OpenCloudOS-Kernel/drivers/firmware/arm_scmi/sensors.c

1100 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* System Control and Management Interface (SCMI) Sensor Protocol
*
* Copyright (C) 2018-2022 ARM Ltd.
*/
#define pr_fmt(fmt) "SCMI Notifications SENSOR - " fmt
#include <linux/bitfield.h>
#include <linux/module.h>
#include <linux/scmi_protocol.h>
#include "protocols.h"
#include "notify.h"
#define SCMI_MAX_NUM_SENSOR_AXIS 63
#define SCMIv2_SENSOR_PROTOCOL 0x10000
enum scmi_sensor_protocol_cmd {
SENSOR_DESCRIPTION_GET = 0x3,
SENSOR_TRIP_POINT_NOTIFY = 0x4,
SENSOR_TRIP_POINT_CONFIG = 0x5,
SENSOR_READING_GET = 0x6,
SENSOR_AXIS_DESCRIPTION_GET = 0x7,
SENSOR_LIST_UPDATE_INTERVALS = 0x8,
SENSOR_CONFIG_GET = 0x9,
SENSOR_CONFIG_SET = 0xA,
SENSOR_CONTINUOUS_UPDATE_NOTIFY = 0xB,
SENSOR_NAME_GET = 0xC,
SENSOR_AXIS_NAME_GET = 0xD,
};
struct scmi_msg_resp_sensor_attributes {
__le16 num_sensors;
u8 max_requests;
u8 reserved;
__le32 reg_addr_low;
__le32 reg_addr_high;
__le32 reg_size;
};
/* v3 attributes_low macros */
#define SUPPORTS_UPDATE_NOTIFY(x) FIELD_GET(BIT(30), (x))
#define SENSOR_TSTAMP_EXP(x) FIELD_GET(GENMASK(14, 10), (x))
#define SUPPORTS_TIMESTAMP(x) FIELD_GET(BIT(9), (x))
#define SUPPORTS_EXTEND_ATTRS(x) FIELD_GET(BIT(8), (x))
/* v2 attributes_high macros */
#define SENSOR_UPDATE_BASE(x) FIELD_GET(GENMASK(31, 27), (x))
#define SENSOR_UPDATE_SCALE(x) FIELD_GET(GENMASK(26, 22), (x))
/* v3 attributes_high macros */
#define SENSOR_AXIS_NUMBER(x) FIELD_GET(GENMASK(21, 16), (x))
#define SUPPORTS_AXIS(x) FIELD_GET(BIT(8), (x))
/* v3 resolution macros */
#define SENSOR_RES(x) FIELD_GET(GENMASK(26, 0), (x))
#define SENSOR_RES_EXP(x) FIELD_GET(GENMASK(31, 27), (x))
struct scmi_msg_resp_attrs {
__le32 min_range_low;
__le32 min_range_high;
__le32 max_range_low;
__le32 max_range_high;
};
struct scmi_msg_sensor_description {
__le32 desc_index;
};
struct scmi_msg_resp_sensor_description {
__le16 num_returned;
__le16 num_remaining;
struct scmi_sensor_descriptor {
__le32 id;
__le32 attributes_low;
/* Common attributes_low macros */
#define SUPPORTS_ASYNC_READ(x) FIELD_GET(BIT(31), (x))
#define SUPPORTS_EXTENDED_NAMES(x) FIELD_GET(BIT(29), (x))
#define NUM_TRIP_POINTS(x) FIELD_GET(GENMASK(7, 0), (x))
__le32 attributes_high;
/* Common attributes_high macros */
#define SENSOR_SCALE(x) FIELD_GET(GENMASK(15, 11), (x))
#define SENSOR_SCALE_SIGN BIT(4)
#define SENSOR_SCALE_EXTEND GENMASK(31, 5)
#define SENSOR_TYPE(x) FIELD_GET(GENMASK(7, 0), (x))
u8 name[SCMI_SHORT_NAME_MAX_SIZE];
/* only for version > 2.0 */
__le32 power;
__le32 resolution;
struct scmi_msg_resp_attrs scalar_attrs;
} desc[];
};
/* Base scmi_sensor_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_SENS_DESCR_BASE_SZ 28
/* Sign extend to a full s32 */
#define S32_EXT(v) \
({ \
int __v = (v); \
\
if (__v & SENSOR_SCALE_SIGN) \
__v |= SENSOR_SCALE_EXTEND; \
__v; \
})
struct scmi_msg_sensor_axis_description_get {
__le32 id;
__le32 axis_desc_index;
};
struct scmi_msg_resp_sensor_axis_description {
__le32 num_axis_flags;
#define NUM_AXIS_RETURNED(x) FIELD_GET(GENMASK(5, 0), (x))
#define NUM_AXIS_REMAINING(x) FIELD_GET(GENMASK(31, 26), (x))
struct scmi_axis_descriptor {
__le32 id;
__le32 attributes_low;
#define SUPPORTS_EXTENDED_AXIS_NAMES(x) FIELD_GET(BIT(9), (x))
__le32 attributes_high;
u8 name[SCMI_SHORT_NAME_MAX_SIZE];
__le32 resolution;
struct scmi_msg_resp_attrs attrs;
} desc[];
};
struct scmi_msg_resp_sensor_axis_names_description {
__le32 num_axis_flags;
struct scmi_sensor_axis_name_descriptor {
__le32 axis_id;
u8 name[SCMI_MAX_STR_SIZE];
} desc[];
};
/* Base scmi_axis_descriptor size excluding extended attrs after name */
#define SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ 28
struct scmi_msg_sensor_list_update_intervals {
__le32 id;
__le32 index;
};
struct scmi_msg_resp_sensor_list_update_intervals {
__le32 num_intervals_flags;
#define NUM_INTERVALS_RETURNED(x) FIELD_GET(GENMASK(11, 0), (x))
#define SEGMENTED_INTVL_FORMAT(x) FIELD_GET(BIT(12), (x))
#define NUM_INTERVALS_REMAINING(x) FIELD_GET(GENMASK(31, 16), (x))
__le32 intervals[];
};
struct scmi_msg_sensor_request_notify {
__le32 id;
__le32 event_control;
#define SENSOR_NOTIFY_ALL BIT(0)
};
struct scmi_msg_set_sensor_trip_point {
__le32 id;
__le32 event_control;
#define SENSOR_TP_EVENT_MASK (0x3)
#define SENSOR_TP_DISABLED 0x0
#define SENSOR_TP_POSITIVE 0x1
#define SENSOR_TP_NEGATIVE 0x2
#define SENSOR_TP_BOTH 0x3
#define SENSOR_TP_ID(x) (((x) & 0xff) << 4)
__le32 value_low;
__le32 value_high;
};
struct scmi_msg_sensor_config_set {
__le32 id;
__le32 sensor_config;
};
struct scmi_msg_sensor_reading_get {
__le32 id;
__le32 flags;
#define SENSOR_READ_ASYNC BIT(0)
};
struct scmi_resp_sensor_reading_complete {
__le32 id;
__le32 readings_low;
__le32 readings_high;
};
struct scmi_sensor_reading_resp {
__le32 sensor_value_low;
__le32 sensor_value_high;
__le32 timestamp_low;
__le32 timestamp_high;
};
struct scmi_resp_sensor_reading_complete_v3 {
__le32 id;
struct scmi_sensor_reading_resp readings[];
};
struct scmi_sensor_trip_notify_payld {
__le32 agent_id;
__le32 sensor_id;
__le32 trip_point_desc;
};
struct scmi_sensor_update_notify_payld {
__le32 agent_id;
__le32 sensor_id;
struct scmi_sensor_reading_resp readings[];
};
struct sensors_info {
u32 version;
int num_sensors;
int max_requests;
u64 reg_addr;
u32 reg_size;
struct scmi_sensor_info *sensors;
};
static int scmi_sensor_attributes_get(const struct scmi_protocol_handle *ph,
struct sensors_info *si)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_resp_sensor_attributes *attr;
ret = ph->xops->xfer_get_init(ph, PROTOCOL_ATTRIBUTES,
0, sizeof(*attr), &t);
if (ret)
return ret;
attr = t->rx.buf;
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
si->num_sensors = le16_to_cpu(attr->num_sensors);
si->max_requests = attr->max_requests;
si->reg_addr = le32_to_cpu(attr->reg_addr_low) |
(u64)le32_to_cpu(attr->reg_addr_high) << 32;
si->reg_size = le32_to_cpu(attr->reg_size);
}
ph->xops->xfer_put(ph, t);
return ret;
}
static inline void scmi_parse_range_attrs(struct scmi_range_attrs *out,
const struct scmi_msg_resp_attrs *in)
{
out->min_range = get_unaligned_le64((void *)&in->min_range_low);
out->max_range = get_unaligned_le64((void *)&in->max_range_low);
}
struct scmi_sens_ipriv {
void *priv;
struct device *dev;
};
static void iter_intervals_prepare_message(void *message,
unsigned int desc_index,
const void *p)
{
struct scmi_msg_sensor_list_update_intervals *msg = message;
const struct scmi_sensor_info *s;
s = ((const struct scmi_sens_ipriv *)p)->priv;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->index = cpu_to_le32(desc_index);
}
static int iter_intervals_update_state(struct scmi_iterator_state *st,
const void *response, void *p)
{
u32 flags;
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
struct device *dev = ((struct scmi_sens_ipriv *)p)->dev;
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
flags = le32_to_cpu(r->num_intervals_flags);
st->num_returned = NUM_INTERVALS_RETURNED(flags);
st->num_remaining = NUM_INTERVALS_REMAINING(flags);
/*
* Max intervals is not declared previously anywhere so we
* assume it's returned+remaining on first call.
*/
if (!st->max_resources) {
s->intervals.segmented = SEGMENTED_INTVL_FORMAT(flags);
s->intervals.count = st->num_returned + st->num_remaining;
/* segmented intervals are reported in one triplet */
if (s->intervals.segmented &&
(st->num_remaining || st->num_returned != 3)) {
dev_err(dev,
"Sensor ID:%d advertises an invalid segmented interval (%d)\n",
s->id, s->intervals.count);
s->intervals.segmented = false;
s->intervals.count = 0;
return -EINVAL;
}
/* Direct allocation when exceeding pre-allocated */
if (s->intervals.count >= SCMI_MAX_PREALLOC_POOL) {
s->intervals.desc =
devm_kcalloc(dev,
s->intervals.count,
sizeof(*s->intervals.desc),
GFP_KERNEL);
if (!s->intervals.desc) {
s->intervals.segmented = false;
s->intervals.count = 0;
return -ENOMEM;
}
}
st->max_resources = s->intervals.count;
}
return 0;
}
static int
iter_intervals_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *p)
{
const struct scmi_msg_resp_sensor_list_update_intervals *r = response;
struct scmi_sensor_info *s = ((struct scmi_sens_ipriv *)p)->priv;
s->intervals.desc[st->desc_index + st->loop_idx] =
le32_to_cpu(r->intervals[st->loop_idx]);
return 0;
}
static int scmi_sensor_update_intervals(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s)
{
void *iter;
struct scmi_msg_sensor_list_update_intervals *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_intervals_prepare_message,
.update_state = iter_intervals_update_state,
.process_response = iter_intervals_process_response,
};
struct scmi_sens_ipriv upriv = {
.priv = s,
.dev = ph->dev,
};
iter = ph->hops->iter_response_init(ph, &ops, s->intervals.count,
SENSOR_LIST_UPDATE_INTERVALS,
sizeof(*msg), &upriv);
if (IS_ERR(iter))
return PTR_ERR(iter);
return ph->hops->iter_response_run(iter);
}
static void iter_axes_desc_prepare_message(void *message,
const unsigned int desc_index,
const void *priv)
{
struct scmi_msg_sensor_axis_description_get *msg = message;
const struct scmi_sensor_info *s = priv;
/* Set the number of sensors to be skipped/already read */
msg->id = cpu_to_le32(s->id);
msg->axis_desc_index = cpu_to_le32(desc_index);
}
static int
iter_axes_desc_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
u32 flags;
const struct scmi_msg_resp_sensor_axis_description *r = response;
flags = le32_to_cpu(r->num_axis_flags);
st->num_returned = NUM_AXIS_RETURNED(flags);
st->num_remaining = NUM_AXIS_REMAINING(flags);
st->priv = (void *)&r->desc[0];
return 0;
}
static int
iter_axes_desc_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *priv)
{
u32 attrh, attrl;
struct scmi_sensor_axis_info *a;
size_t dsize = SCMI_MSG_RESP_AXIS_DESCR_BASE_SZ;
struct scmi_sensor_info *s = priv;
const struct scmi_axis_descriptor *adesc = st->priv;
attrl = le32_to_cpu(adesc->attributes_low);
a = &s->axis[st->desc_index + st->loop_idx];
a->id = le32_to_cpu(adesc->id);
a->extended_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(adesc->attributes_high);
a->scale = S32_EXT(SENSOR_SCALE(attrh));
a->type = SENSOR_TYPE(attrh);
strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
if (a->extended_attrs) {
unsigned int ares = le32_to_cpu(adesc->resolution);
a->resolution = SENSOR_RES(ares);
a->exponent = S32_EXT(SENSOR_RES_EXP(ares));
dsize += sizeof(adesc->resolution);
scmi_parse_range_attrs(&a->attrs, &adesc->attrs);
dsize += sizeof(adesc->attrs);
}
st->priv = ((u8 *)adesc + dsize);
return 0;
}
static int
iter_axes_extended_name_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
u32 flags;
const struct scmi_msg_resp_sensor_axis_names_description *r = response;
flags = le32_to_cpu(r->num_axis_flags);
st->num_returned = NUM_AXIS_RETURNED(flags);
st->num_remaining = NUM_AXIS_REMAINING(flags);
st->priv = (void *)&r->desc[0];
return 0;
}
static int
iter_axes_extended_name_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st,
void *priv)
{
struct scmi_sensor_axis_info *a;
const struct scmi_sensor_info *s = priv;
struct scmi_sensor_axis_name_descriptor *adesc = st->priv;
a = &s->axis[st->desc_index + st->loop_idx];
strscpy(a->name, adesc->name, SCMI_MAX_STR_SIZE);
st->priv = ++adesc;
return 0;
}
static int
scmi_sensor_axis_extended_names_get(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s)
{
void *iter;
struct scmi_msg_sensor_axis_description_get *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_axes_desc_prepare_message,
.update_state = iter_axes_extended_name_update_state,
.process_response = iter_axes_extended_name_process_response,
};
iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
SENSOR_AXIS_NAME_GET,
sizeof(*msg), s);
if (IS_ERR(iter))
return PTR_ERR(iter);
return ph->hops->iter_response_run(iter);
}
static int scmi_sensor_axis_description(const struct scmi_protocol_handle *ph,
struct scmi_sensor_info *s,
u32 version)
{
int ret;
void *iter;
struct scmi_msg_sensor_axis_description_get *msg;
struct scmi_iterator_ops ops = {
.prepare_message = iter_axes_desc_prepare_message,
.update_state = iter_axes_desc_update_state,
.process_response = iter_axes_desc_process_response,
};
s->axis = devm_kcalloc(ph->dev, s->num_axis,
sizeof(*s->axis), GFP_KERNEL);
if (!s->axis)
return -ENOMEM;
iter = ph->hops->iter_response_init(ph, &ops, s->num_axis,
SENSOR_AXIS_DESCRIPTION_GET,
sizeof(*msg), s);
if (IS_ERR(iter))
return PTR_ERR(iter);
ret = ph->hops->iter_response_run(iter);
if (ret)
return ret;
if (PROTOCOL_REV_MAJOR(version) >= 0x3)
ret = scmi_sensor_axis_extended_names_get(ph, s);
return ret;
}
static void iter_sens_descr_prepare_message(void *message,
unsigned int desc_index,
const void *priv)
{
struct scmi_msg_sensor_description *msg = message;
msg->desc_index = cpu_to_le32(desc_index);
}
static int iter_sens_descr_update_state(struct scmi_iterator_state *st,
const void *response, void *priv)
{
const struct scmi_msg_resp_sensor_description *r = response;
st->num_returned = le16_to_cpu(r->num_returned);
st->num_remaining = le16_to_cpu(r->num_remaining);
st->priv = (void *)&r->desc[0];
return 0;
}
static int
iter_sens_descr_process_response(const struct scmi_protocol_handle *ph,
const void *response,
struct scmi_iterator_state *st, void *priv)
{
int ret = 0;
u32 attrh, attrl;
size_t dsize = SCMI_MSG_RESP_SENS_DESCR_BASE_SZ;
struct scmi_sensor_info *s;
struct sensors_info *si = priv;
const struct scmi_sensor_descriptor *sdesc = st->priv;
s = &si->sensors[st->desc_index + st->loop_idx];
s->id = le32_to_cpu(sdesc->id);
attrl = le32_to_cpu(sdesc->attributes_low);
/* common bitfields parsing */
s->async = SUPPORTS_ASYNC_READ(attrl);
s->num_trip_points = NUM_TRIP_POINTS(attrl);
/**
* only SCMIv3.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->update = SUPPORTS_UPDATE_NOTIFY(attrl);
s->timestamped = SUPPORTS_TIMESTAMP(attrl);
if (s->timestamped)
s->tstamp_scale = S32_EXT(SENSOR_TSTAMP_EXP(attrl));
s->extended_scalar_attrs = SUPPORTS_EXTEND_ATTRS(attrl);
attrh = le32_to_cpu(sdesc->attributes_high);
/* common bitfields parsing */
s->scale = S32_EXT(SENSOR_SCALE(attrh));
s->type = SENSOR_TYPE(attrh);
/* Use pre-allocated pool wherever possible */
s->intervals.desc = s->intervals.prealloc_pool;
if (si->version == SCMIv2_SENSOR_PROTOCOL) {
s->intervals.segmented = false;
s->intervals.count = 1;
/*
* Convert SCMIv2.0 update interval format to
* SCMIv3.0 to be used as the common exposed
* descriptor, accessible via common macros.
*/
s->intervals.desc[0] = (SENSOR_UPDATE_BASE(attrh) << 5) |
SENSOR_UPDATE_SCALE(attrh);
} else {
/*
* From SCMIv3.0 update intervals are retrieved
* via a dedicated (optional) command.
* Since the command is optional, on error carry
* on without any update interval.
*/
if (scmi_sensor_update_intervals(ph, s))
dev_dbg(ph->dev,
"Update Intervals not available for sensor ID:%d\n",
s->id);
}
/**
* only > SCMIv2.0 specific bitfield below.
* Such bitfields are assumed to be zeroed on non
* relevant fw versions...assuming fw not buggy !
*/
s->num_axis = min_t(unsigned int,
SUPPORTS_AXIS(attrh) ?
SENSOR_AXIS_NUMBER(attrh) : 0,
SCMI_MAX_NUM_SENSOR_AXIS);
strscpy(s->name, sdesc->name, SCMI_MAX_STR_SIZE);
/*
* If supported overwrite short name with the extended
* one; on error just carry on and use already provided
* short name.
*/
if (PROTOCOL_REV_MAJOR(si->version) >= 0x3 &&
SUPPORTS_EXTENDED_NAMES(attrl))
ph->hops->extended_name_get(ph, SENSOR_NAME_GET, s->id,
s->name, SCMI_MAX_STR_SIZE);
if (s->extended_scalar_attrs) {
s->sensor_power = le32_to_cpu(sdesc->power);
dsize += sizeof(sdesc->power);
/* Only for sensors reporting scalar values */
if (s->num_axis == 0) {
unsigned int sres = le32_to_cpu(sdesc->resolution);
s->resolution = SENSOR_RES(sres);
s->exponent = S32_EXT(SENSOR_RES_EXP(sres));
dsize += sizeof(sdesc->resolution);
scmi_parse_range_attrs(&s->scalar_attrs,
&sdesc->scalar_attrs);
dsize += sizeof(sdesc->scalar_attrs);
}
}
if (s->num_axis > 0)
ret = scmi_sensor_axis_description(ph, s, si->version);
st->priv = ((u8 *)sdesc + dsize);
return ret;
}
static int scmi_sensor_description_get(const struct scmi_protocol_handle *ph,
struct sensors_info *si)
{
void *iter;
struct scmi_iterator_ops ops = {
.prepare_message = iter_sens_descr_prepare_message,
.update_state = iter_sens_descr_update_state,
.process_response = iter_sens_descr_process_response,
};
iter = ph->hops->iter_response_init(ph, &ops, si->num_sensors,
SENSOR_DESCRIPTION_GET,
sizeof(__le32), si);
if (IS_ERR(iter))
return PTR_ERR(iter);
return ph->hops->iter_response_run(iter);
}
static inline int
scmi_sensor_request_notify(const struct scmi_protocol_handle *ph, u32 sensor_id,
u8 message_id, bool enable)
{
int ret;
u32 evt_cntl = enable ? SENSOR_NOTIFY_ALL : 0;
struct scmi_xfer *t;
struct scmi_msg_sensor_request_notify *cfg;
ret = ph->xops->xfer_get_init(ph, message_id, sizeof(*cfg), 0, &t);
if (ret)
return ret;
cfg = t->tx.buf;
cfg->id = cpu_to_le32(sensor_id);
cfg->event_control = cpu_to_le32(evt_cntl);
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_sensor_trip_point_notify(const struct scmi_protocol_handle *ph,
u32 sensor_id, bool enable)
{
return scmi_sensor_request_notify(ph, sensor_id,
SENSOR_TRIP_POINT_NOTIFY,
enable);
}
static int
scmi_sensor_continuous_update_notify(const struct scmi_protocol_handle *ph,
u32 sensor_id, bool enable)
{
return scmi_sensor_request_notify(ph, sensor_id,
SENSOR_CONTINUOUS_UPDATE_NOTIFY,
enable);
}
static int
scmi_sensor_trip_point_config(const struct scmi_protocol_handle *ph,
u32 sensor_id, u8 trip_id, u64 trip_value)
{
int ret;
u32 evt_cntl = SENSOR_TP_BOTH;
struct scmi_xfer *t;
struct scmi_msg_set_sensor_trip_point *trip;
ret = ph->xops->xfer_get_init(ph, SENSOR_TRIP_POINT_CONFIG,
sizeof(*trip), 0, &t);
if (ret)
return ret;
trip = t->tx.buf;
trip->id = cpu_to_le32(sensor_id);
trip->event_control = cpu_to_le32(evt_cntl | SENSOR_TP_ID(trip_id));
trip->value_low = cpu_to_le32(trip_value & 0xffffffff);
trip->value_high = cpu_to_le32(trip_value >> 32);
ret = ph->xops->do_xfer(ph, t);
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_sensor_config_get(const struct scmi_protocol_handle *ph,
u32 sensor_id, u32 *sensor_config)
{
int ret;
struct scmi_xfer *t;
ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_GET,
sizeof(__le32), sizeof(__le32), &t);
if (ret)
return ret;
put_unaligned_le32(sensor_id, t->tx.buf);
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
struct sensors_info *si = ph->get_priv(ph);
struct scmi_sensor_info *s = si->sensors + sensor_id;
*sensor_config = get_unaligned_le64(t->rx.buf);
s->sensor_config = *sensor_config;
}
ph->xops->xfer_put(ph, t);
return ret;
}
static int scmi_sensor_config_set(const struct scmi_protocol_handle *ph,
u32 sensor_id, u32 sensor_config)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_config_set *msg;
ret = ph->xops->xfer_get_init(ph, SENSOR_CONFIG_SET,
sizeof(*msg), 0, &t);
if (ret)
return ret;
msg = t->tx.buf;
msg->id = cpu_to_le32(sensor_id);
msg->sensor_config = cpu_to_le32(sensor_config);
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
struct sensors_info *si = ph->get_priv(ph);
struct scmi_sensor_info *s = si->sensors + sensor_id;
s->sensor_config = sensor_config;
}
ph->xops->xfer_put(ph, t);
return ret;
}
/**
* scmi_sensor_reading_get - Read scalar sensor value
* @ph: Protocol handle
* @sensor_id: Sensor ID
* @value: The 64bit value sensor reading
*
* This function returns a single 64 bit reading value representing the sensor
* value; if the platform SCMI Protocol implementation and the sensor support
* multiple axis and timestamped-reads, this just returns the first axis while
* dropping the timestamp value.
* Use instead the @scmi_sensor_reading_get_timestamped to retrieve the array of
* timestamped multi-axis values.
*
* Return: 0 on Success
*/
static int scmi_sensor_reading_get(const struct scmi_protocol_handle *ph,
u32 sensor_id, u64 *value)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_reading_get *sensor;
struct sensors_info *si = ph->get_priv(ph);
struct scmi_sensor_info *s = si->sensors + sensor_id;
ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
sizeof(*sensor), 0, &t);
if (ret)
return ret;
sensor = t->tx.buf;
sensor->id = cpu_to_le32(sensor_id);
if (s->async) {
sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
ret = ph->xops->do_xfer_with_response(ph, t);
if (!ret) {
struct scmi_resp_sensor_reading_complete *resp;
resp = t->rx.buf;
if (le32_to_cpu(resp->id) == sensor_id)
*value =
get_unaligned_le64(&resp->readings_low);
else
ret = -EPROTO;
}
} else {
sensor->flags = cpu_to_le32(0);
ret = ph->xops->do_xfer(ph, t);
if (!ret)
*value = get_unaligned_le64(t->rx.buf);
}
ph->xops->xfer_put(ph, t);
return ret;
}
static inline void
scmi_parse_sensor_readings(struct scmi_sensor_reading *out,
const struct scmi_sensor_reading_resp *in)
{
out->value = get_unaligned_le64((void *)&in->sensor_value_low);
out->timestamp = get_unaligned_le64((void *)&in->timestamp_low);
}
/**
* scmi_sensor_reading_get_timestamped - Read multiple-axis timestamped values
* @ph: Protocol handle
* @sensor_id: Sensor ID
* @count: The length of the provided @readings array
* @readings: An array of elements each representing a timestamped per-axis
* reading of type @struct scmi_sensor_reading.
* Returned readings are ordered as the @axis descriptors array
* included in @struct scmi_sensor_info and the max number of
* returned elements is min(@count, @num_axis); ideally the provided
* array should be of length @count equal to @num_axis.
*
* Return: 0 on Success
*/
static int
scmi_sensor_reading_get_timestamped(const struct scmi_protocol_handle *ph,
u32 sensor_id, u8 count,
struct scmi_sensor_reading *readings)
{
int ret;
struct scmi_xfer *t;
struct scmi_msg_sensor_reading_get *sensor;
struct sensors_info *si = ph->get_priv(ph);
struct scmi_sensor_info *s = si->sensors + sensor_id;
if (!count || !readings ||
(!s->num_axis && count > 1) || (s->num_axis && count > s->num_axis))
return -EINVAL;
ret = ph->xops->xfer_get_init(ph, SENSOR_READING_GET,
sizeof(*sensor), 0, &t);
if (ret)
return ret;
sensor = t->tx.buf;
sensor->id = cpu_to_le32(sensor_id);
if (s->async) {
sensor->flags = cpu_to_le32(SENSOR_READ_ASYNC);
ret = ph->xops->do_xfer_with_response(ph, t);
if (!ret) {
int i;
struct scmi_resp_sensor_reading_complete_v3 *resp;
resp = t->rx.buf;
/* Retrieve only the number of requested axis anyway */
if (le32_to_cpu(resp->id) == sensor_id)
for (i = 0; i < count; i++)
scmi_parse_sensor_readings(&readings[i],
&resp->readings[i]);
else
ret = -EPROTO;
}
} else {
sensor->flags = cpu_to_le32(0);
ret = ph->xops->do_xfer(ph, t);
if (!ret) {
int i;
struct scmi_sensor_reading_resp *resp_readings;
resp_readings = t->rx.buf;
for (i = 0; i < count; i++)
scmi_parse_sensor_readings(&readings[i],
&resp_readings[i]);
}
}
ph->xops->xfer_put(ph, t);
return ret;
}
static const struct scmi_sensor_info *
scmi_sensor_info_get(const struct scmi_protocol_handle *ph, u32 sensor_id)
{
struct sensors_info *si = ph->get_priv(ph);
return si->sensors + sensor_id;
}
static int scmi_sensor_count_get(const struct scmi_protocol_handle *ph)
{
struct sensors_info *si = ph->get_priv(ph);
return si->num_sensors;
}
static const struct scmi_sensor_proto_ops sensor_proto_ops = {
.count_get = scmi_sensor_count_get,
.info_get = scmi_sensor_info_get,
.trip_point_config = scmi_sensor_trip_point_config,
.reading_get = scmi_sensor_reading_get,
.reading_get_timestamped = scmi_sensor_reading_get_timestamped,
.config_get = scmi_sensor_config_get,
.config_set = scmi_sensor_config_set,
};
static int scmi_sensor_set_notify_enabled(const struct scmi_protocol_handle *ph,
u8 evt_id, u32 src_id, bool enable)
{
int ret;
switch (evt_id) {
case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
ret = scmi_sensor_trip_point_notify(ph, src_id, enable);
break;
case SCMI_EVENT_SENSOR_UPDATE:
ret = scmi_sensor_continuous_update_notify(ph, src_id, enable);
break;
default:
ret = -EINVAL;
break;
}
if (ret)
pr_debug("FAIL_ENABLED - evt[%X] dom[%d] - ret:%d\n",
evt_id, src_id, ret);
return ret;
}
static void *
scmi_sensor_fill_custom_report(const struct scmi_protocol_handle *ph,
u8 evt_id, ktime_t timestamp,
const void *payld, size_t payld_sz,
void *report, u32 *src_id)
{
void *rep = NULL;
switch (evt_id) {
case SCMI_EVENT_SENSOR_TRIP_POINT_EVENT:
{
const struct scmi_sensor_trip_notify_payld *p = payld;
struct scmi_sensor_trip_point_report *r = report;
if (sizeof(*p) != payld_sz)
break;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
r->sensor_id = le32_to_cpu(p->sensor_id);
r->trip_point_desc = le32_to_cpu(p->trip_point_desc);
*src_id = r->sensor_id;
rep = r;
break;
}
case SCMI_EVENT_SENSOR_UPDATE:
{
int i;
struct scmi_sensor_info *s;
const struct scmi_sensor_update_notify_payld *p = payld;
struct scmi_sensor_update_report *r = report;
struct sensors_info *sinfo = ph->get_priv(ph);
/* payld_sz is variable for this event */
r->sensor_id = le32_to_cpu(p->sensor_id);
if (r->sensor_id >= sinfo->num_sensors)
break;
r->timestamp = timestamp;
r->agent_id = le32_to_cpu(p->agent_id);
s = &sinfo->sensors[r->sensor_id];
/*
* The generated report r (@struct scmi_sensor_update_report)
* was pre-allocated to contain up to SCMI_MAX_NUM_SENSOR_AXIS
* readings: here it is filled with the effective @num_axis
* readings defined for this sensor or 1 for scalar sensors.
*/
r->readings_count = s->num_axis ?: 1;
for (i = 0; i < r->readings_count; i++)
scmi_parse_sensor_readings(&r->readings[i],
&p->readings[i]);
*src_id = r->sensor_id;
rep = r;
break;
}
default:
break;
}
return rep;
}
static int scmi_sensor_get_num_sources(const struct scmi_protocol_handle *ph)
{
struct sensors_info *si = ph->get_priv(ph);
return si->num_sensors;
}
static const struct scmi_event sensor_events[] = {
{
.id = SCMI_EVENT_SENSOR_TRIP_POINT_EVENT,
.max_payld_sz = sizeof(struct scmi_sensor_trip_notify_payld),
.max_report_sz = sizeof(struct scmi_sensor_trip_point_report),
},
{
.id = SCMI_EVENT_SENSOR_UPDATE,
.max_payld_sz =
sizeof(struct scmi_sensor_update_notify_payld) +
SCMI_MAX_NUM_SENSOR_AXIS *
sizeof(struct scmi_sensor_reading_resp),
.max_report_sz = sizeof(struct scmi_sensor_update_report) +
SCMI_MAX_NUM_SENSOR_AXIS *
sizeof(struct scmi_sensor_reading),
},
};
static const struct scmi_event_ops sensor_event_ops = {
.get_num_sources = scmi_sensor_get_num_sources,
.set_notify_enabled = scmi_sensor_set_notify_enabled,
.fill_custom_report = scmi_sensor_fill_custom_report,
};
static const struct scmi_protocol_events sensor_protocol_events = {
.queue_sz = SCMI_PROTO_QUEUE_SZ,
.ops = &sensor_event_ops,
.evts = sensor_events,
.num_events = ARRAY_SIZE(sensor_events),
};
static int scmi_sensors_protocol_init(const struct scmi_protocol_handle *ph)
{
u32 version;
int ret;
struct sensors_info *sinfo;
ret = ph->xops->version_get(ph, &version);
if (ret)
return ret;
dev_dbg(ph->dev, "Sensor Version %d.%d\n",
PROTOCOL_REV_MAJOR(version), PROTOCOL_REV_MINOR(version));
sinfo = devm_kzalloc(ph->dev, sizeof(*sinfo), GFP_KERNEL);
if (!sinfo)
return -ENOMEM;
sinfo->version = version;
ret = scmi_sensor_attributes_get(ph, sinfo);
if (ret)
return ret;
sinfo->sensors = devm_kcalloc(ph->dev, sinfo->num_sensors,
sizeof(*sinfo->sensors), GFP_KERNEL);
if (!sinfo->sensors)
return -ENOMEM;
ret = scmi_sensor_description_get(ph, sinfo);
if (ret)
return ret;
return ph->set_priv(ph, sinfo);
}
static const struct scmi_protocol scmi_sensors = {
.id = SCMI_PROTOCOL_SENSOR,
.owner = THIS_MODULE,
.instance_init = &scmi_sensors_protocol_init,
.ops = &sensor_proto_ops,
.events = &sensor_protocol_events,
};
DEFINE_SCMI_PROTOCOL_REGISTER_UNREGISTER(sensors, scmi_sensors)