
DRM_INFO("kiq ring mec %d pipe %d q %d\n", kiq_ring->me, kiq_ring->pipe,
kiq_ring->queue);
r = amdgpu_ring_alloc(kiq_ring, kiq->pmf->map_queues_size *
adev->gfx.num_compute_rings +
kiq->pmf->set_resources_size);
if (r) {
DRM_ERROR("Failed to lock KIQ (%d).\n", r);
return r;
}
kiq->pmf->kiq_set_resources(kiq_ring, queue_mask);
for (i = 0; i < adev->gfx.num_compute_rings; i++)
kiq->pmf->kiq_map_queues(kiq_ring, &adev->gfx.compute_ring[i]);
r = amdgpu_ring_test_helper(kiq_ring);
if (r)
DRM_ERROR("KCQ enable failed\n");
return r;
}
/* amdgpu_gfx_off_ctrl - Handle gfx off feature enable/disable
*
* @adev: amdgpu_device pointer
* @bool enable true: enable gfx off feature, false: disable gfx off feature
*
* 1. gfx off feature will be enabled by gfx ip after gfx cg gp enabled.
* 2. other client can send request to disable gfx off feature, the request should be honored.
* 3. other client can cancel their request of disable gfx off feature
* 4. other client should not send request to enable gfx off feature before disable gfx off feature.
*/
void amdgpu_gfx_off_ctrl(struct amdgpu_device *adev, bool enable)
{
if (!(adev->pm.pp_feature & PP_GFXOFF_MASK))
return;
mutex_lock(&adev->gfx.gfx_off_mutex);
if (!enable)
adev->gfx.gfx_off_req_count++;
else if (adev->gfx.gfx_off_req_count > 0)
adev->gfx.gfx_off_req_count--;
if (enable && !adev->gfx.gfx_off_state && !adev->gfx.gfx_off_req_count) {
schedule_delayed_work(&adev->gfx.gfx_off_delay_work, GFX_OFF_DELAY_ENABLE);
} else if (!enable && adev->gfx.gfx_off_state) {
if (!amdgpu_dpm_set_powergating_by_smu(adev, AMD_IP_BLOCK_TYPE_GFX, false))
adev->gfx.gfx_off_state = false;
}
mutex_unlock(&adev->gfx.gfx_off_mutex);
}
int amdgpu_gfx_ras_late_init(struct amdgpu_device *adev)
{
int r;
struct ras_fs_if fs_info = {
.sysfs_name = "gfx_err_count",
.debugfs_name = "gfx_err_inject",
};
struct ras_ih_if ih_info = {
.cb = amdgpu_gfx_process_ras_data_cb,
};
if (!adev->gfx.ras_if) {
adev->gfx.ras_if = kmalloc(sizeof(struct ras_common_if), GFP_KERNEL);
if (!adev->gfx.ras_if)
return -ENOMEM;
adev->gfx.ras_if->block = AMDGPU_RAS_BLOCK__GFX;
adev->gfx.ras_if->type = AMDGPU_RAS_ERROR__MULTI_UNCORRECTABLE;
adev->gfx.ras_if->sub_block_index = 0;
strcpy(adev->gfx.ras_if->name, "gfx");
}
fs_info.head = ih_info.head = *adev->gfx.ras_if;
r = amdgpu_ras_late_init(adev, adev->gfx.ras_if,
&fs_info, &ih_info);
if (r)
goto free;
if (amdgpu_ras_is_supported(adev, adev->gfx.ras_if->block)) {
r = amdgpu_irq_get(adev, &adev->gfx.cp_ecc_error_irq, 0);
if (r)
goto late_fini;
} else {
/* free gfx ras_if if ras is not supported */
r = 0;
goto free;
}
return 0;
late_fini:
amdgpu_ras_late_fini(adev, adev->gfx.ras_if, &ih_info);
free:
kfree(adev->gfx.ras_if);
adev->gfx.ras_if = NULL;
return r;
}
void amdgpu_gfx_ras_fini(struct amdgpu_device *adev)
{
if (amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX) &&
adev->gfx.ras_if) {
struct ras_common_if *ras_if = adev->gfx.ras_if;
struct ras_ih_if ih_info = {
.head = *ras_if,
.cb = amdgpu_gfx_process_ras_data_cb,
};
amdgpu_ras_late_fini(adev, ras_if, &ih_info);
kfree(ras_if);
}
}
int amdgpu_gfx_process_ras_data_cb(struct amdgpu_device *adev,
void *err_data,
struct amdgpu_iv_entry *entry)
{
/* TODO ue will trigger an interrupt.
*
* When “Full RAS” is enabled, the per-IP interrupt sources should
* be disabled and the driver should only look for the aggregated
* interrupt via sync flood
*/
if (!amdgpu_ras_is_supported(adev, AMDGPU_RAS_BLOCK__GFX)) {
kgd2kfd_set_sram_ecc_flag(adev->kfd.dev);
if (adev->gfx.funcs->query_ras_error_count)
adev->gfx.funcs->query_ras_error_count(adev, err_data);
amdgpu_ras_reset_gpu(adev);
}
return AMDGPU_RAS_SUCCESS;
}
int amdgpu_gfx_cp_ecc_error_irq(struct amdgpu_device *adev,
struct amdgpu_irq_src *source,
struct amdgpu_iv_entry *entry)
{
struct ras_common_if *ras_if = adev->gfx.ras_if;
struct ras_dispatch_if ih_data = {
.entry = entry,
};
if (!ras_if)
return 0;
ih_data.head = *ras_if;
DRM_ERROR("CP ECC ERROR IRQ\n");
amdgpu_ras_interrupt_dispatch(adev, &ih_data);
return 0;
}
uint32_t amdgpu_kiq_rreg(struct amdgpu_device *adev, uint32_t reg)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq;
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *ring = &kiq->ring;
BUG_ON(!ring->funcs->emit_rreg);
spin_lock_irqsave(&kiq->ring_lock, flags);
amdgpu_ring_alloc(ring, 32);
amdgpu_ring_emit_rreg(ring, reg);
amdgpu_fence_emit_polling(ring, &seq);
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (adev->in_gpu_reset || in_interrupt()))
goto failed_kiq_read;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_read;
return adev->wb.wb[kiq->reg_val_offs];
failed_kiq_read:
pr_err("failed to read reg:%x\n", reg);
return ~0;
}
void amdgpu_kiq_wreg(struct amdgpu_device *adev, uint32_t reg, uint32_t v)
{
signed long r, cnt = 0;
unsigned long flags;
uint32_t seq;
struct amdgpu_kiq *kiq = &adev->gfx.kiq;
struct amdgpu_ring *ring = &kiq->ring;
BUG_ON(!ring->funcs->emit_wreg);
spin_lock_irqsave(&kiq->ring_lock, flags);
amdgpu_ring_alloc(ring, 32);
amdgpu_ring_emit_wreg(ring, reg, v);
amdgpu_fence_emit_polling(ring, &seq);
amdgpu_ring_commit(ring);
spin_unlock_irqrestore(&kiq->ring_lock, flags);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
/* don't wait anymore for gpu reset case because this way may
* block gpu_recover() routine forever, e.g. this virt_kiq_rreg
* is triggered in TTM and ttm_bo_lock_delayed_workqueue() will
* never return if we keep waiting in virt_kiq_rreg, which cause
* gpu_recover() hang there.
*
* also don't wait anymore for IRQ context
* */
if (r < 1 && (adev->in_gpu_reset || in_interrupt()))
goto failed_kiq_write;
might_sleep();
while (r < 1 && cnt++ < MAX_KIQ_REG_TRY) {
msleep(MAX_KIQ_REG_BAILOUT_INTERVAL);
r = amdgpu_fence_wait_polling(ring, seq, MAX_KIQ_REG_WAIT);
}
if (cnt > MAX_KIQ_REG_TRY)
goto failed_kiq_write;
return;
failed_kiq_write:
pr_err("failed to write reg:%x\n", reg);
}