1869 lines
47 KiB
C
1869 lines
47 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
|
/* D-Link DL2000-based Gigabit Ethernet Adapter Linux driver */
|
|
/*
|
|
Copyright (c) 2001, 2002 by D-Link Corporation
|
|
Written by Edward Peng.<edward_peng@dlink.com.tw>
|
|
Created 03-May-2001, base on Linux' sundance.c.
|
|
|
|
*/
|
|
|
|
#include "dl2k.h"
|
|
#include <linux/dma-mapping.h>
|
|
|
|
#define dw32(reg, val) iowrite32(val, ioaddr + (reg))
|
|
#define dw16(reg, val) iowrite16(val, ioaddr + (reg))
|
|
#define dw8(reg, val) iowrite8(val, ioaddr + (reg))
|
|
#define dr32(reg) ioread32(ioaddr + (reg))
|
|
#define dr16(reg) ioread16(ioaddr + (reg))
|
|
#define dr8(reg) ioread8(ioaddr + (reg))
|
|
|
|
#define MAX_UNITS 8
|
|
static int mtu[MAX_UNITS];
|
|
static int vlan[MAX_UNITS];
|
|
static int jumbo[MAX_UNITS];
|
|
static char *media[MAX_UNITS];
|
|
static int tx_flow=-1;
|
|
static int rx_flow=-1;
|
|
static int copy_thresh;
|
|
static int rx_coalesce=10; /* Rx frame count each interrupt */
|
|
static int rx_timeout=200; /* Rx DMA wait time in 640ns increments */
|
|
static int tx_coalesce=16; /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
MODULE_AUTHOR ("Edward Peng");
|
|
MODULE_DESCRIPTION ("D-Link DL2000-based Gigabit Ethernet Adapter");
|
|
MODULE_LICENSE("GPL");
|
|
module_param_array(mtu, int, NULL, 0);
|
|
module_param_array(media, charp, NULL, 0);
|
|
module_param_array(vlan, int, NULL, 0);
|
|
module_param_array(jumbo, int, NULL, 0);
|
|
module_param(tx_flow, int, 0);
|
|
module_param(rx_flow, int, 0);
|
|
module_param(copy_thresh, int, 0);
|
|
module_param(rx_coalesce, int, 0); /* Rx frame count each interrupt */
|
|
module_param(rx_timeout, int, 0); /* Rx DMA wait time in 64ns increments */
|
|
module_param(tx_coalesce, int, 0); /* HW xmit count each TxDMAComplete */
|
|
|
|
|
|
/* Enable the default interrupts */
|
|
#define DEFAULT_INTR (RxDMAComplete | HostError | IntRequested | TxDMAComplete| \
|
|
UpdateStats | LinkEvent)
|
|
|
|
static void dl2k_enable_int(struct netdev_private *np)
|
|
{
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
|
|
dw16(IntEnable, DEFAULT_INTR);
|
|
}
|
|
|
|
static const int max_intrloop = 50;
|
|
static const int multicast_filter_limit = 0x40;
|
|
|
|
static int rio_open (struct net_device *dev);
|
|
static void rio_timer (struct timer_list *t);
|
|
static void rio_tx_timeout (struct net_device *dev, unsigned int txqueue);
|
|
static netdev_tx_t start_xmit (struct sk_buff *skb, struct net_device *dev);
|
|
static irqreturn_t rio_interrupt (int irq, void *dev_instance);
|
|
static void rio_free_tx (struct net_device *dev, int irq);
|
|
static void tx_error (struct net_device *dev, int tx_status);
|
|
static int receive_packet (struct net_device *dev);
|
|
static void rio_error (struct net_device *dev, int int_status);
|
|
static void set_multicast (struct net_device *dev);
|
|
static struct net_device_stats *get_stats (struct net_device *dev);
|
|
static int clear_stats (struct net_device *dev);
|
|
static int rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd);
|
|
static int rio_close (struct net_device *dev);
|
|
static int find_miiphy (struct net_device *dev);
|
|
static int parse_eeprom (struct net_device *dev);
|
|
static int read_eeprom (struct netdev_private *, int eep_addr);
|
|
static int mii_wait_link (struct net_device *dev, int wait);
|
|
static int mii_set_media (struct net_device *dev);
|
|
static int mii_get_media (struct net_device *dev);
|
|
static int mii_set_media_pcs (struct net_device *dev);
|
|
static int mii_get_media_pcs (struct net_device *dev);
|
|
static int mii_read (struct net_device *dev, int phy_addr, int reg_num);
|
|
static int mii_write (struct net_device *dev, int phy_addr, int reg_num,
|
|
u16 data);
|
|
|
|
static const struct ethtool_ops ethtool_ops;
|
|
|
|
static const struct net_device_ops netdev_ops = {
|
|
.ndo_open = rio_open,
|
|
.ndo_start_xmit = start_xmit,
|
|
.ndo_stop = rio_close,
|
|
.ndo_get_stats = get_stats,
|
|
.ndo_validate_addr = eth_validate_addr,
|
|
.ndo_set_mac_address = eth_mac_addr,
|
|
.ndo_set_rx_mode = set_multicast,
|
|
.ndo_do_ioctl = rio_ioctl,
|
|
.ndo_tx_timeout = rio_tx_timeout,
|
|
};
|
|
|
|
static int
|
|
rio_probe1 (struct pci_dev *pdev, const struct pci_device_id *ent)
|
|
{
|
|
struct net_device *dev;
|
|
struct netdev_private *np;
|
|
static int card_idx;
|
|
int chip_idx = ent->driver_data;
|
|
int err, irq;
|
|
void __iomem *ioaddr;
|
|
void *ring_space;
|
|
dma_addr_t ring_dma;
|
|
|
|
err = pci_enable_device (pdev);
|
|
if (err)
|
|
return err;
|
|
|
|
irq = pdev->irq;
|
|
err = pci_request_regions (pdev, "dl2k");
|
|
if (err)
|
|
goto err_out_disable;
|
|
|
|
pci_set_master (pdev);
|
|
|
|
err = -ENOMEM;
|
|
|
|
dev = alloc_etherdev (sizeof (*np));
|
|
if (!dev)
|
|
goto err_out_res;
|
|
SET_NETDEV_DEV(dev, &pdev->dev);
|
|
|
|
np = netdev_priv(dev);
|
|
|
|
/* IO registers range. */
|
|
ioaddr = pci_iomap(pdev, 0, 0);
|
|
if (!ioaddr)
|
|
goto err_out_dev;
|
|
np->eeprom_addr = ioaddr;
|
|
|
|
#ifdef MEM_MAPPING
|
|
/* MM registers range. */
|
|
ioaddr = pci_iomap(pdev, 1, 0);
|
|
if (!ioaddr)
|
|
goto err_out_iounmap;
|
|
#endif
|
|
np->ioaddr = ioaddr;
|
|
np->chip_id = chip_idx;
|
|
np->pdev = pdev;
|
|
spin_lock_init (&np->tx_lock);
|
|
spin_lock_init (&np->rx_lock);
|
|
|
|
/* Parse manual configuration */
|
|
np->an_enable = 1;
|
|
np->tx_coalesce = 1;
|
|
if (card_idx < MAX_UNITS) {
|
|
if (media[card_idx] != NULL) {
|
|
np->an_enable = 0;
|
|
if (strcmp (media[card_idx], "auto") == 0 ||
|
|
strcmp (media[card_idx], "autosense") == 0 ||
|
|
strcmp (media[card_idx], "0") == 0 ) {
|
|
np->an_enable = 2;
|
|
} else if (strcmp (media[card_idx], "100mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "4") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "100mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "3") == 0) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "10mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "2") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
} else if (strcmp (media[card_idx], "10mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "1") == 0) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
} else if (strcmp (media[card_idx], "1000mbps_fd") == 0 ||
|
|
strcmp (media[card_idx], "6") == 0) {
|
|
np->speed=1000;
|
|
np->full_duplex=1;
|
|
} else if (strcmp (media[card_idx], "1000mbps_hd") == 0 ||
|
|
strcmp (media[card_idx], "5") == 0) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
} else {
|
|
np->an_enable = 1;
|
|
}
|
|
}
|
|
if (jumbo[card_idx] != 0) {
|
|
np->jumbo = 1;
|
|
dev->mtu = MAX_JUMBO;
|
|
} else {
|
|
np->jumbo = 0;
|
|
if (mtu[card_idx] > 0 && mtu[card_idx] < PACKET_SIZE)
|
|
dev->mtu = mtu[card_idx];
|
|
}
|
|
np->vlan = (vlan[card_idx] > 0 && vlan[card_idx] < 4096) ?
|
|
vlan[card_idx] : 0;
|
|
if (rx_coalesce > 0 && rx_timeout > 0) {
|
|
np->rx_coalesce = rx_coalesce;
|
|
np->rx_timeout = rx_timeout;
|
|
np->coalesce = 1;
|
|
}
|
|
np->tx_flow = (tx_flow == 0) ? 0 : 1;
|
|
np->rx_flow = (rx_flow == 0) ? 0 : 1;
|
|
|
|
if (tx_coalesce < 1)
|
|
tx_coalesce = 1;
|
|
else if (tx_coalesce > TX_RING_SIZE-1)
|
|
tx_coalesce = TX_RING_SIZE - 1;
|
|
}
|
|
dev->netdev_ops = &netdev_ops;
|
|
dev->watchdog_timeo = TX_TIMEOUT;
|
|
dev->ethtool_ops = ðtool_ops;
|
|
#if 0
|
|
dev->features = NETIF_F_IP_CSUM;
|
|
#endif
|
|
/* MTU range: 68 - 1536 or 8000 */
|
|
dev->min_mtu = ETH_MIN_MTU;
|
|
dev->max_mtu = np->jumbo ? MAX_JUMBO : PACKET_SIZE;
|
|
|
|
pci_set_drvdata (pdev, dev);
|
|
|
|
ring_space = dma_alloc_coherent(&pdev->dev, TX_TOTAL_SIZE, &ring_dma,
|
|
GFP_KERNEL);
|
|
if (!ring_space)
|
|
goto err_out_iounmap;
|
|
np->tx_ring = ring_space;
|
|
np->tx_ring_dma = ring_dma;
|
|
|
|
ring_space = dma_alloc_coherent(&pdev->dev, RX_TOTAL_SIZE, &ring_dma,
|
|
GFP_KERNEL);
|
|
if (!ring_space)
|
|
goto err_out_unmap_tx;
|
|
np->rx_ring = ring_space;
|
|
np->rx_ring_dma = ring_dma;
|
|
|
|
/* Parse eeprom data */
|
|
parse_eeprom (dev);
|
|
|
|
/* Find PHY address */
|
|
err = find_miiphy (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
/* Fiber device? */
|
|
np->phy_media = (dr16(ASICCtrl) & PhyMedia) ? 1 : 0;
|
|
np->link_status = 0;
|
|
/* Set media and reset PHY */
|
|
if (np->phy_media) {
|
|
/* default Auto-Negotiation for fiber deivices */
|
|
if (np->an_enable == 2) {
|
|
np->an_enable = 1;
|
|
}
|
|
} else {
|
|
/* Auto-Negotiation is mandatory for 1000BASE-T,
|
|
IEEE 802.3ab Annex 28D page 14 */
|
|
if (np->speed == 1000)
|
|
np->an_enable = 1;
|
|
}
|
|
|
|
err = register_netdev (dev);
|
|
if (err)
|
|
goto err_out_unmap_rx;
|
|
|
|
card_idx++;
|
|
|
|
printk (KERN_INFO "%s: %s, %pM, IRQ %d\n",
|
|
dev->name, np->name, dev->dev_addr, irq);
|
|
if (tx_coalesce > 1)
|
|
printk(KERN_INFO "tx_coalesce:\t%d packets\n",
|
|
tx_coalesce);
|
|
if (np->coalesce)
|
|
printk(KERN_INFO
|
|
"rx_coalesce:\t%d packets\n"
|
|
"rx_timeout: \t%d ns\n",
|
|
np->rx_coalesce, np->rx_timeout*640);
|
|
if (np->vlan)
|
|
printk(KERN_INFO "vlan(id):\t%d\n", np->vlan);
|
|
return 0;
|
|
|
|
err_out_unmap_rx:
|
|
dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
|
|
np->rx_ring_dma);
|
|
err_out_unmap_tx:
|
|
dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
|
|
np->tx_ring_dma);
|
|
err_out_iounmap:
|
|
#ifdef MEM_MAPPING
|
|
pci_iounmap(pdev, np->ioaddr);
|
|
#endif
|
|
pci_iounmap(pdev, np->eeprom_addr);
|
|
err_out_dev:
|
|
free_netdev (dev);
|
|
err_out_res:
|
|
pci_release_regions (pdev);
|
|
err_out_disable:
|
|
pci_disable_device (pdev);
|
|
return err;
|
|
}
|
|
|
|
static int
|
|
find_miiphy (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i, phy_found = 0;
|
|
|
|
np->phy_addr = 1;
|
|
|
|
for (i = 31; i >= 0; i--) {
|
|
int mii_status = mii_read (dev, i, 1);
|
|
if (mii_status != 0xffff && mii_status != 0x0000) {
|
|
np->phy_addr = i;
|
|
phy_found++;
|
|
}
|
|
}
|
|
if (!phy_found) {
|
|
printk (KERN_ERR "%s: No MII PHY found!\n", dev->name);
|
|
return -ENODEV;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
parse_eeprom (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
int i, j;
|
|
u8 sromdata[256];
|
|
u8 *psib;
|
|
u32 crc;
|
|
PSROM_t psrom = (PSROM_t) sromdata;
|
|
|
|
int cid, next;
|
|
|
|
for (i = 0; i < 128; i++)
|
|
((__le16 *) sromdata)[i] = cpu_to_le16(read_eeprom(np, i));
|
|
|
|
if (np->pdev->vendor == PCI_VENDOR_ID_DLINK) { /* D-Link Only */
|
|
/* Check CRC */
|
|
crc = ~ether_crc_le (256 - 4, sromdata);
|
|
if (psrom->crc != cpu_to_le32(crc)) {
|
|
printk (KERN_ERR "%s: EEPROM data CRC error.\n",
|
|
dev->name);
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Set MAC address */
|
|
for (i = 0; i < 6; i++)
|
|
dev->dev_addr[i] = psrom->mac_addr[i];
|
|
|
|
if (np->chip_id == CHIP_IP1000A) {
|
|
np->led_mode = psrom->led_mode;
|
|
return 0;
|
|
}
|
|
|
|
if (np->pdev->vendor != PCI_VENDOR_ID_DLINK) {
|
|
return 0;
|
|
}
|
|
|
|
/* Parse Software Information Block */
|
|
i = 0x30;
|
|
psib = (u8 *) sromdata;
|
|
do {
|
|
cid = psib[i++];
|
|
next = psib[i++];
|
|
if ((cid == 0 && next == 0) || (cid == 0xff && next == 0xff)) {
|
|
printk (KERN_ERR "Cell data error\n");
|
|
return -1;
|
|
}
|
|
switch (cid) {
|
|
case 0: /* Format version */
|
|
break;
|
|
case 1: /* End of cell */
|
|
return 0;
|
|
case 2: /* Duplex Polarity */
|
|
np->duplex_polarity = psib[i];
|
|
dw8(PhyCtrl, dr8(PhyCtrl) | psib[i]);
|
|
break;
|
|
case 3: /* Wake Polarity */
|
|
np->wake_polarity = psib[i];
|
|
break;
|
|
case 9: /* Adapter description */
|
|
j = (next - i > 255) ? 255 : next - i;
|
|
memcpy (np->name, &(psib[i]), j);
|
|
break;
|
|
case 4:
|
|
case 5:
|
|
case 6:
|
|
case 7:
|
|
case 8: /* Reversed */
|
|
break;
|
|
default: /* Unknown cell */
|
|
return -1;
|
|
}
|
|
i = next;
|
|
} while (1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rio_set_led_mode(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
u32 mode;
|
|
|
|
if (np->chip_id != CHIP_IP1000A)
|
|
return;
|
|
|
|
mode = dr32(ASICCtrl);
|
|
mode &= ~(IPG_AC_LED_MODE_BIT_1 | IPG_AC_LED_MODE | IPG_AC_LED_SPEED);
|
|
|
|
if (np->led_mode & 0x01)
|
|
mode |= IPG_AC_LED_MODE;
|
|
if (np->led_mode & 0x02)
|
|
mode |= IPG_AC_LED_MODE_BIT_1;
|
|
if (np->led_mode & 0x08)
|
|
mode |= IPG_AC_LED_SPEED;
|
|
|
|
dw32(ASICCtrl, mode);
|
|
}
|
|
|
|
static inline dma_addr_t desc_to_dma(struct netdev_desc *desc)
|
|
{
|
|
return le64_to_cpu(desc->fraginfo) & DMA_BIT_MASK(48);
|
|
}
|
|
|
|
static void free_list(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct sk_buff *skb;
|
|
int i;
|
|
|
|
/* Free all the skbuffs in the queue. */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
skb = np->rx_skbuff[i];
|
|
if (skb) {
|
|
dma_unmap_single(&np->pdev->dev,
|
|
desc_to_dma(&np->rx_ring[i]),
|
|
skb->len, DMA_FROM_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
np->rx_skbuff[i] = NULL;
|
|
}
|
|
np->rx_ring[i].status = 0;
|
|
np->rx_ring[i].fraginfo = 0;
|
|
}
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
skb = np->tx_skbuff[i];
|
|
if (skb) {
|
|
dma_unmap_single(&np->pdev->dev,
|
|
desc_to_dma(&np->tx_ring[i]),
|
|
skb->len, DMA_TO_DEVICE);
|
|
dev_kfree_skb(skb);
|
|
np->tx_skbuff[i] = NULL;
|
|
}
|
|
}
|
|
}
|
|
|
|
static void rio_reset_ring(struct netdev_private *np)
|
|
{
|
|
int i;
|
|
|
|
np->cur_rx = 0;
|
|
np->cur_tx = 0;
|
|
np->old_rx = 0;
|
|
np->old_tx = 0;
|
|
|
|
for (i = 0; i < TX_RING_SIZE; i++)
|
|
np->tx_ring[i].status = cpu_to_le64(TFDDone);
|
|
|
|
for (i = 0; i < RX_RING_SIZE; i++)
|
|
np->rx_ring[i].status = 0;
|
|
}
|
|
|
|
/* allocate and initialize Tx and Rx descriptors */
|
|
static int alloc_list(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int i;
|
|
|
|
rio_reset_ring(np);
|
|
np->rx_buf_sz = (dev->mtu <= 1500 ? PACKET_SIZE : dev->mtu + 32);
|
|
|
|
/* Initialize Tx descriptors, TFDListPtr leaves in start_xmit(). */
|
|
for (i = 0; i < TX_RING_SIZE; i++) {
|
|
np->tx_skbuff[i] = NULL;
|
|
np->tx_ring[i].next_desc = cpu_to_le64(np->tx_ring_dma +
|
|
((i + 1) % TX_RING_SIZE) *
|
|
sizeof(struct netdev_desc));
|
|
}
|
|
|
|
/* Initialize Rx descriptors & allocate buffers */
|
|
for (i = 0; i < RX_RING_SIZE; i++) {
|
|
/* Allocated fixed size of skbuff */
|
|
struct sk_buff *skb;
|
|
|
|
skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
|
|
np->rx_skbuff[i] = skb;
|
|
if (!skb) {
|
|
free_list(dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
np->rx_ring[i].next_desc = cpu_to_le64(np->rx_ring_dma +
|
|
((i + 1) % RX_RING_SIZE) *
|
|
sizeof(struct netdev_desc));
|
|
/* Rubicon now supports 40 bits of addressing space. */
|
|
np->rx_ring[i].fraginfo =
|
|
cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
|
|
np->rx_buf_sz, DMA_FROM_DEVICE));
|
|
np->rx_ring[i].fraginfo |= cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void rio_hw_init(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
int i;
|
|
u16 macctrl;
|
|
|
|
/* Reset all logic functions */
|
|
dw16(ASICCtrl + 2,
|
|
GlobalReset | DMAReset | FIFOReset | NetworkReset | HostReset);
|
|
mdelay(10);
|
|
|
|
rio_set_led_mode(dev);
|
|
|
|
/* DebugCtrl bit 4, 5, 9 must set */
|
|
dw32(DebugCtrl, dr32(DebugCtrl) | 0x0230);
|
|
|
|
if (np->chip_id == CHIP_IP1000A &&
|
|
(np->pdev->revision == 0x40 || np->pdev->revision == 0x41)) {
|
|
/* PHY magic taken from ipg driver, undocumented registers */
|
|
mii_write(dev, np->phy_addr, 31, 0x0001);
|
|
mii_write(dev, np->phy_addr, 27, 0x01e0);
|
|
mii_write(dev, np->phy_addr, 31, 0x0002);
|
|
mii_write(dev, np->phy_addr, 27, 0xeb8e);
|
|
mii_write(dev, np->phy_addr, 31, 0x0000);
|
|
mii_write(dev, np->phy_addr, 30, 0x005e);
|
|
/* advertise 1000BASE-T half & full duplex, prefer MASTER */
|
|
mii_write(dev, np->phy_addr, MII_CTRL1000, 0x0700);
|
|
}
|
|
|
|
if (np->phy_media)
|
|
mii_set_media_pcs(dev);
|
|
else
|
|
mii_set_media(dev);
|
|
|
|
/* Jumbo frame */
|
|
if (np->jumbo != 0)
|
|
dw16(MaxFrameSize, MAX_JUMBO+14);
|
|
|
|
/* Set RFDListPtr */
|
|
dw32(RFDListPtr0, np->rx_ring_dma);
|
|
dw32(RFDListPtr1, 0);
|
|
|
|
/* Set station address */
|
|
/* 16 or 32-bit access is required by TC9020 datasheet but 8-bit works
|
|
* too. However, it doesn't work on IP1000A so we use 16-bit access.
|
|
*/
|
|
for (i = 0; i < 3; i++)
|
|
dw16(StationAddr0 + 2 * i,
|
|
cpu_to_le16(((u16 *)dev->dev_addr)[i]));
|
|
|
|
set_multicast (dev);
|
|
if (np->coalesce) {
|
|
dw32(RxDMAIntCtrl, np->rx_coalesce | np->rx_timeout << 16);
|
|
}
|
|
/* Set RIO to poll every N*320nsec. */
|
|
dw8(RxDMAPollPeriod, 0x20);
|
|
dw8(TxDMAPollPeriod, 0xff);
|
|
dw8(RxDMABurstThresh, 0x30);
|
|
dw8(RxDMAUrgentThresh, 0x30);
|
|
dw32(RmonStatMask, 0x0007ffff);
|
|
/* clear statistics */
|
|
clear_stats (dev);
|
|
|
|
/* VLAN supported */
|
|
if (np->vlan) {
|
|
/* priority field in RxDMAIntCtrl */
|
|
dw32(RxDMAIntCtrl, dr32(RxDMAIntCtrl) | 0x7 << 10);
|
|
/* VLANId */
|
|
dw16(VLANId, np->vlan);
|
|
/* Length/Type should be 0x8100 */
|
|
dw32(VLANTag, 0x8100 << 16 | np->vlan);
|
|
/* Enable AutoVLANuntagging, but disable AutoVLANtagging.
|
|
VLAN information tagged by TFC' VID, CFI fields. */
|
|
dw32(MACCtrl, dr32(MACCtrl) | AutoVLANuntagging);
|
|
}
|
|
|
|
/* Start Tx/Rx */
|
|
dw32(MACCtrl, dr32(MACCtrl) | StatsEnable | RxEnable | TxEnable);
|
|
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ? TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ? RxFlowControlEnable : 0;
|
|
dw16(MACCtrl, macctrl);
|
|
}
|
|
|
|
static void rio_hw_stop(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
|
|
/* Disable interrupts */
|
|
dw16(IntEnable, 0);
|
|
|
|
/* Stop Tx and Rx logics */
|
|
dw32(MACCtrl, TxDisable | RxDisable | StatsDisable);
|
|
}
|
|
|
|
static int rio_open(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
const int irq = np->pdev->irq;
|
|
int i;
|
|
|
|
i = alloc_list(dev);
|
|
if (i)
|
|
return i;
|
|
|
|
rio_hw_init(dev);
|
|
|
|
i = request_irq(irq, rio_interrupt, IRQF_SHARED, dev->name, dev);
|
|
if (i) {
|
|
rio_hw_stop(dev);
|
|
free_list(dev);
|
|
return i;
|
|
}
|
|
|
|
timer_setup(&np->timer, rio_timer, 0);
|
|
np->timer.expires = jiffies + 1 * HZ;
|
|
add_timer(&np->timer);
|
|
|
|
netif_start_queue (dev);
|
|
|
|
dl2k_enable_int(np);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_timer (struct timer_list *t)
|
|
{
|
|
struct netdev_private *np = from_timer(np, t, timer);
|
|
struct net_device *dev = pci_get_drvdata(np->pdev);
|
|
unsigned int entry;
|
|
int next_tick = 1*HZ;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&np->rx_lock, flags);
|
|
/* Recover rx ring exhausted error */
|
|
if (np->cur_rx - np->old_rx >= RX_RING_SIZE) {
|
|
printk(KERN_INFO "Try to recover rx ring exhausted...\n");
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
for (; np->cur_rx - np->old_rx > 0; np->old_rx++) {
|
|
struct sk_buff *skb;
|
|
entry = np->old_rx % RX_RING_SIZE;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = netdev_alloc_skb_ip_align(dev,
|
|
np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: Still unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
|
|
np->rx_buf_sz, DMA_FROM_DEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
np->rx_ring[entry].status = 0;
|
|
} /* end for */
|
|
} /* end if */
|
|
spin_unlock_irqrestore (&np->rx_lock, flags);
|
|
np->timer.expires = jiffies + next_tick;
|
|
add_timer(&np->timer);
|
|
}
|
|
|
|
static void
|
|
rio_tx_timeout (struct net_device *dev, unsigned int txqueue)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
|
|
printk (KERN_INFO "%s: Tx timed out (%4.4x), is buffer full?\n",
|
|
dev->name, dr32(TxStatus));
|
|
rio_free_tx(dev, 0);
|
|
dev->if_port = 0;
|
|
netif_trans_update(dev); /* prevent tx timeout */
|
|
}
|
|
|
|
static netdev_tx_t
|
|
start_xmit (struct sk_buff *skb, struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
struct netdev_desc *txdesc;
|
|
unsigned entry;
|
|
u64 tfc_vlan_tag = 0;
|
|
|
|
if (np->link_status == 0) { /* Link Down */
|
|
dev_kfree_skb(skb);
|
|
return NETDEV_TX_OK;
|
|
}
|
|
entry = np->cur_tx % TX_RING_SIZE;
|
|
np->tx_skbuff[entry] = skb;
|
|
txdesc = &np->tx_ring[entry];
|
|
|
|
#if 0
|
|
if (skb->ip_summed == CHECKSUM_PARTIAL) {
|
|
txdesc->status |=
|
|
cpu_to_le64 (TCPChecksumEnable | UDPChecksumEnable |
|
|
IPChecksumEnable);
|
|
}
|
|
#endif
|
|
if (np->vlan) {
|
|
tfc_vlan_tag = VLANTagInsert |
|
|
((u64)np->vlan << 32) |
|
|
((u64)skb->priority << 45);
|
|
}
|
|
txdesc->fraginfo = cpu_to_le64 (dma_map_single(&np->pdev->dev, skb->data,
|
|
skb->len, DMA_TO_DEVICE));
|
|
txdesc->fraginfo |= cpu_to_le64((u64)skb->len << 48);
|
|
|
|
/* DL2K bug: DMA fails to get next descriptor ptr in 10Mbps mode
|
|
* Work around: Always use 1 descriptor in 10Mbps mode */
|
|
if (entry % np->tx_coalesce == 0 || np->speed == 10)
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
TxDMAIndicate |
|
|
(1 << FragCountShift));
|
|
else
|
|
txdesc->status = cpu_to_le64 (entry | tfc_vlan_tag |
|
|
WordAlignDisable |
|
|
(1 << FragCountShift));
|
|
|
|
/* TxDMAPollNow */
|
|
dw32(DMACtrl, dr32(DMACtrl) | 0x00001000);
|
|
/* Schedule ISR */
|
|
dw32(CountDown, 10000);
|
|
np->cur_tx = (np->cur_tx + 1) % TX_RING_SIZE;
|
|
if ((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 && np->speed != 10) {
|
|
/* do nothing */
|
|
} else if (!netif_queue_stopped(dev)) {
|
|
netif_stop_queue (dev);
|
|
}
|
|
|
|
/* The first TFDListPtr */
|
|
if (!dr32(TFDListPtr0)) {
|
|
dw32(TFDListPtr0, np->tx_ring_dma +
|
|
entry * sizeof (struct netdev_desc));
|
|
dw32(TFDListPtr1, 0);
|
|
}
|
|
|
|
return NETDEV_TX_OK;
|
|
}
|
|
|
|
static irqreturn_t
|
|
rio_interrupt (int irq, void *dev_instance)
|
|
{
|
|
struct net_device *dev = dev_instance;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
unsigned int_status;
|
|
int cnt = max_intrloop;
|
|
int handled = 0;
|
|
|
|
while (1) {
|
|
int_status = dr16(IntStatus);
|
|
dw16(IntStatus, int_status);
|
|
int_status &= DEFAULT_INTR;
|
|
if (int_status == 0 || --cnt < 0)
|
|
break;
|
|
handled = 1;
|
|
/* Processing received packets */
|
|
if (int_status & RxDMAComplete)
|
|
receive_packet (dev);
|
|
/* TxDMAComplete interrupt */
|
|
if ((int_status & (TxDMAComplete|IntRequested))) {
|
|
int tx_status;
|
|
tx_status = dr32(TxStatus);
|
|
if (tx_status & 0x01)
|
|
tx_error (dev, tx_status);
|
|
/* Free used tx skbuffs */
|
|
rio_free_tx (dev, 1);
|
|
}
|
|
|
|
/* Handle uncommon events */
|
|
if (int_status &
|
|
(HostError | LinkEvent | UpdateStats))
|
|
rio_error (dev, int_status);
|
|
}
|
|
if (np->cur_tx != np->old_tx)
|
|
dw32(CountDown, 100);
|
|
return IRQ_RETVAL(handled);
|
|
}
|
|
|
|
static void
|
|
rio_free_tx (struct net_device *dev, int irq)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->old_tx % TX_RING_SIZE;
|
|
int tx_use = 0;
|
|
unsigned long flag = 0;
|
|
|
|
if (irq)
|
|
spin_lock(&np->tx_lock);
|
|
else
|
|
spin_lock_irqsave(&np->tx_lock, flag);
|
|
|
|
/* Free used tx skbuffs */
|
|
while (entry != np->cur_tx) {
|
|
struct sk_buff *skb;
|
|
|
|
if (!(np->tx_ring[entry].status & cpu_to_le64(TFDDone)))
|
|
break;
|
|
skb = np->tx_skbuff[entry];
|
|
dma_unmap_single(&np->pdev->dev,
|
|
desc_to_dma(&np->tx_ring[entry]), skb->len,
|
|
DMA_TO_DEVICE);
|
|
if (irq)
|
|
dev_consume_skb_irq(skb);
|
|
else
|
|
dev_kfree_skb(skb);
|
|
|
|
np->tx_skbuff[entry] = NULL;
|
|
entry = (entry + 1) % TX_RING_SIZE;
|
|
tx_use++;
|
|
}
|
|
if (irq)
|
|
spin_unlock(&np->tx_lock);
|
|
else
|
|
spin_unlock_irqrestore(&np->tx_lock, flag);
|
|
np->old_tx = entry;
|
|
|
|
/* If the ring is no longer full, clear tx_full and
|
|
call netif_wake_queue() */
|
|
|
|
if (netif_queue_stopped(dev) &&
|
|
((np->cur_tx - np->old_tx + TX_RING_SIZE) % TX_RING_SIZE
|
|
< TX_QUEUE_LEN - 1 || np->speed == 10)) {
|
|
netif_wake_queue (dev);
|
|
}
|
|
}
|
|
|
|
static void
|
|
tx_error (struct net_device *dev, int tx_status)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
int frame_id;
|
|
int i;
|
|
|
|
frame_id = (tx_status & 0xffff0000);
|
|
printk (KERN_ERR "%s: Transmit error, TxStatus %4.4x, FrameId %d.\n",
|
|
dev->name, tx_status, frame_id);
|
|
dev->stats.tx_errors++;
|
|
/* Ttransmit Underrun */
|
|
if (tx_status & 0x10) {
|
|
dev->stats.tx_fifo_errors++;
|
|
dw16(TxStartThresh, dr16(TxStartThresh) + 0x10);
|
|
/* Transmit Underrun need to set TxReset, DMARest, FIFOReset */
|
|
dw16(ASICCtrl + 2,
|
|
TxReset | DMAReset | FIFOReset | NetworkReset);
|
|
/* Wait for ResetBusy bit clear */
|
|
for (i = 50; i > 0; i--) {
|
|
if (!(dr16(ASICCtrl + 2) & ResetBusy))
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
rio_set_led_mode(dev);
|
|
rio_free_tx (dev, 1);
|
|
/* Reset TFDListPtr */
|
|
dw32(TFDListPtr0, np->tx_ring_dma +
|
|
np->old_tx * sizeof (struct netdev_desc));
|
|
dw32(TFDListPtr1, 0);
|
|
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Late Collision */
|
|
if (tx_status & 0x04) {
|
|
dev->stats.tx_fifo_errors++;
|
|
/* TxReset and clear FIFO */
|
|
dw16(ASICCtrl + 2, TxReset | FIFOReset);
|
|
/* Wait reset done */
|
|
for (i = 50; i > 0; i--) {
|
|
if (!(dr16(ASICCtrl + 2) & ResetBusy))
|
|
break;
|
|
mdelay (1);
|
|
}
|
|
rio_set_led_mode(dev);
|
|
/* Let TxStartThresh stay default value */
|
|
}
|
|
/* Maximum Collisions */
|
|
if (tx_status & 0x08)
|
|
dev->stats.collisions++;
|
|
/* Restart the Tx */
|
|
dw32(MACCtrl, dr16(MACCtrl) | TxEnable);
|
|
}
|
|
|
|
static int
|
|
receive_packet (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
int entry = np->cur_rx % RX_RING_SIZE;
|
|
int cnt = 30;
|
|
|
|
/* If RFDDone, FrameStart and FrameEnd set, there is a new packet in. */
|
|
while (1) {
|
|
struct netdev_desc *desc = &np->rx_ring[entry];
|
|
int pkt_len;
|
|
u64 frame_status;
|
|
|
|
if (!(desc->status & cpu_to_le64(RFDDone)) ||
|
|
!(desc->status & cpu_to_le64(FrameStart)) ||
|
|
!(desc->status & cpu_to_le64(FrameEnd)))
|
|
break;
|
|
|
|
/* Chip omits the CRC. */
|
|
frame_status = le64_to_cpu(desc->status);
|
|
pkt_len = frame_status & 0xffff;
|
|
if (--cnt < 0)
|
|
break;
|
|
/* Update rx error statistics, drop packet. */
|
|
if (frame_status & RFS_Errors) {
|
|
dev->stats.rx_errors++;
|
|
if (frame_status & (RxRuntFrame | RxLengthError))
|
|
dev->stats.rx_length_errors++;
|
|
if (frame_status & RxFCSError)
|
|
dev->stats.rx_crc_errors++;
|
|
if (frame_status & RxAlignmentError && np->speed != 1000)
|
|
dev->stats.rx_frame_errors++;
|
|
if (frame_status & RxFIFOOverrun)
|
|
dev->stats.rx_fifo_errors++;
|
|
} else {
|
|
struct sk_buff *skb;
|
|
|
|
/* Small skbuffs for short packets */
|
|
if (pkt_len > copy_thresh) {
|
|
dma_unmap_single(&np->pdev->dev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
DMA_FROM_DEVICE);
|
|
skb_put (skb = np->rx_skbuff[entry], pkt_len);
|
|
np->rx_skbuff[entry] = NULL;
|
|
} else if ((skb = netdev_alloc_skb_ip_align(dev, pkt_len))) {
|
|
dma_sync_single_for_cpu(&np->pdev->dev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
DMA_FROM_DEVICE);
|
|
skb_copy_to_linear_data (skb,
|
|
np->rx_skbuff[entry]->data,
|
|
pkt_len);
|
|
skb_put (skb, pkt_len);
|
|
dma_sync_single_for_device(&np->pdev->dev,
|
|
desc_to_dma(desc),
|
|
np->rx_buf_sz,
|
|
DMA_FROM_DEVICE);
|
|
}
|
|
skb->protocol = eth_type_trans (skb, dev);
|
|
#if 0
|
|
/* Checksum done by hw, but csum value unavailable. */
|
|
if (np->pdev->pci_rev_id >= 0x0c &&
|
|
!(frame_status & (TCPError | UDPError | IPError))) {
|
|
skb->ip_summed = CHECKSUM_UNNECESSARY;
|
|
}
|
|
#endif
|
|
netif_rx (skb);
|
|
}
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
spin_lock(&np->rx_lock);
|
|
np->cur_rx = entry;
|
|
/* Re-allocate skbuffs to fill the descriptor ring */
|
|
entry = np->old_rx;
|
|
while (entry != np->cur_rx) {
|
|
struct sk_buff *skb;
|
|
/* Dropped packets don't need to re-allocate */
|
|
if (np->rx_skbuff[entry] == NULL) {
|
|
skb = netdev_alloc_skb_ip_align(dev, np->rx_buf_sz);
|
|
if (skb == NULL) {
|
|
np->rx_ring[entry].fraginfo = 0;
|
|
printk (KERN_INFO
|
|
"%s: receive_packet: "
|
|
"Unable to re-allocate Rx skbuff.#%d\n",
|
|
dev->name, entry);
|
|
break;
|
|
}
|
|
np->rx_skbuff[entry] = skb;
|
|
np->rx_ring[entry].fraginfo =
|
|
cpu_to_le64(dma_map_single(&np->pdev->dev, skb->data,
|
|
np->rx_buf_sz, DMA_FROM_DEVICE));
|
|
}
|
|
np->rx_ring[entry].fraginfo |=
|
|
cpu_to_le64((u64)np->rx_buf_sz << 48);
|
|
np->rx_ring[entry].status = 0;
|
|
entry = (entry + 1) % RX_RING_SIZE;
|
|
}
|
|
np->old_rx = entry;
|
|
spin_unlock(&np->rx_lock);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_error (struct net_device *dev, int int_status)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
u16 macctrl;
|
|
|
|
/* Link change event */
|
|
if (int_status & LinkEvent) {
|
|
if (mii_wait_link (dev, 10) == 0) {
|
|
printk (KERN_INFO "%s: Link up\n", dev->name);
|
|
if (np->phy_media)
|
|
mii_get_media_pcs (dev);
|
|
else
|
|
mii_get_media (dev);
|
|
if (np->speed == 1000)
|
|
np->tx_coalesce = tx_coalesce;
|
|
else
|
|
np->tx_coalesce = 1;
|
|
macctrl = 0;
|
|
macctrl |= (np->vlan) ? AutoVLANuntagging : 0;
|
|
macctrl |= (np->full_duplex) ? DuplexSelect : 0;
|
|
macctrl |= (np->tx_flow) ?
|
|
TxFlowControlEnable : 0;
|
|
macctrl |= (np->rx_flow) ?
|
|
RxFlowControlEnable : 0;
|
|
dw16(MACCtrl, macctrl);
|
|
np->link_status = 1;
|
|
netif_carrier_on(dev);
|
|
} else {
|
|
printk (KERN_INFO "%s: Link off\n", dev->name);
|
|
np->link_status = 0;
|
|
netif_carrier_off(dev);
|
|
}
|
|
}
|
|
|
|
/* UpdateStats statistics registers */
|
|
if (int_status & UpdateStats) {
|
|
get_stats (dev);
|
|
}
|
|
|
|
/* PCI Error, a catastronphic error related to the bus interface
|
|
occurs, set GlobalReset and HostReset to reset. */
|
|
if (int_status & HostError) {
|
|
printk (KERN_ERR "%s: HostError! IntStatus %4.4x.\n",
|
|
dev->name, int_status);
|
|
dw16(ASICCtrl + 2, GlobalReset | HostReset);
|
|
mdelay (500);
|
|
rio_set_led_mode(dev);
|
|
}
|
|
}
|
|
|
|
static struct net_device_stats *
|
|
get_stats (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
unsigned int stat_reg;
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
|
|
dev->stats.rx_packets += dr32(FramesRcvOk);
|
|
dev->stats.tx_packets += dr32(FramesXmtOk);
|
|
dev->stats.rx_bytes += dr32(OctetRcvOk);
|
|
dev->stats.tx_bytes += dr32(OctetXmtOk);
|
|
|
|
dev->stats.multicast = dr32(McstFramesRcvdOk);
|
|
dev->stats.collisions += dr32(SingleColFrames)
|
|
+ dr32(MultiColFrames);
|
|
|
|
/* detailed tx errors */
|
|
stat_reg = dr16(FramesAbortXSColls);
|
|
dev->stats.tx_aborted_errors += stat_reg;
|
|
dev->stats.tx_errors += stat_reg;
|
|
|
|
stat_reg = dr16(CarrierSenseErrors);
|
|
dev->stats.tx_carrier_errors += stat_reg;
|
|
dev->stats.tx_errors += stat_reg;
|
|
|
|
/* Clear all other statistic register. */
|
|
dr32(McstOctetXmtOk);
|
|
dr16(BcstFramesXmtdOk);
|
|
dr32(McstFramesXmtdOk);
|
|
dr16(BcstFramesRcvdOk);
|
|
dr16(MacControlFramesRcvd);
|
|
dr16(FrameTooLongErrors);
|
|
dr16(InRangeLengthErrors);
|
|
dr16(FramesCheckSeqErrors);
|
|
dr16(FramesLostRxErrors);
|
|
dr32(McstOctetXmtOk);
|
|
dr32(BcstOctetXmtOk);
|
|
dr32(McstFramesXmtdOk);
|
|
dr32(FramesWDeferredXmt);
|
|
dr32(LateCollisions);
|
|
dr16(BcstFramesXmtdOk);
|
|
dr16(MacControlFramesXmtd);
|
|
dr16(FramesWEXDeferal);
|
|
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
dr32(i);
|
|
#endif
|
|
dr16(TxJumboFrames);
|
|
dr16(RxJumboFrames);
|
|
dr16(TCPCheckSumErrors);
|
|
dr16(UDPCheckSumErrors);
|
|
dr16(IPCheckSumErrors);
|
|
return &dev->stats;
|
|
}
|
|
|
|
static int
|
|
clear_stats (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
#ifdef MEM_MAPPING
|
|
int i;
|
|
#endif
|
|
|
|
/* All statistics registers need to be acknowledged,
|
|
else statistic overflow could cause problems */
|
|
dr32(FramesRcvOk);
|
|
dr32(FramesXmtOk);
|
|
dr32(OctetRcvOk);
|
|
dr32(OctetXmtOk);
|
|
|
|
dr32(McstFramesRcvdOk);
|
|
dr32(SingleColFrames);
|
|
dr32(MultiColFrames);
|
|
dr32(LateCollisions);
|
|
/* detailed rx errors */
|
|
dr16(FrameTooLongErrors);
|
|
dr16(InRangeLengthErrors);
|
|
dr16(FramesCheckSeqErrors);
|
|
dr16(FramesLostRxErrors);
|
|
|
|
/* detailed tx errors */
|
|
dr16(FramesAbortXSColls);
|
|
dr16(CarrierSenseErrors);
|
|
|
|
/* Clear all other statistic register. */
|
|
dr32(McstOctetXmtOk);
|
|
dr16(BcstFramesXmtdOk);
|
|
dr32(McstFramesXmtdOk);
|
|
dr16(BcstFramesRcvdOk);
|
|
dr16(MacControlFramesRcvd);
|
|
dr32(McstOctetXmtOk);
|
|
dr32(BcstOctetXmtOk);
|
|
dr32(McstFramesXmtdOk);
|
|
dr32(FramesWDeferredXmt);
|
|
dr16(BcstFramesXmtdOk);
|
|
dr16(MacControlFramesXmtd);
|
|
dr16(FramesWEXDeferal);
|
|
#ifdef MEM_MAPPING
|
|
for (i = 0x100; i <= 0x150; i += 4)
|
|
dr32(i);
|
|
#endif
|
|
dr16(TxJumboFrames);
|
|
dr16(RxJumboFrames);
|
|
dr16(TCPCheckSumErrors);
|
|
dr16(UDPCheckSumErrors);
|
|
dr16(IPCheckSumErrors);
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
set_multicast (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
u32 hash_table[2];
|
|
u16 rx_mode = 0;
|
|
|
|
hash_table[0] = hash_table[1] = 0;
|
|
/* RxFlowcontrol DA: 01-80-C2-00-00-01. Hash index=0x39 */
|
|
hash_table[1] |= 0x02000000;
|
|
if (dev->flags & IFF_PROMISC) {
|
|
/* Receive all frames promiscuously. */
|
|
rx_mode = ReceiveAllFrames;
|
|
} else if ((dev->flags & IFF_ALLMULTI) ||
|
|
(netdev_mc_count(dev) > multicast_filter_limit)) {
|
|
/* Receive broadcast and multicast frames */
|
|
rx_mode = ReceiveBroadcast | ReceiveMulticast | ReceiveUnicast;
|
|
} else if (!netdev_mc_empty(dev)) {
|
|
struct netdev_hw_addr *ha;
|
|
/* Receive broadcast frames and multicast frames filtering
|
|
by Hashtable */
|
|
rx_mode =
|
|
ReceiveBroadcast | ReceiveMulticastHash | ReceiveUnicast;
|
|
netdev_for_each_mc_addr(ha, dev) {
|
|
int bit, index = 0;
|
|
int crc = ether_crc_le(ETH_ALEN, ha->addr);
|
|
/* The inverted high significant 6 bits of CRC are
|
|
used as an index to hashtable */
|
|
for (bit = 0; bit < 6; bit++)
|
|
if (crc & (1 << (31 - bit)))
|
|
index |= (1 << bit);
|
|
hash_table[index / 32] |= (1 << (index % 32));
|
|
}
|
|
} else {
|
|
rx_mode = ReceiveBroadcast | ReceiveUnicast;
|
|
}
|
|
if (np->vlan) {
|
|
/* ReceiveVLANMatch field in ReceiveMode */
|
|
rx_mode |= ReceiveVLANMatch;
|
|
}
|
|
|
|
dw32(HashTable0, hash_table[0]);
|
|
dw32(HashTable1, hash_table[1]);
|
|
dw16(ReceiveMode, rx_mode);
|
|
}
|
|
|
|
static void rio_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
strlcpy(info->driver, "dl2k", sizeof(info->driver));
|
|
strlcpy(info->bus_info, pci_name(np->pdev), sizeof(info->bus_info));
|
|
}
|
|
|
|
static int rio_get_link_ksettings(struct net_device *dev,
|
|
struct ethtool_link_ksettings *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u32 supported, advertising;
|
|
|
|
if (np->phy_media) {
|
|
/* fiber device */
|
|
supported = SUPPORTED_Autoneg | SUPPORTED_FIBRE;
|
|
advertising = ADVERTISED_Autoneg | ADVERTISED_FIBRE;
|
|
cmd->base.port = PORT_FIBRE;
|
|
} else {
|
|
/* copper device */
|
|
supported = SUPPORTED_10baseT_Half |
|
|
SUPPORTED_10baseT_Full | SUPPORTED_100baseT_Half
|
|
| SUPPORTED_100baseT_Full | SUPPORTED_1000baseT_Full |
|
|
SUPPORTED_Autoneg | SUPPORTED_MII;
|
|
advertising = ADVERTISED_10baseT_Half |
|
|
ADVERTISED_10baseT_Full | ADVERTISED_100baseT_Half |
|
|
ADVERTISED_100baseT_Full | ADVERTISED_1000baseT_Full |
|
|
ADVERTISED_Autoneg | ADVERTISED_MII;
|
|
cmd->base.port = PORT_MII;
|
|
}
|
|
if (np->link_status) {
|
|
cmd->base.speed = np->speed;
|
|
cmd->base.duplex = np->full_duplex ? DUPLEX_FULL : DUPLEX_HALF;
|
|
} else {
|
|
cmd->base.speed = SPEED_UNKNOWN;
|
|
cmd->base.duplex = DUPLEX_UNKNOWN;
|
|
}
|
|
if (np->an_enable)
|
|
cmd->base.autoneg = AUTONEG_ENABLE;
|
|
else
|
|
cmd->base.autoneg = AUTONEG_DISABLE;
|
|
|
|
cmd->base.phy_address = np->phy_addr;
|
|
|
|
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
|
|
supported);
|
|
ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.advertising,
|
|
advertising);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rio_set_link_ksettings(struct net_device *dev,
|
|
const struct ethtool_link_ksettings *cmd)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
u32 speed = cmd->base.speed;
|
|
u8 duplex = cmd->base.duplex;
|
|
|
|
netif_carrier_off(dev);
|
|
if (cmd->base.autoneg == AUTONEG_ENABLE) {
|
|
if (np->an_enable) {
|
|
return 0;
|
|
} else {
|
|
np->an_enable = 1;
|
|
mii_set_media(dev);
|
|
return 0;
|
|
}
|
|
} else {
|
|
np->an_enable = 0;
|
|
if (np->speed == 1000) {
|
|
speed = SPEED_100;
|
|
duplex = DUPLEX_FULL;
|
|
printk("Warning!! Can't disable Auto negotiation in 1000Mbps, change to Manual 100Mbps, Full duplex.\n");
|
|
}
|
|
switch (speed) {
|
|
case SPEED_10:
|
|
np->speed = 10;
|
|
np->full_duplex = (duplex == DUPLEX_FULL);
|
|
break;
|
|
case SPEED_100:
|
|
np->speed = 100;
|
|
np->full_duplex = (duplex == DUPLEX_FULL);
|
|
break;
|
|
case SPEED_1000: /* not supported */
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
mii_set_media(dev);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static u32 rio_get_link(struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
return np->link_status;
|
|
}
|
|
|
|
static const struct ethtool_ops ethtool_ops = {
|
|
.get_drvinfo = rio_get_drvinfo,
|
|
.get_link = rio_get_link,
|
|
.get_link_ksettings = rio_get_link_ksettings,
|
|
.set_link_ksettings = rio_set_link_ksettings,
|
|
};
|
|
|
|
static int
|
|
rio_ioctl (struct net_device *dev, struct ifreq *rq, int cmd)
|
|
{
|
|
int phy_addr;
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct mii_ioctl_data *miidata = if_mii(rq);
|
|
|
|
phy_addr = np->phy_addr;
|
|
switch (cmd) {
|
|
case SIOCGMIIPHY:
|
|
miidata->phy_id = phy_addr;
|
|
break;
|
|
case SIOCGMIIREG:
|
|
miidata->val_out = mii_read (dev, phy_addr, miidata->reg_num);
|
|
break;
|
|
case SIOCSMIIREG:
|
|
if (!capable(CAP_NET_ADMIN))
|
|
return -EPERM;
|
|
mii_write (dev, phy_addr, miidata->reg_num, miidata->val_in);
|
|
break;
|
|
default:
|
|
return -EOPNOTSUPP;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
#define EEP_READ 0x0200
|
|
#define EEP_BUSY 0x8000
|
|
/* Read the EEPROM word */
|
|
/* We use I/O instruction to read/write eeprom to avoid fail on some machines */
|
|
static int read_eeprom(struct netdev_private *np, int eep_addr)
|
|
{
|
|
void __iomem *ioaddr = np->eeprom_addr;
|
|
int i = 1000;
|
|
|
|
dw16(EepromCtrl, EEP_READ | (eep_addr & 0xff));
|
|
while (i-- > 0) {
|
|
if (!(dr16(EepromCtrl) & EEP_BUSY))
|
|
return dr16(EepromData);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
enum phy_ctrl_bits {
|
|
MII_READ = 0x00, MII_CLK = 0x01, MII_DATA1 = 0x02, MII_WRITE = 0x04,
|
|
MII_DUPLEX = 0x08,
|
|
};
|
|
|
|
#define mii_delay() dr8(PhyCtrl)
|
|
static void
|
|
mii_sendbit (struct net_device *dev, u32 data)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
|
|
data = ((data) ? MII_DATA1 : 0) | (dr8(PhyCtrl) & 0xf8) | MII_WRITE;
|
|
dw8(PhyCtrl, data);
|
|
mii_delay ();
|
|
dw8(PhyCtrl, data | MII_CLK);
|
|
mii_delay ();
|
|
}
|
|
|
|
static int
|
|
mii_getbit (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
void __iomem *ioaddr = np->ioaddr;
|
|
u8 data;
|
|
|
|
data = (dr8(PhyCtrl) & 0xf8) | MII_READ;
|
|
dw8(PhyCtrl, data);
|
|
mii_delay ();
|
|
dw8(PhyCtrl, data | MII_CLK);
|
|
mii_delay ();
|
|
return (dr8(PhyCtrl) >> 1) & 1;
|
|
}
|
|
|
|
static void
|
|
mii_send_bits (struct net_device *dev, u32 data, int len)
|
|
{
|
|
int i;
|
|
|
|
for (i = len - 1; i >= 0; i--) {
|
|
mii_sendbit (dev, data & (1 << i));
|
|
}
|
|
}
|
|
|
|
static int
|
|
mii_read (struct net_device *dev, int phy_addr, int reg_num)
|
|
{
|
|
u32 cmd;
|
|
int i;
|
|
u32 retval = 0;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP = 0110'b for read operation */
|
|
cmd = (0x06 << 10 | phy_addr << 5 | reg_num);
|
|
mii_send_bits (dev, cmd, 14);
|
|
/* Turnaround */
|
|
if (mii_getbit (dev))
|
|
goto err_out;
|
|
/* Read data */
|
|
for (i = 0; i < 16; i++) {
|
|
retval |= mii_getbit (dev);
|
|
retval <<= 1;
|
|
}
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return (retval >> 1) & 0xffff;
|
|
|
|
err_out:
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_write (struct net_device *dev, int phy_addr, int reg_num, u16 data)
|
|
{
|
|
u32 cmd;
|
|
|
|
/* Preamble */
|
|
mii_send_bits (dev, 0xffffffff, 32);
|
|
/* ST(2), OP(2), ADDR(5), REG#(5), TA(2), Data(16) total 32 bits */
|
|
/* ST,OP,AAAAA,RRRRR,TA = 0101xxxxxxxxxx10'b = 0x5002 for write */
|
|
cmd = (0x5002 << 16) | (phy_addr << 23) | (reg_num << 18) | data;
|
|
mii_send_bits (dev, cmd, 32);
|
|
/* End cycle */
|
|
mii_getbit (dev);
|
|
return 0;
|
|
}
|
|
static int
|
|
mii_wait_link (struct net_device *dev, int wait)
|
|
{
|
|
__u16 bmsr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
do {
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (bmsr & BMSR_LSTATUS)
|
|
return 0;
|
|
mdelay (1);
|
|
} while (--wait > 0);
|
|
return -1;
|
|
}
|
|
static int
|
|
mii_get_media (struct net_device *dev)
|
|
{
|
|
__u16 negotiate;
|
|
__u16 bmsr;
|
|
__u16 mscr;
|
|
__u16 mssr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
if (np->an_enable) {
|
|
if (!(bmsr & BMSR_ANEGCOMPLETE)) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate = mii_read (dev, phy_addr, MII_ADVERTISE) &
|
|
mii_read (dev, phy_addr, MII_LPA);
|
|
mscr = mii_read (dev, phy_addr, MII_CTRL1000);
|
|
mssr = mii_read (dev, phy_addr, MII_STAT1000);
|
|
if (mscr & ADVERTISE_1000FULL && mssr & LPA_1000FULL) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
} else if (mscr & ADVERTISE_1000HALF && mssr & LPA_1000HALF) {
|
|
np->speed = 1000;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 1000 Mbps, Half duplex\n");
|
|
} else if (negotiate & ADVERTISE_100FULL) {
|
|
np->speed = 100;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 100 Mbps, Full duplex\n");
|
|
} else if (negotiate & ADVERTISE_100HALF) {
|
|
np->speed = 100;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 100 Mbps, Half duplex\n");
|
|
} else if (negotiate & ADVERTISE_10FULL) {
|
|
np->speed = 10;
|
|
np->full_duplex = 1;
|
|
printk (KERN_INFO "Auto 10 Mbps, Full duplex\n");
|
|
} else if (negotiate & ADVERTISE_10HALF) {
|
|
np->speed = 10;
|
|
np->full_duplex = 0;
|
|
printk (KERN_INFO "Auto 10 Mbps, Half duplex\n");
|
|
}
|
|
if (negotiate & ADVERTISE_PAUSE_CAP) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate & ADVERTISE_PAUSE_ASYM) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
__u16 bmcr = mii_read (dev, phy_addr, MII_BMCR);
|
|
switch (bmcr & (BMCR_SPEED100 | BMCR_SPEED1000)) {
|
|
case BMCR_SPEED1000:
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
break;
|
|
case BMCR_SPEED100:
|
|
printk (KERN_INFO "Operating at 100 Mbps, ");
|
|
break;
|
|
case 0:
|
|
printk (KERN_INFO "Operating at 10 Mbps, ");
|
|
}
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
printk (KERN_CONT "Full duplex\n");
|
|
} else {
|
|
printk (KERN_CONT "Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media (struct net_device *dev)
|
|
{
|
|
__u16 pscr;
|
|
__u16 bmcr;
|
|
__u16 bmsr;
|
|
__u16 anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Does user set speed? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
bmsr = mii_read (dev, phy_addr, MII_BMSR);
|
|
anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
|
|
~(ADVERTISE_100FULL | ADVERTISE_10FULL |
|
|
ADVERTISE_100HALF | ADVERTISE_10HALF |
|
|
ADVERTISE_100BASE4);
|
|
if (bmsr & BMSR_100FULL)
|
|
anar |= ADVERTISE_100FULL;
|
|
if (bmsr & BMSR_100HALF)
|
|
anar |= ADVERTISE_100HALF;
|
|
if (bmsr & BMSR_100BASE4)
|
|
anar |= ADVERTISE_100BASE4;
|
|
if (bmsr & BMSR_10FULL)
|
|
anar |= ADVERTISE_10FULL;
|
|
if (bmsr & BMSR_10HALF)
|
|
anar |= ADVERTISE_10HALF;
|
|
anar |= ADVERTISE_PAUSE_CAP | ADVERTISE_PAUSE_ASYM;
|
|
mii_write (dev, phy_addr, MII_ADVERTISE, anar);
|
|
|
|
/* Enable Auto crossover */
|
|
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr |= 3 << 5; /* 11'b */
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
|
|
bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* 1) Disable Auto crossover */
|
|
pscr = mii_read (dev, phy_addr, MII_PHY_SCR);
|
|
pscr &= ~(3 << 5);
|
|
mii_write (dev, phy_addr, MII_PHY_SCR, pscr);
|
|
|
|
/* 2) PHY Reset */
|
|
bmcr = mii_read (dev, phy_addr, MII_BMCR);
|
|
bmcr |= BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
|
|
/* 3) Power Down */
|
|
bmcr = 0x1940; /* must be 0x1940 */
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay (100); /* wait a certain time */
|
|
|
|
/* 4) Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ADVERTISE, 0);
|
|
|
|
/* 5) Set media and Power Up */
|
|
bmcr = BMCR_PDOWN;
|
|
if (np->speed == 100) {
|
|
bmcr |= BMCR_SPEED100;
|
|
printk (KERN_INFO "Manual 100 Mbps, ");
|
|
} else if (np->speed == 10) {
|
|
printk (KERN_INFO "Manual 10 Mbps, ");
|
|
}
|
|
if (np->full_duplex) {
|
|
bmcr |= BMCR_FULLDPLX;
|
|
printk (KERN_CONT "Full duplex\n");
|
|
} else {
|
|
printk (KERN_CONT "Half duplex\n");
|
|
}
|
|
#if 0
|
|
/* Set 1000BaseT Master/Slave setting */
|
|
mscr = mii_read (dev, phy_addr, MII_CTRL1000);
|
|
mscr |= MII_MSCR_CFG_ENABLE;
|
|
mscr &= ~MII_MSCR_CFG_VALUE = 0;
|
|
#endif
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_get_media_pcs (struct net_device *dev)
|
|
{
|
|
__u16 negotiate;
|
|
__u16 bmsr;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
bmsr = mii_read (dev, phy_addr, PCS_BMSR);
|
|
if (np->an_enable) {
|
|
if (!(bmsr & BMSR_ANEGCOMPLETE)) {
|
|
/* Auto-Negotiation not completed */
|
|
return -1;
|
|
}
|
|
negotiate = mii_read (dev, phy_addr, PCS_ANAR) &
|
|
mii_read (dev, phy_addr, PCS_ANLPAR);
|
|
np->speed = 1000;
|
|
if (negotiate & PCS_ANAR_FULL_DUPLEX) {
|
|
printk (KERN_INFO "Auto 1000 Mbps, Full duplex\n");
|
|
np->full_duplex = 1;
|
|
} else {
|
|
printk (KERN_INFO "Auto 1000 Mbps, half duplex\n");
|
|
np->full_duplex = 0;
|
|
}
|
|
if (negotiate & PCS_ANAR_PAUSE) {
|
|
np->tx_flow &= 1;
|
|
np->rx_flow &= 1;
|
|
} else if (negotiate & PCS_ANAR_ASYMMETRIC) {
|
|
np->tx_flow = 0;
|
|
np->rx_flow &= 1;
|
|
}
|
|
/* else tx_flow, rx_flow = user select */
|
|
} else {
|
|
__u16 bmcr = mii_read (dev, phy_addr, PCS_BMCR);
|
|
printk (KERN_INFO "Operating at 1000 Mbps, ");
|
|
if (bmcr & BMCR_FULLDPLX) {
|
|
printk (KERN_CONT "Full duplex\n");
|
|
} else {
|
|
printk (KERN_CONT "Half duplex\n");
|
|
}
|
|
}
|
|
if (np->tx_flow)
|
|
printk(KERN_INFO "Enable Tx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Tx Flow Control\n");
|
|
if (np->rx_flow)
|
|
printk(KERN_INFO "Enable Rx Flow Control\n");
|
|
else
|
|
printk(KERN_INFO "Disable Rx Flow Control\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int
|
|
mii_set_media_pcs (struct net_device *dev)
|
|
{
|
|
__u16 bmcr;
|
|
__u16 esr;
|
|
__u16 anar;
|
|
int phy_addr;
|
|
struct netdev_private *np;
|
|
np = netdev_priv(dev);
|
|
phy_addr = np->phy_addr;
|
|
|
|
/* Auto-Negotiation? */
|
|
if (np->an_enable) {
|
|
/* Advertise capabilities */
|
|
esr = mii_read (dev, phy_addr, PCS_ESR);
|
|
anar = mii_read (dev, phy_addr, MII_ADVERTISE) &
|
|
~PCS_ANAR_HALF_DUPLEX &
|
|
~PCS_ANAR_FULL_DUPLEX;
|
|
if (esr & (MII_ESR_1000BT_HD | MII_ESR_1000BX_HD))
|
|
anar |= PCS_ANAR_HALF_DUPLEX;
|
|
if (esr & (MII_ESR_1000BT_FD | MII_ESR_1000BX_FD))
|
|
anar |= PCS_ANAR_FULL_DUPLEX;
|
|
anar |= PCS_ANAR_PAUSE | PCS_ANAR_ASYMMETRIC;
|
|
mii_write (dev, phy_addr, MII_ADVERTISE, anar);
|
|
|
|
/* Soft reset PHY */
|
|
mii_write (dev, phy_addr, MII_BMCR, BMCR_RESET);
|
|
bmcr = BMCR_ANENABLE | BMCR_ANRESTART | BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(1);
|
|
} else {
|
|
/* Force speed setting */
|
|
/* PHY Reset */
|
|
bmcr = BMCR_RESET;
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
if (np->full_duplex) {
|
|
bmcr = BMCR_FULLDPLX;
|
|
printk (KERN_INFO "Manual full duplex\n");
|
|
} else {
|
|
bmcr = 0;
|
|
printk (KERN_INFO "Manual half duplex\n");
|
|
}
|
|
mii_write (dev, phy_addr, MII_BMCR, bmcr);
|
|
mdelay(10);
|
|
|
|
/* Advertise nothing */
|
|
mii_write (dev, phy_addr, MII_ADVERTISE, 0);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
|
|
static int
|
|
rio_close (struct net_device *dev)
|
|
{
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
struct pci_dev *pdev = np->pdev;
|
|
|
|
netif_stop_queue (dev);
|
|
|
|
rio_hw_stop(dev);
|
|
|
|
free_irq(pdev->irq, dev);
|
|
del_timer_sync (&np->timer);
|
|
|
|
free_list(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void
|
|
rio_remove1 (struct pci_dev *pdev)
|
|
{
|
|
struct net_device *dev = pci_get_drvdata (pdev);
|
|
|
|
if (dev) {
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
unregister_netdev (dev);
|
|
dma_free_coherent(&pdev->dev, RX_TOTAL_SIZE, np->rx_ring,
|
|
np->rx_ring_dma);
|
|
dma_free_coherent(&pdev->dev, TX_TOTAL_SIZE, np->tx_ring,
|
|
np->tx_ring_dma);
|
|
#ifdef MEM_MAPPING
|
|
pci_iounmap(pdev, np->ioaddr);
|
|
#endif
|
|
pci_iounmap(pdev, np->eeprom_addr);
|
|
free_netdev (dev);
|
|
pci_release_regions (pdev);
|
|
pci_disable_device (pdev);
|
|
}
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int rio_suspend(struct device *device)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(device);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
netif_device_detach(dev);
|
|
del_timer_sync(&np->timer);
|
|
rio_hw_stop(dev);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int rio_resume(struct device *device)
|
|
{
|
|
struct net_device *dev = dev_get_drvdata(device);
|
|
struct netdev_private *np = netdev_priv(dev);
|
|
|
|
if (!netif_running(dev))
|
|
return 0;
|
|
|
|
rio_reset_ring(np);
|
|
rio_hw_init(dev);
|
|
np->timer.expires = jiffies + 1 * HZ;
|
|
add_timer(&np->timer);
|
|
netif_device_attach(dev);
|
|
dl2k_enable_int(np);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static SIMPLE_DEV_PM_OPS(rio_pm_ops, rio_suspend, rio_resume);
|
|
#define RIO_PM_OPS (&rio_pm_ops)
|
|
|
|
#else
|
|
|
|
#define RIO_PM_OPS NULL
|
|
|
|
#endif /* CONFIG_PM_SLEEP */
|
|
|
|
static struct pci_driver rio_driver = {
|
|
.name = "dl2k",
|
|
.id_table = rio_pci_tbl,
|
|
.probe = rio_probe1,
|
|
.remove = rio_remove1,
|
|
.driver.pm = RIO_PM_OPS,
|
|
};
|
|
|
|
module_pci_driver(rio_driver);
|
|
|
|
/* Read Documentation/networking/device_drivers/ethernet/dlink/dl2k.rst. */
|