719 lines
18 KiB
C
719 lines
18 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Simple PWM based backlight control, board code has to setup
|
|
* 1) pin configuration so PWM waveforms can output
|
|
* 2) platform_data being correctly configured
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/gpio/consumer.h>
|
|
#include <linux/module.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/init.h>
|
|
#include <linux/platform_device.h>
|
|
#include <linux/fb.h>
|
|
#include <linux/backlight.h>
|
|
#include <linux/err.h>
|
|
#include <linux/pwm.h>
|
|
#include <linux/pwm_backlight.h>
|
|
#include <linux/regulator/consumer.h>
|
|
#include <linux/slab.h>
|
|
|
|
struct pwm_bl_data {
|
|
struct pwm_device *pwm;
|
|
struct device *dev;
|
|
unsigned int lth_brightness;
|
|
unsigned int *levels;
|
|
bool enabled;
|
|
struct regulator *power_supply;
|
|
struct gpio_desc *enable_gpio;
|
|
unsigned int scale;
|
|
unsigned int post_pwm_on_delay;
|
|
unsigned int pwm_off_delay;
|
|
int (*notify)(struct device *,
|
|
int brightness);
|
|
void (*notify_after)(struct device *,
|
|
int brightness);
|
|
int (*check_fb)(struct device *, struct fb_info *);
|
|
void (*exit)(struct device *);
|
|
};
|
|
|
|
static void pwm_backlight_power_on(struct pwm_bl_data *pb)
|
|
{
|
|
int err;
|
|
|
|
if (pb->enabled)
|
|
return;
|
|
|
|
if (pb->power_supply) {
|
|
err = regulator_enable(pb->power_supply);
|
|
if (err < 0)
|
|
dev_err(pb->dev, "failed to enable power supply\n");
|
|
}
|
|
|
|
if (pb->post_pwm_on_delay)
|
|
msleep(pb->post_pwm_on_delay);
|
|
|
|
gpiod_set_value_cansleep(pb->enable_gpio, 1);
|
|
|
|
pb->enabled = true;
|
|
}
|
|
|
|
static void pwm_backlight_power_off(struct pwm_bl_data *pb)
|
|
{
|
|
if (!pb->enabled)
|
|
return;
|
|
|
|
gpiod_set_value_cansleep(pb->enable_gpio, 0);
|
|
|
|
if (pb->pwm_off_delay)
|
|
msleep(pb->pwm_off_delay);
|
|
|
|
if (pb->power_supply)
|
|
regulator_disable(pb->power_supply);
|
|
pb->enabled = false;
|
|
}
|
|
|
|
static int compute_duty_cycle(struct pwm_bl_data *pb, int brightness, struct pwm_state *state)
|
|
{
|
|
unsigned int lth = pb->lth_brightness;
|
|
u64 duty_cycle;
|
|
|
|
if (pb->levels)
|
|
duty_cycle = pb->levels[brightness];
|
|
else
|
|
duty_cycle = brightness;
|
|
|
|
duty_cycle *= state->period - lth;
|
|
do_div(duty_cycle, pb->scale);
|
|
|
|
return duty_cycle + lth;
|
|
}
|
|
|
|
static int pwm_backlight_update_status(struct backlight_device *bl)
|
|
{
|
|
struct pwm_bl_data *pb = bl_get_data(bl);
|
|
int brightness = backlight_get_brightness(bl);
|
|
struct pwm_state state;
|
|
|
|
if (pb->notify)
|
|
brightness = pb->notify(pb->dev, brightness);
|
|
|
|
if (brightness > 0) {
|
|
pwm_get_state(pb->pwm, &state);
|
|
state.duty_cycle = compute_duty_cycle(pb, brightness, &state);
|
|
state.enabled = true;
|
|
pwm_apply_might_sleep(pb->pwm, &state);
|
|
|
|
pwm_backlight_power_on(pb);
|
|
} else {
|
|
pwm_backlight_power_off(pb);
|
|
|
|
pwm_get_state(pb->pwm, &state);
|
|
state.duty_cycle = 0;
|
|
/*
|
|
* We cannot assume a disabled PWM to drive its output to the
|
|
* inactive state. If we have an enable GPIO and/or a regulator
|
|
* we assume that this isn't relevant and we can disable the PWM
|
|
* to save power. If however there is neither an enable GPIO nor
|
|
* a regulator keep the PWM on be sure to get a constant
|
|
* inactive output.
|
|
*/
|
|
state.enabled = !pb->power_supply && !pb->enable_gpio;
|
|
pwm_apply_might_sleep(pb->pwm, &state);
|
|
}
|
|
|
|
if (pb->notify_after)
|
|
pb->notify_after(pb->dev, brightness);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pwm_backlight_check_fb(struct backlight_device *bl,
|
|
struct fb_info *info)
|
|
{
|
|
struct pwm_bl_data *pb = bl_get_data(bl);
|
|
|
|
return !pb->check_fb || pb->check_fb(pb->dev, info);
|
|
}
|
|
|
|
static const struct backlight_ops pwm_backlight_ops = {
|
|
.update_status = pwm_backlight_update_status,
|
|
.check_fb = pwm_backlight_check_fb,
|
|
};
|
|
|
|
#ifdef CONFIG_OF
|
|
#define PWM_LUMINANCE_SHIFT 16
|
|
#define PWM_LUMINANCE_SCALE (1 << PWM_LUMINANCE_SHIFT) /* luminance scale */
|
|
|
|
/*
|
|
* CIE lightness to PWM conversion.
|
|
*
|
|
* The CIE 1931 lightness formula is what actually describes how we perceive
|
|
* light:
|
|
* Y = (L* / 903.3) if L* ≤ 8
|
|
* Y = ((L* + 16) / 116)^3 if L* > 8
|
|
*
|
|
* Where Y is the luminance, the amount of light coming out of the screen, and
|
|
* is a number between 0.0 and 1.0; and L* is the lightness, how bright a human
|
|
* perceives the screen to be, and is a number between 0 and 100.
|
|
*
|
|
* The following function does the fixed point maths needed to implement the
|
|
* above formula.
|
|
*/
|
|
static u64 cie1931(unsigned int lightness)
|
|
{
|
|
u64 retval;
|
|
|
|
/*
|
|
* @lightness is given as a number between 0 and 1, expressed
|
|
* as a fixed-point number in scale
|
|
* PWM_LUMINANCE_SCALE. Convert to a percentage, still
|
|
* expressed as a fixed-point number, so the above formulas
|
|
* can be applied.
|
|
*/
|
|
lightness *= 100;
|
|
if (lightness <= (8 * PWM_LUMINANCE_SCALE)) {
|
|
retval = DIV_ROUND_CLOSEST(lightness * 10, 9033);
|
|
} else {
|
|
retval = (lightness + (16 * PWM_LUMINANCE_SCALE)) / 116;
|
|
retval *= retval * retval;
|
|
retval += 1ULL << (2*PWM_LUMINANCE_SHIFT - 1);
|
|
retval >>= 2*PWM_LUMINANCE_SHIFT;
|
|
}
|
|
|
|
return retval;
|
|
}
|
|
|
|
/*
|
|
* Create a default correction table for PWM values to create linear brightness
|
|
* for LED based backlights using the CIE1931 algorithm.
|
|
*/
|
|
static
|
|
int pwm_backlight_brightness_default(struct device *dev,
|
|
struct platform_pwm_backlight_data *data,
|
|
unsigned int period)
|
|
{
|
|
unsigned int i;
|
|
u64 retval;
|
|
|
|
/*
|
|
* Once we have 4096 levels there's little point going much higher...
|
|
* neither interactive sliders nor animation benefits from having
|
|
* more values in the table.
|
|
*/
|
|
data->max_brightness =
|
|
min((int)DIV_ROUND_UP(period, fls(period)), 4096);
|
|
|
|
data->levels = devm_kcalloc(dev, data->max_brightness,
|
|
sizeof(*data->levels), GFP_KERNEL);
|
|
if (!data->levels)
|
|
return -ENOMEM;
|
|
|
|
/* Fill the table using the cie1931 algorithm */
|
|
for (i = 0; i < data->max_brightness; i++) {
|
|
retval = cie1931((i * PWM_LUMINANCE_SCALE) /
|
|
data->max_brightness) * period;
|
|
retval = DIV_ROUND_CLOSEST_ULL(retval, PWM_LUMINANCE_SCALE);
|
|
if (retval > UINT_MAX)
|
|
return -EINVAL;
|
|
data->levels[i] = (unsigned int)retval;
|
|
}
|
|
|
|
data->dft_brightness = data->max_brightness / 2;
|
|
data->max_brightness--;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pwm_backlight_parse_dt(struct device *dev,
|
|
struct platform_pwm_backlight_data *data)
|
|
{
|
|
struct device_node *node = dev->of_node;
|
|
unsigned int num_levels;
|
|
unsigned int num_steps = 0;
|
|
struct property *prop;
|
|
unsigned int *table;
|
|
int length;
|
|
u32 value;
|
|
int ret;
|
|
|
|
if (!node)
|
|
return -ENODEV;
|
|
|
|
memset(data, 0, sizeof(*data));
|
|
|
|
/*
|
|
* These values are optional and set as 0 by default, the out values
|
|
* are modified only if a valid u32 value can be decoded.
|
|
*/
|
|
of_property_read_u32(node, "post-pwm-on-delay-ms",
|
|
&data->post_pwm_on_delay);
|
|
of_property_read_u32(node, "pwm-off-delay-ms", &data->pwm_off_delay);
|
|
|
|
/*
|
|
* Determine the number of brightness levels, if this property is not
|
|
* set a default table of brightness levels will be used.
|
|
*/
|
|
prop = of_find_property(node, "brightness-levels", &length);
|
|
if (!prop)
|
|
return 0;
|
|
|
|
num_levels = length / sizeof(u32);
|
|
|
|
/* read brightness levels from DT property */
|
|
if (num_levels > 0) {
|
|
data->levels = devm_kcalloc(dev, num_levels,
|
|
sizeof(*data->levels), GFP_KERNEL);
|
|
if (!data->levels)
|
|
return -ENOMEM;
|
|
|
|
ret = of_property_read_u32_array(node, "brightness-levels",
|
|
data->levels,
|
|
num_levels);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
ret = of_property_read_u32(node, "default-brightness-level",
|
|
&value);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
data->dft_brightness = value;
|
|
|
|
/*
|
|
* This property is optional, if is set enables linear
|
|
* interpolation between each of the values of brightness levels
|
|
* and creates a new pre-computed table.
|
|
*/
|
|
of_property_read_u32(node, "num-interpolated-steps",
|
|
&num_steps);
|
|
|
|
/*
|
|
* Make sure that there is at least two entries in the
|
|
* brightness-levels table, otherwise we can't interpolate
|
|
* between two points.
|
|
*/
|
|
if (num_steps) {
|
|
unsigned int num_input_levels = num_levels;
|
|
unsigned int i;
|
|
u32 x1, x2, x, dx;
|
|
u32 y1, y2;
|
|
s64 dy;
|
|
|
|
if (num_input_levels < 2) {
|
|
dev_err(dev, "can't interpolate\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Recalculate the number of brightness levels, now
|
|
* taking in consideration the number of interpolated
|
|
* steps between two levels.
|
|
*/
|
|
num_levels = (num_input_levels - 1) * num_steps + 1;
|
|
dev_dbg(dev, "new number of brightness levels: %d\n",
|
|
num_levels);
|
|
|
|
/*
|
|
* Create a new table of brightness levels with all the
|
|
* interpolated steps.
|
|
*/
|
|
table = devm_kcalloc(dev, num_levels, sizeof(*table),
|
|
GFP_KERNEL);
|
|
if (!table)
|
|
return -ENOMEM;
|
|
/*
|
|
* Fill the interpolated table[x] = y
|
|
* by draw lines between each (x1, y1) to (x2, y2).
|
|
*/
|
|
dx = num_steps;
|
|
for (i = 0; i < num_input_levels - 1; i++) {
|
|
x1 = i * dx;
|
|
x2 = x1 + dx;
|
|
y1 = data->levels[i];
|
|
y2 = data->levels[i + 1];
|
|
dy = (s64)y2 - y1;
|
|
|
|
for (x = x1; x < x2; x++) {
|
|
table[x] = y1 +
|
|
div_s64(dy * (x - x1), dx);
|
|
}
|
|
}
|
|
/* Fill in the last point, since no line starts here. */
|
|
table[x2] = y2;
|
|
|
|
/*
|
|
* As we use interpolation lets remove current
|
|
* brightness levels table and replace for the
|
|
* new interpolated table.
|
|
*/
|
|
devm_kfree(dev, data->levels);
|
|
data->levels = table;
|
|
}
|
|
|
|
data->max_brightness = num_levels - 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct of_device_id pwm_backlight_of_match[] = {
|
|
{ .compatible = "pwm-backlight" },
|
|
{ }
|
|
};
|
|
|
|
MODULE_DEVICE_TABLE(of, pwm_backlight_of_match);
|
|
#else
|
|
static int pwm_backlight_parse_dt(struct device *dev,
|
|
struct platform_pwm_backlight_data *data)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
|
|
static
|
|
int pwm_backlight_brightness_default(struct device *dev,
|
|
struct platform_pwm_backlight_data *data,
|
|
unsigned int period)
|
|
{
|
|
return -ENODEV;
|
|
}
|
|
#endif
|
|
|
|
static bool pwm_backlight_is_linear(struct platform_pwm_backlight_data *data)
|
|
{
|
|
unsigned int nlevels = data->max_brightness + 1;
|
|
unsigned int min_val = data->levels[0];
|
|
unsigned int max_val = data->levels[nlevels - 1];
|
|
/*
|
|
* Multiplying by 128 means that even in pathological cases such
|
|
* as (max_val - min_val) == nlevels the error at max_val is less
|
|
* than 1%.
|
|
*/
|
|
unsigned int slope = (128 * (max_val - min_val)) / nlevels;
|
|
unsigned int margin = (max_val - min_val) / 20; /* 5% */
|
|
int i;
|
|
|
|
for (i = 1; i < nlevels; i++) {
|
|
unsigned int linear_value = min_val + ((i * slope) / 128);
|
|
unsigned int delta = abs(linear_value - data->levels[i]);
|
|
|
|
if (delta > margin)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
static int pwm_backlight_initial_power_state(const struct pwm_bl_data *pb)
|
|
{
|
|
struct device_node *node = pb->dev->of_node;
|
|
bool active = true;
|
|
|
|
/*
|
|
* If the enable GPIO is present, observable (either as input
|
|
* or output) and off then the backlight is not currently active.
|
|
* */
|
|
if (pb->enable_gpio && gpiod_get_value_cansleep(pb->enable_gpio) == 0)
|
|
active = false;
|
|
|
|
if (pb->power_supply && !regulator_is_enabled(pb->power_supply))
|
|
active = false;
|
|
|
|
if (!pwm_is_enabled(pb->pwm))
|
|
active = false;
|
|
|
|
/*
|
|
* Synchronize the enable_gpio with the observed state of the
|
|
* hardware.
|
|
*/
|
|
gpiod_direction_output(pb->enable_gpio, active);
|
|
|
|
/*
|
|
* Do not change pb->enabled here! pb->enabled essentially
|
|
* tells us if we own one of the regulator's use counts and
|
|
* right now we do not.
|
|
*/
|
|
|
|
/* Not booted with device tree or no phandle link to the node */
|
|
if (!node || !node->phandle)
|
|
return FB_BLANK_UNBLANK;
|
|
|
|
/*
|
|
* If the driver is probed from the device tree and there is a
|
|
* phandle link pointing to the backlight node, it is safe to
|
|
* assume that another driver will enable the backlight at the
|
|
* appropriate time. Therefore, if it is disabled, keep it so.
|
|
*/
|
|
return active ? FB_BLANK_UNBLANK: FB_BLANK_POWERDOWN;
|
|
}
|
|
|
|
static int pwm_backlight_probe(struct platform_device *pdev)
|
|
{
|
|
struct platform_pwm_backlight_data *data = dev_get_platdata(&pdev->dev);
|
|
struct platform_pwm_backlight_data defdata;
|
|
struct backlight_properties props;
|
|
struct backlight_device *bl;
|
|
struct pwm_bl_data *pb;
|
|
struct pwm_state state;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
if (!data) {
|
|
ret = pwm_backlight_parse_dt(&pdev->dev, &defdata);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev, "failed to find platform data\n");
|
|
return ret;
|
|
}
|
|
|
|
data = &defdata;
|
|
}
|
|
|
|
if (data->init) {
|
|
ret = data->init(&pdev->dev);
|
|
if (ret < 0)
|
|
return ret;
|
|
}
|
|
|
|
pb = devm_kzalloc(&pdev->dev, sizeof(*pb), GFP_KERNEL);
|
|
if (!pb) {
|
|
ret = -ENOMEM;
|
|
goto err_alloc;
|
|
}
|
|
|
|
pb->notify = data->notify;
|
|
pb->notify_after = data->notify_after;
|
|
pb->check_fb = data->check_fb;
|
|
pb->exit = data->exit;
|
|
pb->dev = &pdev->dev;
|
|
pb->enabled = false;
|
|
pb->post_pwm_on_delay = data->post_pwm_on_delay;
|
|
pb->pwm_off_delay = data->pwm_off_delay;
|
|
|
|
pb->enable_gpio = devm_gpiod_get_optional(&pdev->dev, "enable",
|
|
GPIOD_ASIS);
|
|
if (IS_ERR(pb->enable_gpio)) {
|
|
ret = PTR_ERR(pb->enable_gpio);
|
|
goto err_alloc;
|
|
}
|
|
|
|
pb->power_supply = devm_regulator_get_optional(&pdev->dev, "power");
|
|
if (IS_ERR(pb->power_supply)) {
|
|
ret = PTR_ERR(pb->power_supply);
|
|
if (ret == -ENODEV)
|
|
pb->power_supply = NULL;
|
|
else
|
|
goto err_alloc;
|
|
}
|
|
|
|
pb->pwm = devm_pwm_get(&pdev->dev, NULL);
|
|
if (IS_ERR(pb->pwm)) {
|
|
ret = PTR_ERR(pb->pwm);
|
|
if (ret != -EPROBE_DEFER)
|
|
dev_err(&pdev->dev, "unable to request PWM\n");
|
|
goto err_alloc;
|
|
}
|
|
|
|
dev_dbg(&pdev->dev, "got pwm for backlight\n");
|
|
|
|
/* Sync up PWM state. */
|
|
pwm_init_state(pb->pwm, &state);
|
|
|
|
/*
|
|
* The DT case will set the pwm_period_ns field to 0 and store the
|
|
* period, parsed from the DT, in the PWM device. For the non-DT case,
|
|
* set the period from platform data if it has not already been set
|
|
* via the PWM lookup table.
|
|
*/
|
|
if (!state.period && (data->pwm_period_ns > 0))
|
|
state.period = data->pwm_period_ns;
|
|
|
|
ret = pwm_apply_might_sleep(pb->pwm, &state);
|
|
if (ret) {
|
|
dev_err(&pdev->dev, "failed to apply initial PWM state: %d\n",
|
|
ret);
|
|
goto err_alloc;
|
|
}
|
|
|
|
memset(&props, 0, sizeof(struct backlight_properties));
|
|
|
|
if (data->levels) {
|
|
pb->levels = data->levels;
|
|
|
|
/*
|
|
* For the DT case, only when brightness levels is defined
|
|
* data->levels is filled. For the non-DT case, data->levels
|
|
* can come from platform data, however is not usual.
|
|
*/
|
|
for (i = 0; i <= data->max_brightness; i++)
|
|
if (data->levels[i] > pb->scale)
|
|
pb->scale = data->levels[i];
|
|
|
|
if (pwm_backlight_is_linear(data))
|
|
props.scale = BACKLIGHT_SCALE_LINEAR;
|
|
else
|
|
props.scale = BACKLIGHT_SCALE_NON_LINEAR;
|
|
} else if (!data->max_brightness) {
|
|
/*
|
|
* If no brightness levels are provided and max_brightness is
|
|
* not set, use the default brightness table. For the DT case,
|
|
* max_brightness is set to 0 when brightness levels is not
|
|
* specified. For the non-DT case, max_brightness is usually
|
|
* set to some value.
|
|
*/
|
|
|
|
/* Get the PWM period (in nanoseconds) */
|
|
pwm_get_state(pb->pwm, &state);
|
|
|
|
ret = pwm_backlight_brightness_default(&pdev->dev, data,
|
|
state.period);
|
|
if (ret < 0) {
|
|
dev_err(&pdev->dev,
|
|
"failed to setup default brightness table\n");
|
|
goto err_alloc;
|
|
}
|
|
|
|
for (i = 0; i <= data->max_brightness; i++) {
|
|
if (data->levels[i] > pb->scale)
|
|
pb->scale = data->levels[i];
|
|
|
|
pb->levels = data->levels;
|
|
}
|
|
|
|
props.scale = BACKLIGHT_SCALE_NON_LINEAR;
|
|
} else {
|
|
/*
|
|
* That only happens for the non-DT case, where platform data
|
|
* sets the max_brightness value.
|
|
*/
|
|
pb->scale = data->max_brightness;
|
|
}
|
|
|
|
pb->lth_brightness = data->lth_brightness * (div_u64(state.period,
|
|
pb->scale));
|
|
|
|
props.type = BACKLIGHT_RAW;
|
|
props.max_brightness = data->max_brightness;
|
|
bl = backlight_device_register(dev_name(&pdev->dev), &pdev->dev, pb,
|
|
&pwm_backlight_ops, &props);
|
|
if (IS_ERR(bl)) {
|
|
dev_err(&pdev->dev, "failed to register backlight\n");
|
|
ret = PTR_ERR(bl);
|
|
goto err_alloc;
|
|
}
|
|
|
|
if (data->dft_brightness > data->max_brightness) {
|
|
dev_warn(&pdev->dev,
|
|
"invalid default brightness level: %u, using %u\n",
|
|
data->dft_brightness, data->max_brightness);
|
|
data->dft_brightness = data->max_brightness;
|
|
}
|
|
|
|
bl->props.brightness = data->dft_brightness;
|
|
bl->props.power = pwm_backlight_initial_power_state(pb);
|
|
backlight_update_status(bl);
|
|
|
|
platform_set_drvdata(pdev, bl);
|
|
return 0;
|
|
|
|
err_alloc:
|
|
if (data->exit)
|
|
data->exit(&pdev->dev);
|
|
return ret;
|
|
}
|
|
|
|
static void pwm_backlight_remove(struct platform_device *pdev)
|
|
{
|
|
struct backlight_device *bl = platform_get_drvdata(pdev);
|
|
struct pwm_bl_data *pb = bl_get_data(bl);
|
|
struct pwm_state state;
|
|
|
|
backlight_device_unregister(bl);
|
|
pwm_backlight_power_off(pb);
|
|
pwm_get_state(pb->pwm, &state);
|
|
state.duty_cycle = 0;
|
|
state.enabled = false;
|
|
pwm_apply_might_sleep(pb->pwm, &state);
|
|
|
|
if (pb->exit)
|
|
pb->exit(&pdev->dev);
|
|
}
|
|
|
|
static void pwm_backlight_shutdown(struct platform_device *pdev)
|
|
{
|
|
struct backlight_device *bl = platform_get_drvdata(pdev);
|
|
struct pwm_bl_data *pb = bl_get_data(bl);
|
|
struct pwm_state state;
|
|
|
|
pwm_backlight_power_off(pb);
|
|
pwm_get_state(pb->pwm, &state);
|
|
state.duty_cycle = 0;
|
|
state.enabled = false;
|
|
pwm_apply_might_sleep(pb->pwm, &state);
|
|
}
|
|
|
|
#ifdef CONFIG_PM_SLEEP
|
|
static int pwm_backlight_suspend(struct device *dev)
|
|
{
|
|
struct backlight_device *bl = dev_get_drvdata(dev);
|
|
struct pwm_bl_data *pb = bl_get_data(bl);
|
|
struct pwm_state state;
|
|
|
|
if (pb->notify)
|
|
pb->notify(pb->dev, 0);
|
|
|
|
pwm_backlight_power_off(pb);
|
|
|
|
/*
|
|
* Note that disabling the PWM doesn't guarantee that the output stays
|
|
* at its inactive state. However without the PWM disabled, the PWM
|
|
* driver refuses to suspend. So disable here even though this might
|
|
* enable the backlight on poorly designed boards.
|
|
*/
|
|
pwm_get_state(pb->pwm, &state);
|
|
state.duty_cycle = 0;
|
|
state.enabled = false;
|
|
pwm_apply_might_sleep(pb->pwm, &state);
|
|
|
|
if (pb->notify_after)
|
|
pb->notify_after(pb->dev, 0);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int pwm_backlight_resume(struct device *dev)
|
|
{
|
|
struct backlight_device *bl = dev_get_drvdata(dev);
|
|
|
|
backlight_update_status(bl);
|
|
|
|
return 0;
|
|
}
|
|
#endif
|
|
|
|
static const struct dev_pm_ops pwm_backlight_pm_ops = {
|
|
#ifdef CONFIG_PM_SLEEP
|
|
.suspend = pwm_backlight_suspend,
|
|
.resume = pwm_backlight_resume,
|
|
.poweroff = pwm_backlight_suspend,
|
|
.restore = pwm_backlight_resume,
|
|
#endif
|
|
};
|
|
|
|
static struct platform_driver pwm_backlight_driver = {
|
|
.driver = {
|
|
.name = "pwm-backlight",
|
|
.pm = &pwm_backlight_pm_ops,
|
|
.of_match_table = of_match_ptr(pwm_backlight_of_match),
|
|
},
|
|
.probe = pwm_backlight_probe,
|
|
.remove_new = pwm_backlight_remove,
|
|
.shutdown = pwm_backlight_shutdown,
|
|
};
|
|
|
|
module_platform_driver(pwm_backlight_driver);
|
|
|
|
MODULE_DESCRIPTION("PWM based Backlight Driver");
|
|
MODULE_LICENSE("GPL v2");
|
|
MODULE_ALIAS("platform:pwm-backlight");
|