OpenCloudOS-Kernel/drivers/pci/hotplug/cpqphp_ctrl.c

3035 lines
78 KiB
C

/*
* Compaq Hot Plug Controller Driver
*
* Copyright (C) 1995,2001 Compaq Computer Corporation
* Copyright (C) 2001 Greg Kroah-Hartman (greg@kroah.com)
* Copyright (C) 2001 IBM Corp.
*
* All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE, GOOD TITLE or
* NON INFRINGEMENT. See the GNU General Public License for more
* details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*
* Send feedback to <greg@kroah.com>
*
*/
#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/types.h>
#include <linux/slab.h>
#include <linux/workqueue.h>
#include <linux/interrupt.h>
#include <linux/delay.h>
#include <linux/wait.h>
#include <linux/smp_lock.h>
#include <linux/pci.h>
#include <linux/pci_hotplug.h>
#include "cpqphp.h"
static u32 configure_new_device(struct controller* ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources);
static int configure_new_function(struct controller* ctrl, struct pci_func *func,
u8 behind_bridge, struct resource_lists *resources);
static void interrupt_event_handler(struct controller *ctrl);
static struct semaphore event_semaphore; /* mutex for process loop (up if something to process) */
static struct semaphore event_exit; /* guard ensure thread has exited before calling it quits */
static int event_finished;
static unsigned long pushbutton_pending; /* = 0 */
/* things needed for the long_delay function */
static struct semaphore delay_sem;
static wait_queue_head_t delay_wait;
/* delay is in jiffies to wait for */
static void long_delay(int delay)
{
DECLARE_WAITQUEUE(wait, current);
/* only allow 1 customer into the delay queue at once
* yes this makes some people wait even longer, but who really cares?
* this is for _huge_ delays to make the hardware happy as the
* signals bounce around
*/
down (&delay_sem);
init_waitqueue_head(&delay_wait);
add_wait_queue(&delay_wait, &wait);
msleep_interruptible(jiffies_to_msecs(delay));
remove_wait_queue(&delay_wait, &wait);
up(&delay_sem);
}
/* FIXME: The following line needs to be somewhere else... */
#define WRONG_BUS_FREQUENCY 0x07
static u8 handle_switch_change(u8 change, struct controller * ctrl)
{
int hp_slot;
u8 rc = 0;
u16 temp_word;
struct pci_func *func;
struct event_info *taskInfo;
if (!change)
return 0;
/* Switch Change */
dbg("cpqsbd: Switch interrupt received.\n");
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x1L << hp_slot)) {
/**********************************
* this one changed.
**********************************/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
/* this is the structure that tells the worker thread
*what to do */
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
/**********************************
* Switch opened
**********************************/
func->switch_save = 0;
taskInfo->event_type = INT_SWITCH_OPEN;
} else {
/**********************************
* Switch closed
**********************************/
func->switch_save = 0x10;
taskInfo->event_type = INT_SWITCH_CLOSE;
}
}
}
return rc;
}
/**
* cpqhp_find_slot: find the struct slot of given device
* @ctrl: scan lots of this controller
* @device: the device id to find
*/
static struct slot *cpqhp_find_slot(struct controller *ctrl, u8 device)
{
struct slot *slot = ctrl->slot;
while (slot && (slot->device != device)) {
slot = slot->next;
}
return slot;
}
static u8 handle_presence_change(u16 change, struct controller * ctrl)
{
int hp_slot;
u8 rc = 0;
u8 temp_byte;
u16 temp_word;
struct pci_func *func;
struct event_info *taskInfo;
struct slot *p_slot;
if (!change)
return 0;
/**********************************
* Presence Change
**********************************/
dbg("cpqsbd: Presence/Notify input change.\n");
dbg(" Changed bits are 0x%4.4x\n", change );
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x0101 << hp_slot)) {
/**********************************
* this one changed.
**********************************/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
p_slot = cpqhp_find_slot(ctrl, hp_slot + (readb(ctrl->hpc_reg + SLOT_MASK) >> 4));
if (!p_slot)
return 0;
/* If the switch closed, must be a button
* If not in button mode, nevermind */
if (func->switch_save && (ctrl->push_button == 1)) {
temp_word = ctrl->ctrl_int_comp >> 16;
temp_byte = (temp_word >> hp_slot) & 0x01;
temp_byte |= (temp_word >> (hp_slot + 7)) & 0x02;
if (temp_byte != func->presence_save) {
/**************************************
* button Pressed (doesn't do anything)
**************************************/
dbg("hp_slot %d button pressed\n", hp_slot);
taskInfo->event_type = INT_BUTTON_PRESS;
} else {
/**********************************
* button Released - TAKE ACTION!!!!
**********************************/
dbg("hp_slot %d button released\n", hp_slot);
taskInfo->event_type = INT_BUTTON_RELEASE;
/* Cancel if we are still blinking */
if ((p_slot->state == BLINKINGON_STATE)
|| (p_slot->state == BLINKINGOFF_STATE)) {
taskInfo->event_type = INT_BUTTON_CANCEL;
dbg("hp_slot %d button cancel\n", hp_slot);
} else if ((p_slot->state == POWERON_STATE)
|| (p_slot->state == POWEROFF_STATE)) {
/* info(msg_button_ignore, p_slot->number); */
taskInfo->event_type = INT_BUTTON_IGNORE;
dbg("hp_slot %d button ignore\n", hp_slot);
}
}
} else {
/* Switch is open, assume a presence change
* Save the presence state */
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if ((!(ctrl->ctrl_int_comp & (0x010000 << hp_slot))) ||
(!(ctrl->ctrl_int_comp & (0x01000000 << hp_slot)))) {
/* Present */
taskInfo->event_type = INT_PRESENCE_ON;
} else {
/* Not Present */
taskInfo->event_type = INT_PRESENCE_OFF;
}
}
}
}
return rc;
}
static u8 handle_power_fault(u8 change, struct controller * ctrl)
{
int hp_slot;
u8 rc = 0;
struct pci_func *func;
struct event_info *taskInfo;
if (!change)
return 0;
/**********************************
* power fault
**********************************/
info("power fault interrupt\n");
for (hp_slot = 0; hp_slot < 6; hp_slot++) {
if (change & (0x01 << hp_slot)) {
/**********************************
* this one changed.
**********************************/
func = cpqhp_slot_find(ctrl->bus,
(hp_slot + ctrl->slot_device_offset), 0);
taskInfo = &(ctrl->event_queue[ctrl->next_event]);
ctrl->next_event = (ctrl->next_event + 1) % 10;
taskInfo->hp_slot = hp_slot;
rc++;
if (ctrl->ctrl_int_comp & (0x00000100 << hp_slot)) {
/**********************************
* power fault Cleared
**********************************/
func->status = 0x00;
taskInfo->event_type = INT_POWER_FAULT_CLEAR;
} else {
/**********************************
* power fault
**********************************/
taskInfo->event_type = INT_POWER_FAULT;
if (ctrl->rev < 4) {
amber_LED_on (ctrl, hp_slot);
green_LED_off (ctrl, hp_slot);
set_SOGO (ctrl);
/* this is a fatal condition, we want
* to crash the machine to protect from
* data corruption. simulated_NMI
* shouldn't ever return */
/* FIXME
simulated_NMI(hp_slot, ctrl); */
/* The following code causes a software
* crash just in case simulated_NMI did
* return */
/*FIXME
panic(msg_power_fault); */
} else {
/* set power fault status for this board */
func->status = 0xFF;
info("power fault bit %x set\n", hp_slot);
}
}
}
}
return rc;
}
/**
* sort_by_size: sort nodes on the list by their length, smallest first.
* @head: list to sort
*
*/
static int sort_by_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length > (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length > current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/**
* sort_by_max_size: sort nodes on the list by their length, largest first.
* @head: list to sort
*
*/
static int sort_by_max_size(struct pci_resource **head)
{
struct pci_resource *current_res;
struct pci_resource *next_res;
int out_of_order = 1;
if (!(*head))
return 1;
if (!((*head)->next))
return 0;
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->length < (*head)->next->length)) {
out_of_order++;
current_res = *head;
*head = (*head)->next;
current_res->next = (*head)->next;
(*head)->next = current_res;
}
current_res = *head;
while (current_res->next && current_res->next->next) {
if (current_res->next->length < current_res->next->next->length) {
out_of_order++;
next_res = current_res->next;
current_res->next = current_res->next->next;
current_res = current_res->next;
next_res->next = current_res->next;
current_res->next = next_res;
} else
current_res = current_res->next;
}
} /* End of out_of_order loop */
return 0;
}
/**
* do_pre_bridge_resource_split: find node of resources that are unused
*
*/
static struct pci_resource *do_pre_bridge_resource_split(struct pci_resource **head,
struct pci_resource **orig_head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
struct pci_resource *split_node;
u32 rc;
u32 temp_dword;
dbg("do_pre_bridge_resource_split\n");
if (!(*head) || !(*orig_head))
return NULL;
rc = cpqhp_resource_sort_and_combine(head);
if (rc)
return NULL;
if ((*head)->base != (*orig_head)->base)
return NULL;
if ((*head)->length == (*orig_head)->length)
return NULL;
/* If we got here, there the bridge requires some of the resource, but
* we may be able to split some off of the front */
node = *head;
if (node->length & (alignment -1)) {
/* this one isn't an aligned length, so we'll make a new entry
* and split it up. */
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = (node->length | (alignment-1)) + 1 - alignment;
split_node->base = node->base;
split_node->length = temp_dword;
node->length -= temp_dword;
node->base += split_node->length;
/* Put it in the list */
*head = split_node;
split_node->next = node;
}
if (node->length < alignment)
return NULL;
/* Now unlink it */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
return node;
}
/**
* do_bridge_resource_split: find one node of resources that aren't in use
*
*/
static struct pci_resource *do_bridge_resource_split(struct pci_resource **head, u32 alignment)
{
struct pci_resource *prevnode = NULL;
struct pci_resource *node;
u32 rc;
u32 temp_dword;
rc = cpqhp_resource_sort_and_combine(head);
if (rc)
return NULL;
node = *head;
while (node->next) {
prevnode = node;
node = node->next;
kfree(prevnode);
}
if (node->length < alignment)
goto error;
if (node->base & (alignment - 1)) {
/* Short circuit if adjusted size is too small */
temp_dword = (node->base | (alignment-1)) + 1;
if ((node->length - (temp_dword - node->base)) < alignment)
goto error;
node->length -= (temp_dword - node->base);
node->base = temp_dword;
}
if (node->length & (alignment - 1))
/* There's stuff in use after this node */
goto error;
return node;
error:
kfree(node);
return NULL;
}
/**
* get_io_resource: find first node of given size not in ISA aliasing window.
* @head: list to search
* @size: size of node to find, must be a power of two.
*
* Description: this function sorts the resource list by size and then returns
* returns the first node of "size" length that is not in the ISA aliasing
* window. If it finds a node larger than "size" it will split it up.
*
*/
static struct pci_resource *get_io_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node;
u32 temp_dword;
if (!(*head))
return NULL;
if ( cpqhp_resource_sort_and_combine(head) )
return NULL;
if ( sort_by_size(head) )
return NULL;
for (node = *head; node; node = node->next) {
if (node->length < size)
continue;
if (node->base & (size - 1)) {
/* this one isn't base aligned properly
* so we'll make a new entry and split it up */
temp_dword = (node->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
/* this one is longer than we need
* so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
/* For IO make sure it's not in the ISA aliasing space */
if (node->base & 0x300L)
continue;
/* If we got here, then it is the right size
* Now take it out of the list and break */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
break;
}
return node;
}
/**
* get_max_resource: get largest node which has at least the given size.
* @head: the list to search the node in
* @size: the minimum size of the node to find
*
* Description: Gets the largest node that is at least "size" big from the
* list pointed to by head. It aligns the node on top and bottom
* to "size" alignment before returning it.
*/
static struct pci_resource *get_max_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *max;
struct pci_resource *temp;
struct pci_resource *split_node;
u32 temp_dword;
if (cpqhp_resource_sort_and_combine(head))
return NULL;
if (sort_by_max_size(head))
return NULL;
for (max = *head; max; max = max->next) {
/* If not big enough we could probably just bail,
* instead we'll continue to the next. */
if (max->length < size)
continue;
if (max->base & (size - 1)) {
/* this one isn't base aligned properly
* so we'll make a new entry and split it up */
temp_dword = (max->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((max->length - (temp_dword - max->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = max->base;
split_node->length = temp_dword - max->base;
max->base = temp_dword;
max->length -= split_node->length;
split_node->next = max->next;
max->next = split_node;
}
if ((max->base + max->length) & (size - 1)) {
/* this one isn't end aligned properly at the top
* so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
temp_dword = ((max->base + max->length) & ~(size - 1));
split_node->base = temp_dword;
split_node->length = max->length + max->base
- split_node->base;
max->length -= split_node->length;
split_node->next = max->next;
max->next = split_node;
}
/* Make sure it didn't shrink too much when we aligned it */
if (max->length < size)
continue;
/* Now take it out of the list */
temp = *head;
if (temp == max) {
*head = max->next;
} else {
while (temp && temp->next != max) {
temp = temp->next;
}
temp->next = max->next;
}
max->next = NULL;
break;
}
return max;
}
/**
* get_resource: find resource of given size and split up larger ones.
* @head: the list to search for resources
* @size: the size limit to use
*
* Description: This function sorts the resource list by size and then
* returns the first node of "size" length. If it finds a node
* larger than "size" it will split it up.
*
* size must be a power of two.
*/
static struct pci_resource *get_resource(struct pci_resource **head, u32 size)
{
struct pci_resource *prevnode;
struct pci_resource *node;
struct pci_resource *split_node;
u32 temp_dword;
if (cpqhp_resource_sort_and_combine(head))
return NULL;
if (sort_by_size(head))
return NULL;
for (node = *head; node; node = node->next) {
dbg("%s: req_size =%x node=%p, base=%x, length=%x\n",
__FUNCTION__, size, node, node->base, node->length);
if (node->length < size)
continue;
if (node->base & (size - 1)) {
dbg("%s: not aligned\n", __FUNCTION__);
/* this one isn't base aligned properly
* so we'll make a new entry and split it up */
temp_dword = (node->base | (size-1)) + 1;
/* Short circuit if adjusted size is too small */
if ((node->length - (temp_dword - node->base)) < size)
continue;
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base;
split_node->length = temp_dword - node->base;
node->base = temp_dword;
node->length -= split_node->length;
split_node->next = node->next;
node->next = split_node;
} /* End of non-aligned base */
/* Don't need to check if too small since we already did */
if (node->length > size) {
dbg("%s: too big\n", __FUNCTION__);
/* this one is longer than we need
* so we'll make a new entry and split it up */
split_node = kmalloc(sizeof(*split_node), GFP_KERNEL);
if (!split_node)
return NULL;
split_node->base = node->base + size;
split_node->length = node->length - size;
node->length = size;
/* Put it in the list */
split_node->next = node->next;
node->next = split_node;
} /* End of too big on top end */
dbg("%s: got one!!!\n", __FUNCTION__);
/* If we got here, then it is the right size
* Now take it out of the list */
if (*head == node) {
*head = node->next;
} else {
prevnode = *head;
while (prevnode->next != node)
prevnode = prevnode->next;
prevnode->next = node->next;
}
node->next = NULL;
break;
}
return node;
}
/**
* cpqhp_resource_sort_and_combine: sort nodes by base addresses and clean up.
* @head: the list to sort and clean up
*
* Description: Sorts all of the nodes in the list in ascending order by
* their base addresses. Also does garbage collection by
* combining adjacent nodes.
*
* returns 0 if success
*/
int cpqhp_resource_sort_and_combine(struct pci_resource **head)
{
struct pci_resource *node1;
struct pci_resource *node2;
int out_of_order = 1;
dbg("%s: head = %p, *head = %p\n", __FUNCTION__, head, *head);
if (!(*head))
return 1;
dbg("*head->next = %p\n",(*head)->next);
if (!(*head)->next)
return 0; /* only one item on the list, already sorted! */
dbg("*head->base = 0x%x\n",(*head)->base);
dbg("*head->next->base = 0x%x\n",(*head)->next->base);
while (out_of_order) {
out_of_order = 0;
/* Special case for swapping list head */
if (((*head)->next) &&
((*head)->base > (*head)->next->base)) {
node1 = *head;
(*head) = (*head)->next;
node1->next = (*head)->next;
(*head)->next = node1;
out_of_order++;
}
node1 = (*head);
while (node1->next && node1->next->next) {
if (node1->next->base > node1->next->next->base) {
out_of_order++;
node2 = node1->next;
node1->next = node1->next->next;
node1 = node1->next;
node2->next = node1->next;
node1->next = node2;
} else
node1 = node1->next;
}
} /* End of out_of_order loop */
node1 = *head;
while (node1 && node1->next) {
if ((node1->base + node1->length) == node1->next->base) {
/* Combine */
dbg("8..\n");
node1->length += node1->next->length;
node2 = node1->next;
node1->next = node1->next->next;
kfree(node2);
} else
node1 = node1->next;
}
return 0;
}
irqreturn_t cpqhp_ctrl_intr(int IRQ, void *data)
{
struct controller *ctrl = data;
u8 schedule_flag = 0;
u8 reset;
u16 misc;
u32 Diff;
u32 temp_dword;
misc = readw(ctrl->hpc_reg + MISC);
/***************************************
* Check to see if it was our interrupt
***************************************/
if (!(misc & 0x000C)) {
return IRQ_NONE;
}
if (misc & 0x0004) {
/**********************************
* Serial Output interrupt Pending
**********************************/
/* Clear the interrupt */
misc |= 0x0004;
writew(misc, ctrl->hpc_reg + MISC);
/* Read to clear posted writes */
misc = readw(ctrl->hpc_reg + MISC);
dbg ("%s - waking up\n", __FUNCTION__);
wake_up_interruptible(&ctrl->queue);
}
if (misc & 0x0008) {
/* General-interrupt-input interrupt Pending */
Diff = readl(ctrl->hpc_reg + INT_INPUT_CLEAR) ^ ctrl->ctrl_int_comp;
ctrl->ctrl_int_comp = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
/* Clear the interrupt */
writel(Diff, ctrl->hpc_reg + INT_INPUT_CLEAR);
/* Read it back to clear any posted writes */
temp_dword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
if (!Diff)
/* Clear all interrupts */
writel(0xFFFFFFFF, ctrl->hpc_reg + INT_INPUT_CLEAR);
schedule_flag += handle_switch_change((u8)(Diff & 0xFFL), ctrl);
schedule_flag += handle_presence_change((u16)((Diff & 0xFFFF0000L) >> 16), ctrl);
schedule_flag += handle_power_fault((u8)((Diff & 0xFF00L) >> 8), ctrl);
}
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
if (reset & 0x40) {
/* Bus reset has completed */
reset &= 0xCF;
writeb(reset, ctrl->hpc_reg + RESET_FREQ_MODE);
reset = readb(ctrl->hpc_reg + RESET_FREQ_MODE);
wake_up_interruptible(&ctrl->queue);
}
if (schedule_flag) {
up(&event_semaphore);
dbg("Signal event_semaphore\n");
}
return IRQ_HANDLED;
}
/**
* cpqhp_slot_create - Creates a node and adds it to the proper bus.
* @busnumber - bus where new node is to be located
*
* Returns pointer to the new node or NULL if unsuccessful
*/
struct pci_func *cpqhp_slot_create(u8 busnumber)
{
struct pci_func *new_slot;
struct pci_func *next;
new_slot = kmalloc(sizeof(*new_slot), GFP_KERNEL);
if (new_slot == NULL) {
/* I'm not dead yet!
* You will be. */
return new_slot;
}
memset(new_slot, 0, sizeof(struct pci_func));
new_slot->next = NULL;
new_slot->configured = 1;
if (cpqhp_slot_list[busnumber] == NULL) {
cpqhp_slot_list[busnumber] = new_slot;
} else {
next = cpqhp_slot_list[busnumber];
while (next->next != NULL)
next = next->next;
next->next = new_slot;
}
return new_slot;
}
/**
* slot_remove - Removes a node from the linked list of slots.
* @old_slot: slot to remove
*
* Returns 0 if successful, !0 otherwise.
*/
static int slot_remove(struct pci_func * old_slot)
{
struct pci_func *next;
if (old_slot == NULL)
return 1;
next = cpqhp_slot_list[old_slot->bus];
if (next == NULL) {
return 1;
}
if (next == old_slot) {
cpqhp_slot_list[old_slot->bus] = old_slot->next;
cpqhp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
}
while ((next->next != old_slot) && (next->next != NULL)) {
next = next->next;
}
if (next->next == old_slot) {
next->next = old_slot->next;
cpqhp_destroy_board_resources(old_slot);
kfree(old_slot);
return 0;
} else
return 2;
}
/**
* bridge_slot_remove - Removes a node from the linked list of slots.
* @bridge: bridge to remove
*
* Returns 0 if successful, !0 otherwise.
*/
static int bridge_slot_remove(struct pci_func *bridge)
{
u8 subordinateBus, secondaryBus;
u8 tempBus;
struct pci_func *next;
secondaryBus = (bridge->config_space[0x06] >> 8) & 0xFF;
subordinateBus = (bridge->config_space[0x06] >> 16) & 0xFF;
for (tempBus = secondaryBus; tempBus <= subordinateBus; tempBus++) {
next = cpqhp_slot_list[tempBus];
while (!slot_remove(next)) {
next = cpqhp_slot_list[tempBus];
}
}
next = cpqhp_slot_list[bridge->bus];
if (next == NULL)
return 1;
if (next == bridge) {
cpqhp_slot_list[bridge->bus] = bridge->next;
goto out;
}
while ((next->next != bridge) && (next->next != NULL))
next = next->next;
if (next->next != bridge)
return 2;
next->next = bridge->next;
out:
kfree(bridge);
return 0;
}
/**
* cpqhp_slot_find - Looks for a node by bus, and device, multiple functions accessed
* @bus: bus to find
* @device: device to find
* @index: is 0 for first function found, 1 for the second...
*
* Returns pointer to the node if successful, %NULL otherwise.
*/
struct pci_func *cpqhp_slot_find(u8 bus, u8 device, u8 index)
{
int found = -1;
struct pci_func *func;
func = cpqhp_slot_list[bus];
if ((func == NULL) || ((func->device == device) && (index == 0)))
return func;
if (func->device == device)
found++;
while (func->next != NULL) {
func = func->next;
if (func->device == device)
found++;
if (found == index)
return func;
}
return NULL;
}
/* DJZ: I don't think is_bridge will work as is.
* FIXME */
static int is_bridge(struct pci_func * func)
{
/* Check the header type */
if (((func->config_space[0x03] >> 16) & 0xFF) == 0x01)
return 1;
else
return 0;
}
/**
* set_controller_speed - set the frequency and/or mode of a specific
* controller segment.
*
* @ctrl: controller to change frequency/mode for.
* @adapter_speed: the speed of the adapter we want to match.
* @hp_slot: the slot number where the adapter is installed.
*
* Returns 0 if we successfully change frequency and/or mode to match the
* adapter speed.
*
*/
static u8 set_controller_speed(struct controller *ctrl, u8 adapter_speed, u8 hp_slot)
{
struct slot *slot;
u8 reg;
u8 slot_power = readb(ctrl->hpc_reg + SLOT_POWER);
u16 reg16;
u32 leds = readl(ctrl->hpc_reg + LED_CONTROL);
if (ctrl->speed == adapter_speed)
return 0;
/* We don't allow freq/mode changes if we find another adapter running
* in another slot on this controller */
for(slot = ctrl->slot; slot; slot = slot->next) {
if (slot->device == (hp_slot + ctrl->slot_device_offset))
continue;
if (!slot->hotplug_slot && !slot->hotplug_slot->info)
continue;
if (slot->hotplug_slot->info->adapter_status == 0)
continue;
/* If another adapter is running on the same segment but at a
* lower speed/mode, we allow the new adapter to function at
* this rate if supported */
if (ctrl->speed < adapter_speed)
return 0;
return 1;
}
/* If the controller doesn't support freq/mode changes and the
* controller is running at a higher mode, we bail */
if ((ctrl->speed > adapter_speed) && (!ctrl->pcix_speed_capability))
return 1;
/* But we allow the adapter to run at a lower rate if possible */
if ((ctrl->speed < adapter_speed) && (!ctrl->pcix_speed_capability))
return 0;
/* We try to set the max speed supported by both the adapter and
* controller */
if (ctrl->speed_capability < adapter_speed) {
if (ctrl->speed == ctrl->speed_capability)
return 0;
adapter_speed = ctrl->speed_capability;
}
writel(0x0L, ctrl->hpc_reg + LED_CONTROL);
writeb(0x00, ctrl->hpc_reg + SLOT_ENABLE);
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
if (adapter_speed != PCI_SPEED_133MHz_PCIX)
reg = 0xF5;
else
reg = 0xF4;
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
reg16 = readw(ctrl->hpc_reg + NEXT_CURR_FREQ);
reg16 &= ~0x000F;
switch(adapter_speed) {
case(PCI_SPEED_133MHz_PCIX):
reg = 0x75;
reg16 |= 0xB;
break;
case(PCI_SPEED_100MHz_PCIX):
reg = 0x74;
reg16 |= 0xA;
break;
case(PCI_SPEED_66MHz_PCIX):
reg = 0x73;
reg16 |= 0x9;
break;
case(PCI_SPEED_66MHz):
reg = 0x73;
reg16 |= 0x1;
break;
default: /* 33MHz PCI 2.2 */
reg = 0x71;
break;
}
reg16 |= 0xB << 12;
writew(reg16, ctrl->hpc_reg + NEXT_CURR_FREQ);
mdelay(5);
/* Reenable interrupts */
writel(0, ctrl->hpc_reg + INT_MASK);
pci_write_config_byte(ctrl->pci_dev, 0x41, reg);
/* Restart state machine */
reg = ~0xF;
pci_read_config_byte(ctrl->pci_dev, 0x43, &reg);
pci_write_config_byte(ctrl->pci_dev, 0x43, reg);
/* Only if mode change...*/
if (((ctrl->speed == PCI_SPEED_66MHz) && (adapter_speed == PCI_SPEED_66MHz_PCIX)) ||
((ctrl->speed == PCI_SPEED_66MHz_PCIX) && (adapter_speed == PCI_SPEED_66MHz)))
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
mdelay(1100);
/* Restore LED/Slot state */
writel(leds, ctrl->hpc_reg + LED_CONTROL);
writeb(slot_power, ctrl->hpc_reg + SLOT_ENABLE);
set_SOGO(ctrl);
wait_for_ctrl_irq(ctrl);
ctrl->speed = adapter_speed;
slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
info("Successfully changed frequency/mode for adapter in slot %d\n",
slot->number);
return 0;
}
/* the following routines constitute the bulk of the
hotplug controller logic
*/
/**
* board_replaced - Called after a board has been replaced in the system.
*
* This is only used if we don't have resources for hot add
* Turns power on for the board
* Checks to see if board is the same
* If board is same, reconfigures it
* If board isn't same, turns it back off.
*
*/
static u32 board_replaced(struct pci_func *func, struct controller *ctrl)
{
u8 hp_slot;
u8 temp_byte;
u8 adapter_speed;
u32 rc = 0;
hp_slot = func->device - ctrl->slot_device_offset;
if (readl(ctrl->hpc_reg + INT_INPUT_CLEAR) & (0x01L << hp_slot)) {
/**********************************
* The switch is open.
**********************************/
rc = INTERLOCK_OPEN;
} else if (is_slot_enabled (ctrl, hp_slot)) {
/**********************************
* The board is already on
**********************************/
rc = CARD_FUNCTIONING;
} else {
mutex_lock(&ctrl->crit_sect);
/* turn on board without attaching to the bus */
enable_slot_power (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
/* Change bits in slot power register to force another shift out
* NOTE: this is to work around the timer bug */
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
adapter_speed = get_adapter_speed(ctrl, hp_slot);
if (ctrl->speed != adapter_speed)
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
rc = WRONG_BUS_FREQUENCY;
/* turn off board without attaching to the bus */
disable_slot_power (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
mutex_lock(&ctrl->crit_sect);
slot_enable (ctrl, hp_slot);
green_LED_blink (ctrl, hp_slot);
amber_LED_off (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
/* Wait for ~1 second because of hot plug spec */
long_delay(1*HZ);
/* Check for a power fault */
if (func->status == 0xFF) {
/* power fault occurred, but it was benign */
rc = POWER_FAILURE;
func->status = 0;
} else
rc = cpqhp_valid_replace(ctrl, func);
if (!rc) {
/* It must be the same board */
rc = cpqhp_configure_board(ctrl, func);
/* If configuration fails, turn it off
* Get slot won't work for devices behind
* bridges, but in this case it will always be
* called for the "base" bus/dev/func of an
* adapter. */
mutex_lock(&ctrl->crit_sect);
amber_LED_on (ctrl, hp_slot);
green_LED_off (ctrl, hp_slot);
slot_disable (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
else
return 1;
} else {
/* Something is wrong
* Get slot won't work for devices behind bridges, but
* in this case it will always be called for the "base"
* bus/dev/func of an adapter. */
mutex_lock(&ctrl->crit_sect);
amber_LED_on (ctrl, hp_slot);
green_LED_off (ctrl, hp_slot);
slot_disable (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
}
}
return rc;
}
/**
* board_added - Called after a board has been added to the system.
*
* Turns power on for the board
* Configures board
*
*/
static u32 board_added(struct pci_func *func, struct controller *ctrl)
{
u8 hp_slot;
u8 temp_byte;
u8 adapter_speed;
int index;
u32 temp_register = 0xFFFFFFFF;
u32 rc = 0;
struct pci_func *new_slot = NULL;
struct slot *p_slot;
struct resource_lists res_lists;
hp_slot = func->device - ctrl->slot_device_offset;
dbg("%s: func->device, slot_offset, hp_slot = %d, %d ,%d\n",
__FUNCTION__, func->device, ctrl->slot_device_offset, hp_slot);
mutex_lock(&ctrl->crit_sect);
/* turn on board without attaching to the bus */
enable_slot_power(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
/* Change bits in slot power register to force another shift out
* NOTE: this is to work around the timer bug */
temp_byte = readb(ctrl->hpc_reg + SLOT_POWER);
writeb(0x00, ctrl->hpc_reg + SLOT_POWER);
writeb(temp_byte, ctrl->hpc_reg + SLOT_POWER);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
adapter_speed = get_adapter_speed(ctrl, hp_slot);
if (ctrl->speed != adapter_speed)
if (set_controller_speed(ctrl, adapter_speed, hp_slot))
rc = WRONG_BUS_FREQUENCY;
/* turn off board without attaching to the bus */
disable_slot_power (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq(ctrl);
mutex_unlock(&ctrl->crit_sect);
if (rc)
return rc;
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
/* turn on board and blink green LED */
dbg("%s: before down\n", __FUNCTION__);
mutex_lock(&ctrl->crit_sect);
dbg("%s: after down\n", __FUNCTION__);
dbg("%s: before slot_enable\n", __FUNCTION__);
slot_enable (ctrl, hp_slot);
dbg("%s: before green_LED_blink\n", __FUNCTION__);
green_LED_blink (ctrl, hp_slot);
dbg("%s: before amber_LED_blink\n", __FUNCTION__);
amber_LED_off (ctrl, hp_slot);
dbg("%s: before set_SOGO\n", __FUNCTION__);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
dbg("%s: before wait_for_ctrl_irq\n", __FUNCTION__);
wait_for_ctrl_irq (ctrl);
dbg("%s: after wait_for_ctrl_irq\n", __FUNCTION__);
dbg("%s: before up\n", __FUNCTION__);
mutex_unlock(&ctrl->crit_sect);
dbg("%s: after up\n", __FUNCTION__);
/* Wait for ~1 second because of hot plug spec */
dbg("%s: before long_delay\n", __FUNCTION__);
long_delay(1*HZ);
dbg("%s: after long_delay\n", __FUNCTION__);
dbg("%s: func status = %x\n", __FUNCTION__, func->status);
/* Check for a power fault */
if (func->status == 0xFF) {
/* power fault occurred, but it was benign */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by power fault\n", __FUNCTION__, temp_register);
rc = POWER_FAILURE;
func->status = 0;
} else {
/* Get vendor/device ID u32 */
ctrl->pci_bus->number = func->bus;
rc = pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), PCI_VENDOR_ID, &temp_register);
dbg("%s: pci_read_config_dword returns %d\n", __FUNCTION__, rc);
dbg("%s: temp_register is %x\n", __FUNCTION__, temp_register);
if (rc != 0) {
/* Something's wrong here */
temp_register = 0xFFFFFFFF;
dbg("%s: temp register set to %x by error\n", __FUNCTION__, temp_register);
}
/* Preset return code. It will be changed later if things go okay. */
rc = NO_ADAPTER_PRESENT;
}
/* All F's is an empty slot or an invalid board */
if (temp_register != 0xFFFFFFFF) { /* Check for a board in the slot */
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
res_lists.irqs = NULL;
rc = configure_new_device(ctrl, func, 0, &res_lists);
dbg("%s: back from configure_new_device\n", __FUNCTION__);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
if (rc) {
mutex_lock(&ctrl->crit_sect);
amber_LED_on (ctrl, hp_slot);
green_LED_off (ctrl, hp_slot);
slot_disable (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
return rc;
} else {
cpqhp_save_slot_config(ctrl, func);
}
func->status = 0;
func->switch_save = 0x10;
func->is_a_board = 0x01;
/* next, we will instantiate the linux pci_dev structures (with
* appropriate driver notification, if already present) */
dbg("%s: configure linux pci_dev structure\n", __FUNCTION__);
index = 0;
do {
new_slot = cpqhp_slot_find(ctrl->bus, func->device, index++);
if (new_slot && !new_slot->pci_dev) {
cpqhp_configure_device(ctrl, new_slot);
}
} while (new_slot);
mutex_lock(&ctrl->crit_sect);
green_LED_on (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
} else {
mutex_lock(&ctrl->crit_sect);
amber_LED_on (ctrl, hp_slot);
green_LED_off (ctrl, hp_slot);
slot_disable (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
return rc;
}
return 0;
}
/**
* remove_board - Turns off slot and LED's
*
*/
static u32 remove_board(struct pci_func * func, u32 replace_flag, struct controller * ctrl)
{
int index;
u8 skip = 0;
u8 device;
u8 hp_slot;
u8 temp_byte;
u32 rc;
struct resource_lists res_lists;
struct pci_func *temp_func;
if (cpqhp_unconfigure_device(func))
return 1;
device = func->device;
hp_slot = func->device - ctrl->slot_device_offset;
dbg("In %s, hp_slot = %d\n", __FUNCTION__, hp_slot);
/* When we get here, it is safe to change base address registers.
* We will attempt to save the base address register lengths */
if (replace_flag || !ctrl->add_support)
rc = cpqhp_save_base_addr_length(ctrl, func);
else if (!func->bus_head && !func->mem_head &&
!func->p_mem_head && !func->io_head) {
/* Here we check to see if we've saved any of the board's
* resources already. If so, we'll skip the attempt to
* determine what's being used. */
index = 0;
temp_func = cpqhp_slot_find(func->bus, func->device, index++);
while (temp_func) {
if (temp_func->bus_head || temp_func->mem_head
|| temp_func->p_mem_head || temp_func->io_head) {
skip = 1;
break;
}
temp_func = cpqhp_slot_find(temp_func->bus, temp_func->device, index++);
}
if (!skip)
rc = cpqhp_save_used_resources(ctrl, func);
}
/* Change status to shutdown */
if (func->is_a_board)
func->status = 0x01;
func->configured = 0;
mutex_lock(&ctrl->crit_sect);
green_LED_off (ctrl, hp_slot);
slot_disable (ctrl, hp_slot);
set_SOGO(ctrl);
/* turn off SERR for slot */
temp_byte = readb(ctrl->hpc_reg + SLOT_SERR);
temp_byte &= ~(0x01 << hp_slot);
writeb(temp_byte, ctrl->hpc_reg + SLOT_SERR);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
if (!replace_flag && ctrl->add_support) {
while (func) {
res_lists.io_head = ctrl->io_head;
res_lists.mem_head = ctrl->mem_head;
res_lists.p_mem_head = ctrl->p_mem_head;
res_lists.bus_head = ctrl->bus_head;
cpqhp_return_board_resources(func, &res_lists);
ctrl->io_head = res_lists.io_head;
ctrl->mem_head = res_lists.mem_head;
ctrl->p_mem_head = res_lists.p_mem_head;
ctrl->bus_head = res_lists.bus_head;
cpqhp_resource_sort_and_combine(&(ctrl->mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->p_mem_head));
cpqhp_resource_sort_and_combine(&(ctrl->io_head));
cpqhp_resource_sort_and_combine(&(ctrl->bus_head));
if (is_bridge(func)) {
bridge_slot_remove(func);
} else
slot_remove(func);
func = cpqhp_slot_find(ctrl->bus, device, 0);
}
/* Setup slot structure with entry for empty slot */
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->switch_save = 0x10;
func->is_a_board = 0;
func->p_task_event = NULL;
}
return 0;
}
static void pushbutton_helper_thread(unsigned long data)
{
pushbutton_pending = data;
up(&event_semaphore);
}
/* this is the main worker thread */
static int event_thread(void* data)
{
struct controller *ctrl;
lock_kernel();
daemonize("phpd_event");
unlock_kernel();
while (1) {
dbg("!!!!event_thread sleeping\n");
down_interruptible (&event_semaphore);
dbg("event_thread woken finished = %d\n", event_finished);
if (event_finished) break;
/* Do stuff here */
if (pushbutton_pending)
cpqhp_pushbutton_thread(pushbutton_pending);
else
for (ctrl = cpqhp_ctrl_list; ctrl; ctrl=ctrl->next)
interrupt_event_handler(ctrl);
}
dbg("event_thread signals exit\n");
up(&event_exit);
return 0;
}
int cpqhp_event_start_thread(void)
{
int pid;
/* initialize our semaphores */
init_MUTEX(&delay_sem);
init_MUTEX_LOCKED(&event_semaphore);
init_MUTEX_LOCKED(&event_exit);
event_finished=0;
pid = kernel_thread(event_thread, NULL, 0);
if (pid < 0) {
err ("Can't start up our event thread\n");
return -1;
}
dbg("Our event thread pid = %d\n", pid);
return 0;
}
void cpqhp_event_stop_thread(void)
{
event_finished = 1;
dbg("event_thread finish command given\n");
up(&event_semaphore);
dbg("wait for event_thread to exit\n");
down(&event_exit);
}
static int update_slot_info(struct controller *ctrl, struct slot *slot)
{
struct hotplug_slot_info *info;
int result;
info = kmalloc(sizeof(*info), GFP_KERNEL);
if (!info)
return -ENOMEM;
info->power_status = get_slot_enabled(ctrl, slot);
info->attention_status = cpq_get_attention_status(ctrl, slot);
info->latch_status = cpq_get_latch_status(ctrl, slot);
info->adapter_status = get_presence_status(ctrl, slot);
result = pci_hp_change_slot_info(slot->hotplug_slot, info);
kfree (info);
return result;
}
static void interrupt_event_handler(struct controller *ctrl)
{
int loop = 0;
int change = 1;
struct pci_func *func;
u8 hp_slot;
struct slot *p_slot;
while (change) {
change = 0;
for (loop = 0; loop < 10; loop++) {
/* dbg("loop %d\n", loop); */
if (ctrl->event_queue[loop].event_type != 0) {
hp_slot = ctrl->event_queue[loop].hp_slot;
func = cpqhp_slot_find(ctrl->bus, (hp_slot + ctrl->slot_device_offset), 0);
if (!func)
return;
p_slot = cpqhp_find_slot(ctrl, hp_slot + ctrl->slot_device_offset);
if (!p_slot)
return;
dbg("hp_slot %d, func %p, p_slot %p\n",
hp_slot, func, p_slot);
if (ctrl->event_queue[loop].event_type == INT_BUTTON_PRESS) {
dbg("button pressed\n");
} else if (ctrl->event_queue[loop].event_type ==
INT_BUTTON_CANCEL) {
dbg("button cancel\n");
del_timer(&p_slot->task_event);
mutex_lock(&ctrl->crit_sect);
if (p_slot->state == BLINKINGOFF_STATE) {
/* slot is on */
dbg("turn on green LED\n");
green_LED_on (ctrl, hp_slot);
} else if (p_slot->state == BLINKINGON_STATE) {
/* slot is off */
dbg("turn off green LED\n");
green_LED_off (ctrl, hp_slot);
}
info(msg_button_cancel, p_slot->number);
p_slot->state = STATIC_STATE;
amber_LED_off (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
}
/*** button Released (No action on press...) */
else if (ctrl->event_queue[loop].event_type == INT_BUTTON_RELEASE) {
dbg("button release\n");
if (is_slot_enabled (ctrl, hp_slot)) {
dbg("slot is on\n");
p_slot->state = BLINKINGOFF_STATE;
info(msg_button_off, p_slot->number);
} else {
dbg("slot is off\n");
p_slot->state = BLINKINGON_STATE;
info(msg_button_on, p_slot->number);
}
mutex_lock(&ctrl->crit_sect);
dbg("blink green LED and turn off amber\n");
amber_LED_off (ctrl, hp_slot);
green_LED_blink (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
mutex_unlock(&ctrl->crit_sect);
init_timer(&p_slot->task_event);
p_slot->hp_slot = hp_slot;
p_slot->ctrl = ctrl;
/* p_slot->physical_slot = physical_slot; */
p_slot->task_event.expires = jiffies + 5 * HZ; /* 5 second delay */
p_slot->task_event.function = pushbutton_helper_thread;
p_slot->task_event.data = (u32) p_slot;
dbg("add_timer p_slot = %p\n", p_slot);
add_timer(&p_slot->task_event);
}
/***********POWER FAULT */
else if (ctrl->event_queue[loop].event_type == INT_POWER_FAULT) {
dbg("power fault\n");
} else {
/* refresh notification */
if (p_slot)
update_slot_info(ctrl, p_slot);
}
ctrl->event_queue[loop].event_type = 0;
change = 1;
}
} /* End of FOR loop */
}
return;
}
/**
* cpqhp_pushbutton_thread
*
* Scheduled procedure to handle blocking stuff for the pushbuttons
* Handles all pending events and exits.
*
*/
void cpqhp_pushbutton_thread(unsigned long slot)
{
u8 hp_slot;
u8 device;
struct pci_func *func;
struct slot *p_slot = (struct slot *) slot;
struct controller *ctrl = (struct controller *) p_slot->ctrl;
pushbutton_pending = 0;
hp_slot = p_slot->hp_slot;
device = p_slot->device;
if (is_slot_enabled(ctrl, hp_slot)) {
p_slot->state = POWEROFF_STATE;
/* power Down board */
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
dbg("In power_down_board, func = %p, ctrl = %p\n", func, ctrl);
if (!func) {
dbg("Error! func NULL in %s\n", __FUNCTION__);
return ;
}
if (func != NULL && ctrl != NULL) {
if (cpqhp_process_SS(ctrl, func) != 0) {
amber_LED_on (ctrl, hp_slot);
green_LED_on (ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
}
}
p_slot->state = STATIC_STATE;
} else {
p_slot->state = POWERON_STATE;
/* slot is off */
func = cpqhp_slot_find(p_slot->bus, p_slot->device, 0);
dbg("In add_board, func = %p, ctrl = %p\n", func, ctrl);
if (!func) {
dbg("Error! func NULL in %s\n", __FUNCTION__);
return ;
}
if (func != NULL && ctrl != NULL) {
if (cpqhp_process_SI(ctrl, func) != 0) {
amber_LED_on(ctrl, hp_slot);
green_LED_off(ctrl, hp_slot);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
}
}
p_slot->state = STATIC_STATE;
}
return;
}
int cpqhp_process_SI(struct controller *ctrl, struct pci_func *func)
{
u8 device, hp_slot;
u16 temp_word;
u32 tempdword;
int rc;
struct slot* p_slot;
int physical_slot = 0;
tempdword = 0;
device = func->device;
hp_slot = device - ctrl->slot_device_offset;
p_slot = cpqhp_find_slot(ctrl, device);
if (p_slot)
physical_slot = p_slot->number;
/* Check to see if the interlock is closed */
tempdword = readl(ctrl->hpc_reg + INT_INPUT_CLEAR);
if (tempdword & (0x01 << hp_slot)) {
return 1;
}
if (func->is_a_board) {
rc = board_replaced(func, ctrl);
} else {
/* add board */
slot_remove(func);
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->is_a_board = 1;
/* We have to save the presence info for these slots */
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |= (temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
func->switch_save = 0;
} else {
func->switch_save = 0x10;
}
rc = board_added(func, ctrl);
if (rc) {
if (is_bridge(func)) {
bridge_slot_remove(func);
} else
slot_remove(func);
/* Setup slot structure with entry for empty slot */
func = cpqhp_slot_create(ctrl->bus);
if (func == NULL)
return 1;
func->bus = ctrl->bus;
func->device = device;
func->function = 0;
func->configured = 0;
func->is_a_board = 0;
/* We have to save the presence info for these slots */
temp_word = ctrl->ctrl_int_comp >> 16;
func->presence_save = (temp_word >> hp_slot) & 0x01;
func->presence_save |=
(temp_word >> (hp_slot + 7)) & 0x02;
if (ctrl->ctrl_int_comp & (0x1L << hp_slot)) {
func->switch_save = 0;
} else {
func->switch_save = 0x10;
}
}
}
if (rc) {
dbg("%s: rc = %d\n", __FUNCTION__, rc);
}
if (p_slot)
update_slot_info(ctrl, p_slot);
return rc;
}
int cpqhp_process_SS(struct controller *ctrl, struct pci_func *func)
{
u8 device, class_code, header_type, BCR;
u8 index = 0;
u8 replace_flag;
u32 rc = 0;
unsigned int devfn;
struct slot* p_slot;
struct pci_bus *pci_bus = ctrl->pci_bus;
int physical_slot=0;
device = func->device;
func = cpqhp_slot_find(ctrl->bus, device, index++);
p_slot = cpqhp_find_slot(ctrl, device);
if (p_slot) {
physical_slot = p_slot->number;
}
/* Make sure there are no video controllers here */
while (func && !rc) {
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check the Class Code */
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
if (rc)
return rc;
if (class_code == PCI_BASE_CLASS_DISPLAY) {
/* Display/Video adapter (not supported) */
rc = REMOVE_NOT_SUPPORTED;
} else {
/* See if it's a bridge */
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_HEADER_TYPE, &header_type);
if (rc)
return rc;
/* If it's a bridge, check the VGA Enable bit */
if ((header_type & 0x7F) == PCI_HEADER_TYPE_BRIDGE) {
rc = pci_bus_read_config_byte (pci_bus, devfn, PCI_BRIDGE_CONTROL, &BCR);
if (rc)
return rc;
/* If the VGA Enable bit is set, remove isn't
* supported */
if (BCR & PCI_BRIDGE_CTL_VGA) {
rc = REMOVE_NOT_SUPPORTED;
}
}
}
func = cpqhp_slot_find(ctrl->bus, device, index++);
}
func = cpqhp_slot_find(ctrl->bus, device, 0);
if ((func != NULL) && !rc) {
/* FIXME: Replace flag should be passed into process_SS */
replace_flag = !(ctrl->add_support);
rc = remove_board(func, replace_flag, ctrl);
} else if (!rc) {
rc = 1;
}
if (p_slot)
update_slot_info(ctrl, p_slot);
return rc;
}
/**
* switch_leds: switch the leds, go from one site to the other.
* @ctrl: controller to use
* @num_of_slots: number of slots to use
* @direction: 1 to start from the left side, 0 to start right.
*/
static void switch_leds(struct controller *ctrl, const int num_of_slots,
u32 *work_LED, const int direction)
{
int loop;
for (loop = 0; loop < num_of_slots; loop++) {
if (direction)
*work_LED = *work_LED >> 1;
else
*work_LED = *work_LED << 1;
writel(*work_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq(ctrl);
/* Get ready for next iteration */
long_delay((2*HZ)/10);
}
}
/**
* hardware_test - runs hardware tests
*
* For hot plug ctrl folks to play with.
* test_num is the number written to the "test" file in sysfs
*
*/
int cpqhp_hardware_test(struct controller *ctrl, int test_num)
{
u32 save_LED;
u32 work_LED;
int loop;
int num_of_slots;
num_of_slots = readb(ctrl->hpc_reg + SLOT_MASK) & 0x0f;
switch (test_num) {
case 1:
/* Do stuff here! */
/* Do that funky LED thing */
/* so we can restore them later */
save_LED = readl(ctrl->hpc_reg + LED_CONTROL);
work_LED = 0x01010101;
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x01010000;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x00000101;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
switch_leds(ctrl, num_of_slots, &work_LED, 0);
switch_leds(ctrl, num_of_slots, &work_LED, 1);
work_LED = 0x01010000;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
for (loop = 0; loop < num_of_slots; loop++) {
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq (ctrl);
/* Get ready for next iteration */
long_delay((3*HZ)/10);
work_LED = work_LED >> 16;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOGO interrupt */
wait_for_ctrl_irq (ctrl);
/* Get ready for next iteration */
long_delay((3*HZ)/10);
work_LED = work_LED << 16;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
work_LED = work_LED << 1;
writel(work_LED, ctrl->hpc_reg + LED_CONTROL);
}
/* put it back the way it was */
writel(save_LED, ctrl->hpc_reg + LED_CONTROL);
set_SOGO(ctrl);
/* Wait for SOBS to be unset */
wait_for_ctrl_irq (ctrl);
break;
case 2:
/* Do other stuff here! */
break;
case 3:
/* and more... */
break;
}
return 0;
}
/**
* configure_new_device - Configures the PCI header information of one board.
*
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Returns 0 if success
*
*/
static u32 configure_new_device(struct controller * ctrl, struct pci_func * func,
u8 behind_bridge, struct resource_lists * resources)
{
u8 temp_byte, function, max_functions, stop_it;
int rc;
u32 ID;
struct pci_func *new_slot;
int index;
new_slot = func;
dbg("%s\n", __FUNCTION__);
/* Check for Multi-function device */
ctrl->pci_bus->number = func->bus;
rc = pci_bus_read_config_byte (ctrl->pci_bus, PCI_DEVFN(func->device, func->function), 0x0E, &temp_byte);
if (rc) {
dbg("%s: rc = %d\n", __FUNCTION__, rc);
return rc;
}
if (temp_byte & 0x80) /* Multi-function device */
max_functions = 8;
else
max_functions = 1;
function = 0;
do {
rc = configure_new_function(ctrl, new_slot, behind_bridge, resources);
if (rc) {
dbg("configure_new_function failed %d\n",rc);
index = 0;
while (new_slot) {
new_slot = cpqhp_slot_find(new_slot->bus, new_slot->device, index++);
if (new_slot)
cpqhp_return_board_resources(new_slot, resources);
}
return rc;
}
function++;
stop_it = 0;
/* The following loop skips to the next present function
* and creates a board structure */
while ((function < max_functions) && (!stop_it)) {
pci_bus_read_config_dword (ctrl->pci_bus, PCI_DEVFN(func->device, function), 0x00, &ID);
if (ID == 0xFFFFFFFF) { /* There's nothing there. */
function++;
} else { /* There's something there */
/* Setup slot structure. */
new_slot = cpqhp_slot_create(func->bus);
if (new_slot == NULL)
return 1;
new_slot->bus = func->bus;
new_slot->device = func->device;
new_slot->function = function;
new_slot->is_a_board = 1;
new_slot->status = 0;
stop_it++;
}
}
} while (function < max_functions);
dbg("returning from configure_new_device\n");
return 0;
}
/*
Configuration logic that involves the hotplug data structures and
their bookkeeping
*/
/**
* configure_new_function - Configures the PCI header information of one device
*
* @ctrl: pointer to controller structure
* @func: pointer to function structure
* @behind_bridge: 1 if this is a recursive call, 0 if not
* @resources: pointer to set of resource lists
*
* Calls itself recursively for bridged devices.
* Returns 0 if success
*
*/
static int configure_new_function(struct controller *ctrl, struct pci_func *func,
u8 behind_bridge,
struct resource_lists *resources)
{
int cloop;
u8 IRQ = 0;
u8 temp_byte;
u8 device;
u8 class_code;
u16 command;
u16 temp_word;
u32 temp_dword;
u32 rc;
u32 temp_register;
u32 base;
u32 ID;
unsigned int devfn;
struct pci_resource *mem_node;
struct pci_resource *p_mem_node;
struct pci_resource *io_node;
struct pci_resource *bus_node;
struct pci_resource *hold_mem_node;
struct pci_resource *hold_p_mem_node;
struct pci_resource *hold_IO_node;
struct pci_resource *hold_bus_node;
struct irq_mapping irqs;
struct pci_func *new_slot;
struct pci_bus *pci_bus;
struct resource_lists temp_resources;
pci_bus = ctrl->pci_bus;
pci_bus->number = func->bus;
devfn = PCI_DEVFN(func->device, func->function);
/* Check for Bridge */
rc = pci_bus_read_config_byte(pci_bus, devfn, PCI_HEADER_TYPE, &temp_byte);
if (rc)
return rc;
if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_BRIDGE) { /* PCI-PCI Bridge */
/* set Primary bus */
dbg("set Primary bus = %d\n", func->bus);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_PRIMARY_BUS, func->bus);
if (rc)
return rc;
/* find range of busses to use */
dbg("find ranges of buses to use\n");
bus_node = get_max_resource(&(resources->bus_head), 1);
/* If we don't have any busses to allocate, we can't continue */
if (!bus_node)
return -ENOMEM;
/* set Secondary bus */
temp_byte = bus_node->base;
dbg("set Secondary bus = %d\n", bus_node->base);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SECONDARY_BUS, temp_byte);
if (rc)
return rc;
/* set subordinate bus */
temp_byte = bus_node->base + bus_node->length - 1;
dbg("set subordinate bus = %d\n", bus_node->base + bus_node->length - 1);
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (rc)
return rc;
/* set subordinate Latency Timer and base Latency Timer */
temp_byte = 0x40;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_SEC_LATENCY_TIMER, temp_byte);
if (rc)
return rc;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_LATENCY_TIMER, temp_byte);
if (rc)
return rc;
/* set Cache Line size */
temp_byte = 0x08;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_CACHE_LINE_SIZE, temp_byte);
if (rc)
return rc;
/* Setup the IO, memory, and prefetchable windows */
io_node = get_max_resource(&(resources->io_head), 0x1000);
if (!io_node)
return -ENOMEM;
mem_node = get_max_resource(&(resources->mem_head), 0x100000);
if (!mem_node)
return -ENOMEM;
p_mem_node = get_max_resource(&(resources->p_mem_head), 0x100000);
if (!p_mem_node)
return -ENOMEM;
dbg("Setup the IO, memory, and prefetchable windows\n");
dbg("io_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", io_node->base,
io_node->length, io_node->next);
dbg("mem_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", mem_node->base,
mem_node->length, mem_node->next);
dbg("p_mem_node\n");
dbg("(base, len, next) (%x, %x, %p)\n", p_mem_node->base,
p_mem_node->length, p_mem_node->next);
/* set up the IRQ info */
if (!resources->irqs) {
irqs.barber_pole = 0;
irqs.interrupt[0] = 0;
irqs.interrupt[1] = 0;
irqs.interrupt[2] = 0;
irqs.interrupt[3] = 0;
irqs.valid_INT = 0;
} else {
irqs.barber_pole = resources->irqs->barber_pole;
irqs.interrupt[0] = resources->irqs->interrupt[0];
irqs.interrupt[1] = resources->irqs->interrupt[1];
irqs.interrupt[2] = resources->irqs->interrupt[2];
irqs.interrupt[3] = resources->irqs->interrupt[3];
irqs.valid_INT = resources->irqs->valid_INT;
}
/* set up resource lists that are now aligned on top and bottom
* for anything behind the bridge. */
temp_resources.bus_head = bus_node;
temp_resources.io_head = io_node;
temp_resources.mem_head = mem_node;
temp_resources.p_mem_head = p_mem_node;
temp_resources.irqs = &irqs;
/* Make copies of the nodes we are going to pass down so that
* if there is a problem,we can just use these to free resources */
hold_bus_node = kmalloc(sizeof(*hold_bus_node), GFP_KERNEL);
hold_IO_node = kmalloc(sizeof(*hold_IO_node), GFP_KERNEL);
hold_mem_node = kmalloc(sizeof(*hold_mem_node), GFP_KERNEL);
hold_p_mem_node = kmalloc(sizeof(*hold_p_mem_node), GFP_KERNEL);
if (!hold_bus_node || !hold_IO_node || !hold_mem_node || !hold_p_mem_node) {
kfree(hold_bus_node);
kfree(hold_IO_node);
kfree(hold_mem_node);
kfree(hold_p_mem_node);
return 1;
}
memcpy(hold_bus_node, bus_node, sizeof(struct pci_resource));
bus_node->base += 1;
bus_node->length -= 1;
bus_node->next = NULL;
/* If we have IO resources copy them and fill in the bridge's
* IO range registers */
if (io_node) {
memcpy(hold_IO_node, io_node, sizeof(struct pci_resource));
io_node->next = NULL;
/* set IO base and Limit registers */
temp_byte = io_node->base >> 8;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_BASE, temp_byte);
temp_byte = (io_node->base + io_node->length - 1) >> 8;
rc = pci_bus_write_config_byte(pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
} else {
kfree(hold_IO_node);
hold_IO_node = NULL;
}
/* If we have memory resources copy them and fill in the
* bridge's memory range registers. Otherwise, fill in the
* range registers with values that disable them. */
if (mem_node) {
memcpy(hold_mem_node, mem_node, sizeof(struct pci_resource));
mem_node->next = NULL;
/* set Mem base and Limit registers */
temp_word = mem_node->base >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
temp_word = (mem_node->base + mem_node->length - 1) >> 16;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
} else {
temp_word = 0xFFFF;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
temp_word = 0x0000;
rc = pci_bus_write_config_word(pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
kfree(hold_mem_node);
hold_mem_node = NULL;
}
memcpy(hold_p_mem_node, p_mem_node, sizeof(struct pci_resource));
p_mem_node->next = NULL;
/* set Pre Mem base and Limit registers */
temp_word = p_mem_node->base >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
temp_word = (p_mem_node->base + p_mem_node->length - 1) >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
/* Adjust this to compensate for extra adjustment in first loop */
irqs.barber_pole--;
rc = 0;
/* Here we actually find the devices and configure them */
for (device = 0; (device <= 0x1F) && !rc; device++) {
irqs.barber_pole = (irqs.barber_pole + 1) & 0x03;
ID = 0xFFFFFFFF;
pci_bus->number = hold_bus_node->base;
pci_bus_read_config_dword (pci_bus, PCI_DEVFN(device, 0), 0x00, &ID);
pci_bus->number = func->bus;
if (ID != 0xFFFFFFFF) { /* device present */
/* Setup slot structure. */
new_slot = cpqhp_slot_create(hold_bus_node->base);
if (new_slot == NULL) {
rc = -ENOMEM;
continue;
}
new_slot->bus = hold_bus_node->base;
new_slot->device = device;
new_slot->function = 0;
new_slot->is_a_board = 1;
new_slot->status = 0;
rc = configure_new_device(ctrl, new_slot, 1, &temp_resources);
dbg("configure_new_device rc=0x%x\n",rc);
} /* End of IF (device in slot?) */
} /* End of FOR loop */
if (rc)
goto free_and_out;
/* save the interrupt routing information */
if (resources->irqs) {
resources->irqs->interrupt[0] = irqs.interrupt[0];
resources->irqs->interrupt[1] = irqs.interrupt[1];
resources->irqs->interrupt[2] = irqs.interrupt[2];
resources->irqs->interrupt[3] = irqs.interrupt[3];
resources->irqs->valid_INT = irqs.valid_INT;
} else if (!behind_bridge) {
/* We need to hook up the interrupts here */
for (cloop = 0; cloop < 4; cloop++) {
if (irqs.valid_INT & (0x01 << cloop)) {
rc = cpqhp_set_irq(func->bus, func->device,
0x0A + cloop, irqs.interrupt[cloop]);
if (rc)
goto free_and_out;
}
} /* end of for loop */
}
/* Return unused bus resources
* First use the temporary node to store information for
* the board */
if (hold_bus_node && bus_node && temp_resources.bus_head) {
hold_bus_node->length = bus_node->base - hold_bus_node->base;
hold_bus_node->next = func->bus_head;
func->bus_head = hold_bus_node;
temp_byte = temp_resources.bus_head->base - 1;
/* set subordinate bus */
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_SUBORDINATE_BUS, temp_byte);
if (temp_resources.bus_head->length == 0) {
kfree(temp_resources.bus_head);
temp_resources.bus_head = NULL;
} else {
return_resource(&(resources->bus_head), temp_resources.bus_head);
}
}
/* If we have IO space available and there is some left,
* return the unused portion */
if (hold_IO_node && temp_resources.io_head) {
io_node = do_pre_bridge_resource_split(&(temp_resources.io_head),
&hold_IO_node, 0x1000);
/* Check if we were able to split something off */
if (io_node) {
hold_IO_node->base = io_node->base + io_node->length;
temp_byte = (hold_IO_node->base) >> 8;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_BASE, temp_byte);
return_resource(&(resources->io_head), io_node);
}
io_node = do_bridge_resource_split(&(temp_resources.io_head), 0x1000);
/* Check if we were able to split something off */
if (io_node) {
/* First use the temporary node to store
* information for the board */
hold_IO_node->length = io_node->base - hold_IO_node->base;
/* If we used any, add it to the board's list */
if (hold_IO_node->length) {
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
temp_byte = (io_node->base - 1) >> 8;
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_IO_LIMIT, temp_byte);
return_resource(&(resources->io_head), io_node);
} else {
/* it doesn't need any IO */
temp_word = 0x0000;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_IO_LIMIT, temp_word);
return_resource(&(resources->io_head), io_node);
kfree(hold_IO_node);
}
} else {
/* it used most of the range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
} else if (hold_IO_node) {
/* it used the whole range */
hold_IO_node->next = func->io_head;
func->io_head = hold_IO_node;
}
/* If we have memory space available and there is some left,
* return the unused portion */
if (hold_mem_node && temp_resources.mem_head) {
mem_node = do_pre_bridge_resource_split(&(temp_resources. mem_head),
&hold_mem_node, 0x100000);
/* Check if we were able to split something off */
if (mem_node) {
hold_mem_node->base = mem_node->base + mem_node->length;
temp_word = (hold_mem_node->base) >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_BASE, temp_word);
return_resource(&(resources->mem_head), mem_node);
}
mem_node = do_bridge_resource_split(&(temp_resources.mem_head), 0x100000);
/* Check if we were able to split something off */
if (mem_node) {
/* First use the temporary node to store
* information for the board */
hold_mem_node->length = mem_node->base - hold_mem_node->base;
if (hold_mem_node->length) {
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
/* configure end address */
temp_word = (mem_node->base - 1) >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
/* Return unused resources to the pool */
return_resource(&(resources->mem_head), mem_node);
} else {
/* it doesn't need any Mem */
temp_word = 0x0000;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_MEMORY_LIMIT, temp_word);
return_resource(&(resources->mem_head), mem_node);
kfree(hold_mem_node);
}
} else {
/* it used most of the range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
} else if (hold_mem_node) {
/* it used the whole range */
hold_mem_node->next = func->mem_head;
func->mem_head = hold_mem_node;
}
/* If we have prefetchable memory space available and there
* is some left at the end, return the unused portion */
if (hold_p_mem_node && temp_resources.p_mem_head) {
p_mem_node = do_pre_bridge_resource_split(&(temp_resources.p_mem_head),
&hold_p_mem_node, 0x100000);
/* Check if we were able to split something off */
if (p_mem_node) {
hold_p_mem_node->base = p_mem_node->base + p_mem_node->length;
temp_word = (hold_p_mem_node->base) >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_BASE, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
}
p_mem_node = do_bridge_resource_split(&(temp_resources.p_mem_head), 0x100000);
/* Check if we were able to split something off */
if (p_mem_node) {
/* First use the temporary node to store
* information for the board */
hold_p_mem_node->length = p_mem_node->base - hold_p_mem_node->base;
/* If we used any, add it to the board's list */
if (hold_p_mem_node->length) {
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
temp_word = (p_mem_node->base - 1) >> 16;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
} else {
/* it doesn't need any PMem */
temp_word = 0x0000;
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_PREF_MEMORY_LIMIT, temp_word);
return_resource(&(resources->p_mem_head), p_mem_node);
kfree(hold_p_mem_node);
}
} else {
/* it used the most of the range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
} else if (hold_p_mem_node) {
/* it used the whole range */
hold_p_mem_node->next = func->p_mem_head;
func->p_mem_head = hold_p_mem_node;
}
/* We should be configuring an IRQ and the bridge's base address
* registers if it needs them. Although we have never seen such
* a device */
/* enable card */
command = 0x0157; /* = PCI_COMMAND_IO |
* PCI_COMMAND_MEMORY |
* PCI_COMMAND_MASTER |
* PCI_COMMAND_INVALIDATE |
* PCI_COMMAND_PARITY |
* PCI_COMMAND_SERR */
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_COMMAND, command);
/* set Bridge Control Register */
command = 0x07; /* = PCI_BRIDGE_CTL_PARITY |
* PCI_BRIDGE_CTL_SERR |
* PCI_BRIDGE_CTL_NO_ISA */
rc = pci_bus_write_config_word (pci_bus, devfn, PCI_BRIDGE_CONTROL, command);
} else if ((temp_byte & 0x7F) == PCI_HEADER_TYPE_NORMAL) {
/* Standard device */
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
if (class_code == PCI_BASE_CLASS_DISPLAY) {
/* Display (video) adapter (not supported) */
return DEVICE_TYPE_NOT_SUPPORTED;
}
/* Figure out IO and memory needs */
for (cloop = 0x10; cloop <= 0x24; cloop += 4) {
temp_register = 0xFFFFFFFF;
dbg("CND: bus=%d, devfn=%d, offset=%d\n", pci_bus->number, devfn, cloop);
rc = pci_bus_write_config_dword (pci_bus, devfn, cloop, temp_register);
rc = pci_bus_read_config_dword (pci_bus, devfn, cloop, &temp_register);
dbg("CND: base = 0x%x\n", temp_register);
if (temp_register) { /* If this register is implemented */
if ((temp_register & 0x03L) == 0x01) {
/* Map IO */
/* set base = amount of IO space */
base = temp_register & 0xFFFFFFFC;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
io_node = get_io_resource(&(resources->io_head), base);
dbg("Got io_node start = %8.8x, length = %8.8x next (%p)\n",
io_node->base, io_node->length, io_node->next);
dbg("func (%p) io_head (%p)\n", func, func->io_head);
/* allocate the resource to the board */
if (io_node) {
base = io_node->base;
io_node->next = func->io_head;
func->io_head = io_node;
} else
return -ENOMEM;
} else if ((temp_register & 0x0BL) == 0x08) {
/* Map prefetchable memory */
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
p_mem_node = get_resource(&(resources->p_mem_head), base);
/* allocate the resource to the board */
if (p_mem_node) {
base = p_mem_node->base;
p_mem_node->next = func->p_mem_head;
func->p_mem_head = p_mem_node;
} else
return -ENOMEM;
} else if ((temp_register & 0x0BL) == 0x00) {
/* Map memory */
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
mem_node = get_resource(&(resources->mem_head), base);
/* allocate the resource to the board */
if (mem_node) {
base = mem_node->base;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return -ENOMEM;
} else if ((temp_register & 0x0BL) == 0x04) {
/* Map memory */
base = temp_register & 0xFFFFFFF0;
base = ~base + 1;
dbg("CND: length = 0x%x\n", base);
mem_node = get_resource(&(resources->mem_head), base);
/* allocate the resource to the board */
if (mem_node) {
base = mem_node->base;
mem_node->next = func->mem_head;
func->mem_head = mem_node;
} else
return -ENOMEM;
} else if ((temp_register & 0x0BL) == 0x06) {
/* Those bits are reserved, we can't handle this */
return 1;
} else {
/* Requesting space below 1M */
return NOT_ENOUGH_RESOURCES;
}
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
/* Check for 64-bit base */
if ((temp_register & 0x07L) == 0x04) {
cloop += 4;
/* Upper 32 bits of address always zero
* on today's systems */
/* FIXME this is probably not true on
* Alpha and ia64??? */
base = 0;
rc = pci_bus_write_config_dword(pci_bus, devfn, cloop, base);
}
}
} /* End of base register loop */
if (cpqhp_legacy_mode) {
/* Figure out which interrupt pin this function uses */
rc = pci_bus_read_config_byte (pci_bus, devfn,
PCI_INTERRUPT_PIN, &temp_byte);
/* If this function needs an interrupt and we are behind
* a bridge and the pin is tied to something that's
* alread mapped, set this one the same */
if (temp_byte && resources->irqs &&
(resources->irqs->valid_INT &
(0x01 << ((temp_byte + resources->irqs->barber_pole - 1) & 0x03)))) {
/* We have to share with something already set up */
IRQ = resources->irqs->interrupt[(temp_byte +
resources->irqs->barber_pole - 1) & 0x03];
} else {
/* Program IRQ based on card type */
rc = pci_bus_read_config_byte (pci_bus, devfn, 0x0B, &class_code);
if (class_code == PCI_BASE_CLASS_STORAGE) {
IRQ = cpqhp_disk_irq;
} else {
IRQ = cpqhp_nic_irq;
}
}
/* IRQ Line */
rc = pci_bus_write_config_byte (pci_bus, devfn, PCI_INTERRUPT_LINE, IRQ);
}
if (!behind_bridge) {
rc = cpqhp_set_irq(func->bus, func->device, temp_byte + 0x09, IRQ);
if (rc)
return 1;
} else {
/* TBD - this code may also belong in the other clause
* of this If statement */
resources->irqs->interrupt[(temp_byte + resources->irqs->barber_pole - 1) & 0x03] = IRQ;
resources->irqs->valid_INT |= 0x01 << (temp_byte + resources->irqs->barber_pole - 1) & 0x03;
}
/* Latency Timer */
temp_byte = 0x40;
rc = pci_bus_write_config_byte(pci_bus, devfn,
PCI_LATENCY_TIMER, temp_byte);
/* Cache Line size */
temp_byte = 0x08;
rc = pci_bus_write_config_byte(pci_bus, devfn,
PCI_CACHE_LINE_SIZE, temp_byte);
/* disable ROM base Address */
temp_dword = 0x00L;
rc = pci_bus_write_config_word(pci_bus, devfn,
PCI_ROM_ADDRESS, temp_dword);
/* enable card */
temp_word = 0x0157; /* = PCI_COMMAND_IO |
* PCI_COMMAND_MEMORY |
* PCI_COMMAND_MASTER |
* PCI_COMMAND_INVALIDATE |
* PCI_COMMAND_PARITY |
* PCI_COMMAND_SERR */
rc = pci_bus_write_config_word (pci_bus, devfn,
PCI_COMMAND, temp_word);
} else { /* End of Not-A-Bridge else */
/* It's some strange type of PCI adapter (Cardbus?) */
return DEVICE_TYPE_NOT_SUPPORTED;
}
func->configured = 1;
return 0;
free_and_out:
cpqhp_destroy_resource_list (&temp_resources);
return_resource(&(resources-> bus_head), hold_bus_node);
return_resource(&(resources-> io_head), hold_IO_node);
return_resource(&(resources-> mem_head), hold_mem_node);
return_resource(&(resources-> p_mem_head), hold_p_mem_node);
return rc;
}