OpenCloudOS-Kernel/drivers/net/wireless/iwlwifi/iwl-agn-lib.c

1417 lines
42 KiB
C

/******************************************************************************
*
* GPL LICENSE SUMMARY
*
* Copyright(c) 2008 - 2011 Intel Corporation. All rights reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of version 2 of the GNU General Public License as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110,
* USA
*
* The full GNU General Public License is included in this distribution
* in the file called LICENSE.GPL.
*
* Contact Information:
* Intel Linux Wireless <ilw@linux.intel.com>
* Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
*
*****************************************************************************/
#include <linux/etherdevice.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/init.h>
#include <linux/sched.h>
#include "iwl-dev.h"
#include "iwl-core.h"
#include "iwl-io.h"
#include "iwl-helpers.h"
#include "iwl-agn-hw.h"
#include "iwl-agn.h"
#include "iwl-sta.h"
#include "iwl-trans.h"
#include "iwl-shared.h"
int iwlagn_hw_valid_rtc_data_addr(u32 addr)
{
return (addr >= IWLAGN_RTC_DATA_LOWER_BOUND) &&
(addr < IWLAGN_RTC_DATA_UPPER_BOUND);
}
int iwlagn_send_tx_power(struct iwl_priv *priv)
{
struct iwlagn_tx_power_dbm_cmd tx_power_cmd;
u8 tx_ant_cfg_cmd;
if (WARN_ONCE(test_bit(STATUS_SCAN_HW, &priv->shrd->status),
"TX Power requested while scanning!\n"))
return -EAGAIN;
/* half dBm need to multiply */
tx_power_cmd.global_lmt = (s8)(2 * priv->tx_power_user_lmt);
if (priv->tx_power_lmt_in_half_dbm &&
priv->tx_power_lmt_in_half_dbm < tx_power_cmd.global_lmt) {
/*
* For the newer devices which using enhanced/extend tx power
* table in EEPROM, the format is in half dBm. driver need to
* convert to dBm format before report to mac80211.
* By doing so, there is a possibility of 1/2 dBm resolution
* lost. driver will perform "round-up" operation before
* reporting, but it will cause 1/2 dBm tx power over the
* regulatory limit. Perform the checking here, if the
* "tx_power_user_lmt" is higher than EEPROM value (in
* half-dBm format), lower the tx power based on EEPROM
*/
tx_power_cmd.global_lmt = priv->tx_power_lmt_in_half_dbm;
}
tx_power_cmd.flags = IWLAGN_TX_POWER_NO_CLOSED;
tx_power_cmd.srv_chan_lmt = IWLAGN_TX_POWER_AUTO;
if (IWL_UCODE_API(priv->ucode_ver) == 1)
tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD_V1;
else
tx_ant_cfg_cmd = REPLY_TX_POWER_DBM_CMD;
return iwl_trans_send_cmd_pdu(trans(priv), tx_ant_cfg_cmd, CMD_SYNC,
sizeof(tx_power_cmd), &tx_power_cmd);
}
void iwlagn_temperature(struct iwl_priv *priv)
{
/* store temperature from correct statistics (in Celsius) */
priv->temperature = le32_to_cpu(priv->statistics.common.temperature);
iwl_tt_handler(priv);
}
u16 iwlagn_eeprom_calib_version(struct iwl_priv *priv)
{
struct iwl_eeprom_calib_hdr {
u8 version;
u8 pa_type;
u16 voltage;
} *hdr;
hdr = (struct iwl_eeprom_calib_hdr *)iwl_eeprom_query_addr(priv,
EEPROM_CALIB_ALL);
return hdr->version;
}
/*
* EEPROM
*/
static u32 eeprom_indirect_address(const struct iwl_priv *priv, u32 address)
{
u16 offset = 0;
if ((address & INDIRECT_ADDRESS) == 0)
return address;
switch (address & INDIRECT_TYPE_MSK) {
case INDIRECT_HOST:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_HOST);
break;
case INDIRECT_GENERAL:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_GENERAL);
break;
case INDIRECT_REGULATORY:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_REGULATORY);
break;
case INDIRECT_TXP_LIMIT:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT);
break;
case INDIRECT_TXP_LIMIT_SIZE:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_TXP_LIMIT_SIZE);
break;
case INDIRECT_CALIBRATION:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_CALIBRATION);
break;
case INDIRECT_PROCESS_ADJST:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_PROCESS_ADJST);
break;
case INDIRECT_OTHERS:
offset = iwl_eeprom_query16(priv, EEPROM_LINK_OTHERS);
break;
default:
IWL_ERR(priv, "illegal indirect type: 0x%X\n",
address & INDIRECT_TYPE_MSK);
break;
}
/* translate the offset from words to byte */
return (address & ADDRESS_MSK) + (offset << 1);
}
const u8 *iwl_eeprom_query_addr(const struct iwl_priv *priv, size_t offset)
{
u32 address = eeprom_indirect_address(priv, offset);
BUG_ON(address >= priv->cfg->base_params->eeprom_size);
return &priv->eeprom[address];
}
struct iwl_mod_params iwlagn_mod_params = {
.amsdu_size_8K = 1,
.restart_fw = 1,
.plcp_check = true,
.bt_coex_active = true,
.no_sleep_autoadjust = true,
.power_level = IWL_POWER_INDEX_1,
.bt_ch_announce = true,
.wanted_ucode_alternative = 1,
.auto_agg = true,
/* the rest are 0 by default */
};
int iwlagn_hwrate_to_mac80211_idx(u32 rate_n_flags, enum ieee80211_band band)
{
int idx = 0;
int band_offset = 0;
/* HT rate format: mac80211 wants an MCS number, which is just LSB */
if (rate_n_flags & RATE_MCS_HT_MSK) {
idx = (rate_n_flags & 0xff);
return idx;
/* Legacy rate format, search for match in table */
} else {
if (band == IEEE80211_BAND_5GHZ)
band_offset = IWL_FIRST_OFDM_RATE;
for (idx = band_offset; idx < IWL_RATE_COUNT_LEGACY; idx++)
if (iwl_rates[idx].plcp == (rate_n_flags & 0xFF))
return idx - band_offset;
}
return -1;
}
static int iwl_get_single_channel_for_scan(struct iwl_priv *priv,
struct ieee80211_vif *vif,
enum ieee80211_band band,
struct iwl_scan_channel *scan_ch)
{
const struct ieee80211_supported_band *sband;
u16 passive_dwell = 0;
u16 active_dwell = 0;
int added = 0;
u16 channel = 0;
sband = iwl_get_hw_mode(priv, band);
if (!sband) {
IWL_ERR(priv, "invalid band\n");
return added;
}
active_dwell = iwl_get_active_dwell_time(priv, band, 0);
passive_dwell = iwl_get_passive_dwell_time(priv, band, vif);
if (passive_dwell <= active_dwell)
passive_dwell = active_dwell + 1;
channel = iwl_get_single_channel_number(priv, band);
if (channel) {
scan_ch->channel = cpu_to_le16(channel);
scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
scan_ch->active_dwell = cpu_to_le16(active_dwell);
scan_ch->passive_dwell = cpu_to_le16(passive_dwell);
/* Set txpower levels to defaults */
scan_ch->dsp_atten = 110;
if (band == IEEE80211_BAND_5GHZ)
scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
else
scan_ch->tx_gain = ((1 << 5) | (5 << 3));
added++;
} else
IWL_ERR(priv, "no valid channel found\n");
return added;
}
static int iwl_get_channels_for_scan(struct iwl_priv *priv,
struct ieee80211_vif *vif,
enum ieee80211_band band,
u8 is_active, u8 n_probes,
struct iwl_scan_channel *scan_ch)
{
struct ieee80211_channel *chan;
const struct ieee80211_supported_band *sband;
const struct iwl_channel_info *ch_info;
u16 passive_dwell = 0;
u16 active_dwell = 0;
int added, i;
u16 channel;
sband = iwl_get_hw_mode(priv, band);
if (!sband)
return 0;
active_dwell = iwl_get_active_dwell_time(priv, band, n_probes);
passive_dwell = iwl_get_passive_dwell_time(priv, band, vif);
if (passive_dwell <= active_dwell)
passive_dwell = active_dwell + 1;
for (i = 0, added = 0; i < priv->scan_request->n_channels; i++) {
chan = priv->scan_request->channels[i];
if (chan->band != band)
continue;
channel = chan->hw_value;
scan_ch->channel = cpu_to_le16(channel);
ch_info = iwl_get_channel_info(priv, band, channel);
if (!is_channel_valid(ch_info)) {
IWL_DEBUG_SCAN(priv, "Channel %d is INVALID for this band.\n",
channel);
continue;
}
if (!is_active || is_channel_passive(ch_info) ||
(chan->flags & IEEE80211_CHAN_PASSIVE_SCAN))
scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
else
scan_ch->type = SCAN_CHANNEL_TYPE_ACTIVE;
if (n_probes)
scan_ch->type |= IWL_SCAN_PROBE_MASK(n_probes);
scan_ch->active_dwell = cpu_to_le16(active_dwell);
scan_ch->passive_dwell = cpu_to_le16(passive_dwell);
/* Set txpower levels to defaults */
scan_ch->dsp_atten = 110;
/* NOTE: if we were doing 6Mb OFDM for scans we'd use
* power level:
* scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3;
*/
if (band == IEEE80211_BAND_5GHZ)
scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
else
scan_ch->tx_gain = ((1 << 5) | (5 << 3));
IWL_DEBUG_SCAN(priv, "Scanning ch=%d prob=0x%X [%s %d]\n",
channel, le32_to_cpu(scan_ch->type),
(scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ?
"ACTIVE" : "PASSIVE",
(scan_ch->type & SCAN_CHANNEL_TYPE_ACTIVE) ?
active_dwell : passive_dwell);
scan_ch++;
added++;
}
IWL_DEBUG_SCAN(priv, "total channels to scan %d\n", added);
return added;
}
int iwlagn_request_scan(struct iwl_priv *priv, struct ieee80211_vif *vif)
{
struct iwl_host_cmd cmd = {
.id = REPLY_SCAN_CMD,
.len = { sizeof(struct iwl_scan_cmd), },
.flags = CMD_SYNC,
};
struct iwl_scan_cmd *scan;
struct iwl_rxon_context *ctx = &priv->contexts[IWL_RXON_CTX_BSS];
u32 rate_flags = 0;
u16 cmd_len;
u16 rx_chain = 0;
enum ieee80211_band band;
u8 n_probes = 0;
u8 rx_ant = hw_params(priv).valid_rx_ant;
u8 rate;
bool is_active = false;
int chan_mod;
u8 active_chains;
u8 scan_tx_antennas = hw_params(priv).valid_tx_ant;
int ret;
lockdep_assert_held(&priv->shrd->mutex);
if (vif)
ctx = iwl_rxon_ctx_from_vif(vif);
if (!priv->scan_cmd) {
priv->scan_cmd = kmalloc(sizeof(struct iwl_scan_cmd) +
IWL_MAX_SCAN_SIZE, GFP_KERNEL);
if (!priv->scan_cmd) {
IWL_DEBUG_SCAN(priv,
"fail to allocate memory for scan\n");
return -ENOMEM;
}
}
scan = priv->scan_cmd;
memset(scan, 0, sizeof(struct iwl_scan_cmd) + IWL_MAX_SCAN_SIZE);
scan->quiet_plcp_th = IWL_PLCP_QUIET_THRESH;
scan->quiet_time = IWL_ACTIVE_QUIET_TIME;
if (priv->scan_type != IWL_SCAN_ROC &&
iwl_is_any_associated(priv)) {
u16 interval = 0;
u32 extra;
u32 suspend_time = 100;
u32 scan_suspend_time = 100;
IWL_DEBUG_INFO(priv, "Scanning while associated...\n");
switch (priv->scan_type) {
case IWL_SCAN_ROC:
WARN_ON(1);
break;
case IWL_SCAN_RADIO_RESET:
interval = 0;
break;
case IWL_SCAN_NORMAL:
interval = vif->bss_conf.beacon_int;
break;
}
scan->suspend_time = 0;
scan->max_out_time = cpu_to_le32(200 * 1024);
if (!interval)
interval = suspend_time;
extra = (suspend_time / interval) << 22;
scan_suspend_time = (extra |
((suspend_time % interval) * 1024));
scan->suspend_time = cpu_to_le32(scan_suspend_time);
IWL_DEBUG_SCAN(priv, "suspend_time 0x%X beacon interval %d\n",
scan_suspend_time, interval);
} else if (priv->scan_type == IWL_SCAN_ROC) {
scan->suspend_time = 0;
scan->max_out_time = 0;
scan->quiet_time = 0;
scan->quiet_plcp_th = 0;
}
switch (priv->scan_type) {
case IWL_SCAN_RADIO_RESET:
IWL_DEBUG_SCAN(priv, "Start internal passive scan.\n");
break;
case IWL_SCAN_NORMAL:
if (priv->scan_request->n_ssids) {
int i, p = 0;
IWL_DEBUG_SCAN(priv, "Kicking off active scan\n");
for (i = 0; i < priv->scan_request->n_ssids; i++) {
/* always does wildcard anyway */
if (!priv->scan_request->ssids[i].ssid_len)
continue;
scan->direct_scan[p].id = WLAN_EID_SSID;
scan->direct_scan[p].len =
priv->scan_request->ssids[i].ssid_len;
memcpy(scan->direct_scan[p].ssid,
priv->scan_request->ssids[i].ssid,
priv->scan_request->ssids[i].ssid_len);
n_probes++;
p++;
}
is_active = true;
} else
IWL_DEBUG_SCAN(priv, "Start passive scan.\n");
break;
case IWL_SCAN_ROC:
IWL_DEBUG_SCAN(priv, "Start ROC scan.\n");
break;
}
scan->tx_cmd.tx_flags = TX_CMD_FLG_SEQ_CTL_MSK;
scan->tx_cmd.sta_id = ctx->bcast_sta_id;
scan->tx_cmd.stop_time.life_time = TX_CMD_LIFE_TIME_INFINITE;
switch (priv->scan_band) {
case IEEE80211_BAND_2GHZ:
scan->flags = RXON_FLG_BAND_24G_MSK | RXON_FLG_AUTO_DETECT_MSK;
chan_mod = le32_to_cpu(
priv->contexts[IWL_RXON_CTX_BSS].active.flags &
RXON_FLG_CHANNEL_MODE_MSK)
>> RXON_FLG_CHANNEL_MODE_POS;
if (chan_mod == CHANNEL_MODE_PURE_40) {
rate = IWL_RATE_6M_PLCP;
} else {
rate = IWL_RATE_1M_PLCP;
rate_flags = RATE_MCS_CCK_MSK;
}
/*
* Internal scans are passive, so we can indiscriminately set
* the BT ignore flag on 2.4 GHz since it applies to TX only.
*/
if (priv->cfg->bt_params &&
priv->cfg->bt_params->advanced_bt_coexist)
scan->tx_cmd.tx_flags |= TX_CMD_FLG_IGNORE_BT;
break;
case IEEE80211_BAND_5GHZ:
rate = IWL_RATE_6M_PLCP;
break;
default:
IWL_WARN(priv, "Invalid scan band\n");
return -EIO;
}
/*
* If active scanning is requested but a certain channel is
* marked passive, we can do active scanning if we detect
* transmissions.
*
* There is an issue with some firmware versions that triggers
* a sysassert on a "good CRC threshold" of zero (== disabled),
* on a radar channel even though this means that we should NOT
* send probes.
*
* The "good CRC threshold" is the number of frames that we
* need to receive during our dwell time on a channel before
* sending out probes -- setting this to a huge value will
* mean we never reach it, but at the same time work around
* the aforementioned issue. Thus use IWL_GOOD_CRC_TH_NEVER
* here instead of IWL_GOOD_CRC_TH_DISABLED.
*
* This was fixed in later versions along with some other
* scan changes, and the threshold behaves as a flag in those
* versions.
*/
if (priv->new_scan_threshold_behaviour)
scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT :
IWL_GOOD_CRC_TH_DISABLED;
else
scan->good_CRC_th = is_active ? IWL_GOOD_CRC_TH_DEFAULT :
IWL_GOOD_CRC_TH_NEVER;
band = priv->scan_band;
if (priv->cfg->scan_rx_antennas[band])
rx_ant = priv->cfg->scan_rx_antennas[band];
if (band == IEEE80211_BAND_2GHZ &&
priv->cfg->bt_params &&
priv->cfg->bt_params->advanced_bt_coexist) {
/* transmit 2.4 GHz probes only on first antenna */
scan_tx_antennas = first_antenna(scan_tx_antennas);
}
priv->scan_tx_ant[band] = iwl_toggle_tx_ant(priv, priv->scan_tx_ant[band],
scan_tx_antennas);
rate_flags |= iwl_ant_idx_to_flags(priv->scan_tx_ant[band]);
scan->tx_cmd.rate_n_flags = iwl_hw_set_rate_n_flags(rate, rate_flags);
/* In power save mode use one chain, otherwise use all chains */
if (test_bit(STATUS_POWER_PMI, &priv->shrd->status)) {
/* rx_ant has been set to all valid chains previously */
active_chains = rx_ant &
((u8)(priv->chain_noise_data.active_chains));
if (!active_chains)
active_chains = rx_ant;
IWL_DEBUG_SCAN(priv, "chain_noise_data.active_chains: %u\n",
priv->chain_noise_data.active_chains);
rx_ant = first_antenna(active_chains);
}
if (priv->cfg->bt_params &&
priv->cfg->bt_params->advanced_bt_coexist &&
priv->bt_full_concurrent) {
/* operated as 1x1 in full concurrency mode */
rx_ant = first_antenna(rx_ant);
}
/* MIMO is not used here, but value is required */
rx_chain |=
hw_params(priv).valid_rx_ant << RXON_RX_CHAIN_VALID_POS;
rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_MIMO_SEL_POS;
rx_chain |= rx_ant << RXON_RX_CHAIN_FORCE_SEL_POS;
rx_chain |= 0x1 << RXON_RX_CHAIN_DRIVER_FORCE_POS;
scan->rx_chain = cpu_to_le16(rx_chain);
switch (priv->scan_type) {
case IWL_SCAN_NORMAL:
cmd_len = iwl_fill_probe_req(priv,
(struct ieee80211_mgmt *)scan->data,
vif->addr,
priv->scan_request->ie,
priv->scan_request->ie_len,
IWL_MAX_SCAN_SIZE - sizeof(*scan));
break;
case IWL_SCAN_RADIO_RESET:
case IWL_SCAN_ROC:
/* use bcast addr, will not be transmitted but must be valid */
cmd_len = iwl_fill_probe_req(priv,
(struct ieee80211_mgmt *)scan->data,
iwl_bcast_addr, NULL, 0,
IWL_MAX_SCAN_SIZE - sizeof(*scan));
break;
default:
BUG();
}
scan->tx_cmd.len = cpu_to_le16(cmd_len);
scan->filter_flags |= (RXON_FILTER_ACCEPT_GRP_MSK |
RXON_FILTER_BCON_AWARE_MSK);
switch (priv->scan_type) {
case IWL_SCAN_RADIO_RESET:
scan->channel_count =
iwl_get_single_channel_for_scan(priv, vif, band,
(void *)&scan->data[cmd_len]);
break;
case IWL_SCAN_NORMAL:
scan->channel_count =
iwl_get_channels_for_scan(priv, vif, band,
is_active, n_probes,
(void *)&scan->data[cmd_len]);
break;
case IWL_SCAN_ROC: {
struct iwl_scan_channel *scan_ch;
scan->channel_count = 1;
scan_ch = (void *)&scan->data[cmd_len];
scan_ch->type = SCAN_CHANNEL_TYPE_PASSIVE;
scan_ch->channel =
cpu_to_le16(priv->hw_roc_channel->hw_value);
scan_ch->active_dwell =
scan_ch->passive_dwell =
cpu_to_le16(priv->hw_roc_duration);
/* Set txpower levels to defaults */
scan_ch->dsp_atten = 110;
/* NOTE: if we were doing 6Mb OFDM for scans we'd use
* power level:
* scan_ch->tx_gain = ((1 << 5) | (2 << 3)) | 3;
*/
if (priv->hw_roc_channel->band == IEEE80211_BAND_5GHZ)
scan_ch->tx_gain = ((1 << 5) | (3 << 3)) | 3;
else
scan_ch->tx_gain = ((1 << 5) | (5 << 3));
}
break;
}
if (scan->channel_count == 0) {
IWL_DEBUG_SCAN(priv, "channel count %d\n", scan->channel_count);
return -EIO;
}
cmd.len[0] += le16_to_cpu(scan->tx_cmd.len) +
scan->channel_count * sizeof(struct iwl_scan_channel);
cmd.data[0] = scan;
cmd.dataflags[0] = IWL_HCMD_DFL_NOCOPY;
scan->len = cpu_to_le16(cmd.len[0]);
/* set scan bit here for PAN params */
set_bit(STATUS_SCAN_HW, &priv->shrd->status);
ret = iwlagn_set_pan_params(priv);
if (ret)
return ret;
ret = iwl_trans_send_cmd(trans(priv), &cmd);
if (ret) {
clear_bit(STATUS_SCAN_HW, &priv->shrd->status);
iwlagn_set_pan_params(priv);
}
return ret;
}
int iwlagn_manage_ibss_station(struct iwl_priv *priv,
struct ieee80211_vif *vif, bool add)
{
struct iwl_vif_priv *vif_priv = (void *)vif->drv_priv;
if (add)
return iwlagn_add_bssid_station(priv, vif_priv->ctx,
vif->bss_conf.bssid,
&vif_priv->ibss_bssid_sta_id);
return iwl_remove_station(priv, vif_priv->ibss_bssid_sta_id,
vif->bss_conf.bssid);
}
/**
* iwlagn_txfifo_flush: send REPLY_TXFIFO_FLUSH command to uCode
*
* pre-requirements:
* 1. acquire mutex before calling
* 2. make sure rf is on and not in exit state
*/
int iwlagn_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
{
struct iwl_txfifo_flush_cmd flush_cmd;
struct iwl_host_cmd cmd = {
.id = REPLY_TXFIFO_FLUSH,
.len = { sizeof(struct iwl_txfifo_flush_cmd), },
.flags = CMD_SYNC,
.data = { &flush_cmd, },
};
might_sleep();
memset(&flush_cmd, 0, sizeof(flush_cmd));
if (flush_control & BIT(IWL_RXON_CTX_BSS))
flush_cmd.fifo_control = IWL_SCD_VO_MSK | IWL_SCD_VI_MSK |
IWL_SCD_BE_MSK | IWL_SCD_BK_MSK |
IWL_SCD_MGMT_MSK;
if ((flush_control & BIT(IWL_RXON_CTX_PAN)) &&
(priv->shrd->valid_contexts != BIT(IWL_RXON_CTX_BSS)))
flush_cmd.fifo_control |= IWL_PAN_SCD_VO_MSK |
IWL_PAN_SCD_VI_MSK | IWL_PAN_SCD_BE_MSK |
IWL_PAN_SCD_BK_MSK | IWL_PAN_SCD_MGMT_MSK |
IWL_PAN_SCD_MULTICAST_MSK;
if (priv->cfg->sku & EEPROM_SKU_CAP_11N_ENABLE)
flush_cmd.fifo_control |= IWL_AGG_TX_QUEUE_MSK;
IWL_DEBUG_INFO(priv, "fifo queue control: 0X%x\n",
flush_cmd.fifo_control);
flush_cmd.flush_control = cpu_to_le16(flush_control);
return iwl_trans_send_cmd(trans(priv), &cmd);
}
void iwlagn_dev_txfifo_flush(struct iwl_priv *priv, u16 flush_control)
{
mutex_lock(&priv->shrd->mutex);
ieee80211_stop_queues(priv->hw);
if (iwlagn_txfifo_flush(priv, IWL_DROP_ALL)) {
IWL_ERR(priv, "flush request fail\n");
goto done;
}
IWL_DEBUG_INFO(priv, "wait transmit/flush all frames\n");
iwl_trans_wait_tx_queue_empty(trans(priv));
done:
ieee80211_wake_queues(priv->hw);
mutex_unlock(&priv->shrd->mutex);
}
/*
* BT coex
*/
/*
* Macros to access the lookup table.
*
* The lookup table has 7 inputs: bt3_prio, bt3_txrx, bt_rf_act, wifi_req,
* wifi_prio, wifi_txrx and wifi_sh_ant_req.
*
* It has three outputs: WLAN_ACTIVE, WLAN_KILL and ANT_SWITCH
*
* The format is that "registers" 8 through 11 contain the WLAN_ACTIVE bits
* one after another in 32-bit registers, and "registers" 0 through 7 contain
* the WLAN_KILL and ANT_SWITCH bits interleaved (in that order).
*
* These macros encode that format.
*/
#define LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, wifi_req, wifi_prio, \
wifi_txrx, wifi_sh_ant_req) \
(bt3_prio | (bt3_txrx << 1) | (bt_rf_act << 2) | (wifi_req << 3) | \
(wifi_prio << 4) | (wifi_txrx << 5) | (wifi_sh_ant_req << 6))
#define LUT_PTA_WLAN_ACTIVE_OP(lut, op, val) \
lut[8 + ((val) >> 5)] op (cpu_to_le32(BIT((val) & 0x1f)))
#define LUT_TEST_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
(!!(LUT_PTA_WLAN_ACTIVE_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, \
bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
wifi_sh_ant_req))))
#define LUT_SET_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
LUT_PTA_WLAN_ACTIVE_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, \
bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
wifi_sh_ant_req))
#define LUT_CLEAR_PTA_WLAN_ACTIVE(lut, bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, \
wifi_sh_ant_req) \
LUT_PTA_WLAN_ACTIVE_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, \
bt_rf_act, wifi_req, wifi_prio, wifi_txrx, \
wifi_sh_ant_req))
#define LUT_WLAN_KILL_OP(lut, op, val) \
lut[(val) >> 4] op (cpu_to_le32(BIT(((val) << 1) & 0x1e)))
#define LUT_TEST_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
(!!(LUT_WLAN_KILL_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))))
#define LUT_SET_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
LUT_WLAN_KILL_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
#define LUT_CLEAR_WLAN_KILL(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
LUT_WLAN_KILL_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
#define LUT_ANT_SWITCH_OP(lut, op, val) \
lut[(val) >> 4] op (cpu_to_le32(BIT((((val) << 1) & 0x1e) + 1)))
#define LUT_TEST_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
(!!(LUT_ANT_SWITCH_OP(lut, &, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, \
wifi_sh_ant_req))))
#define LUT_SET_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
LUT_ANT_SWITCH_OP(lut, |=, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
#define LUT_CLEAR_ANT_SWITCH(lut, bt3_prio, bt3_txrx, bt_rf_act, wifi_req, \
wifi_prio, wifi_txrx, wifi_sh_ant_req) \
LUT_ANT_SWITCH_OP(lut, &= ~, LUT_VALUE(bt3_prio, bt3_txrx, bt_rf_act, \
wifi_req, wifi_prio, wifi_txrx, wifi_sh_ant_req))
static const __le32 iwlagn_def_3w_lookup[12] = {
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaeaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xcc00ff28),
cpu_to_le32(0x0000aaaa),
cpu_to_le32(0xcc00aaaa),
cpu_to_le32(0x0000aaaa),
cpu_to_le32(0xc0004000),
cpu_to_le32(0x00004000),
cpu_to_le32(0xf0005000),
cpu_to_le32(0xf0005000),
};
static const __le32 iwlagn_concurrent_lookup[12] = {
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0xaaaaaaaa),
cpu_to_le32(0x00000000),
cpu_to_le32(0x00000000),
cpu_to_le32(0x00000000),
cpu_to_le32(0x00000000),
};
void iwlagn_send_advance_bt_config(struct iwl_priv *priv)
{
struct iwl_basic_bt_cmd basic = {
.max_kill = IWLAGN_BT_MAX_KILL_DEFAULT,
.bt3_timer_t7_value = IWLAGN_BT3_T7_DEFAULT,
.bt3_prio_sample_time = IWLAGN_BT3_PRIO_SAMPLE_DEFAULT,
.bt3_timer_t2_value = IWLAGN_BT3_T2_DEFAULT,
};
struct iwl6000_bt_cmd bt_cmd_6000;
struct iwl2000_bt_cmd bt_cmd_2000;
int ret;
BUILD_BUG_ON(sizeof(iwlagn_def_3w_lookup) !=
sizeof(basic.bt3_lookup_table));
if (priv->cfg->bt_params) {
if (priv->cfg->bt_params->bt_session_2) {
bt_cmd_2000.prio_boost = cpu_to_le32(
priv->cfg->bt_params->bt_prio_boost);
bt_cmd_2000.tx_prio_boost = 0;
bt_cmd_2000.rx_prio_boost = 0;
} else {
bt_cmd_6000.prio_boost =
priv->cfg->bt_params->bt_prio_boost;
bt_cmd_6000.tx_prio_boost = 0;
bt_cmd_6000.rx_prio_boost = 0;
}
} else {
IWL_ERR(priv, "failed to construct BT Coex Config\n");
return;
}
basic.kill_ack_mask = priv->kill_ack_mask;
basic.kill_cts_mask = priv->kill_cts_mask;
basic.valid = priv->bt_valid;
/*
* Configure BT coex mode to "no coexistence" when the
* user disabled BT coexistence, we have no interface
* (might be in monitor mode), or the interface is in
* IBSS mode (no proper uCode support for coex then).
*/
if (!iwlagn_mod_params.bt_coex_active ||
priv->iw_mode == NL80211_IFTYPE_ADHOC) {
basic.flags = IWLAGN_BT_FLAG_COEX_MODE_DISABLED;
} else {
basic.flags = IWLAGN_BT_FLAG_COEX_MODE_3W <<
IWLAGN_BT_FLAG_COEX_MODE_SHIFT;
if (!priv->bt_enable_pspoll)
basic.flags |= IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
else
basic.flags &= ~IWLAGN_BT_FLAG_SYNC_2_BT_DISABLE;
if (priv->bt_ch_announce)
basic.flags |= IWLAGN_BT_FLAG_CHANNEL_INHIBITION;
IWL_DEBUG_COEX(priv, "BT coex flag: 0X%x\n", basic.flags);
}
priv->bt_enable_flag = basic.flags;
if (priv->bt_full_concurrent)
memcpy(basic.bt3_lookup_table, iwlagn_concurrent_lookup,
sizeof(iwlagn_concurrent_lookup));
else
memcpy(basic.bt3_lookup_table, iwlagn_def_3w_lookup,
sizeof(iwlagn_def_3w_lookup));
IWL_DEBUG_COEX(priv, "BT coex %s in %s mode\n",
basic.flags ? "active" : "disabled",
priv->bt_full_concurrent ?
"full concurrency" : "3-wire");
if (priv->cfg->bt_params->bt_session_2) {
memcpy(&bt_cmd_2000.basic, &basic,
sizeof(basic));
ret = iwl_trans_send_cmd_pdu(trans(priv), REPLY_BT_CONFIG,
CMD_SYNC, sizeof(bt_cmd_2000), &bt_cmd_2000);
} else {
memcpy(&bt_cmd_6000.basic, &basic,
sizeof(basic));
ret = iwl_trans_send_cmd_pdu(trans(priv), REPLY_BT_CONFIG,
CMD_SYNC, sizeof(bt_cmd_6000), &bt_cmd_6000);
}
if (ret)
IWL_ERR(priv, "failed to send BT Coex Config\n");
}
void iwlagn_bt_adjust_rssi_monitor(struct iwl_priv *priv, bool rssi_ena)
{
struct iwl_rxon_context *ctx, *found_ctx = NULL;
bool found_ap = false;
lockdep_assert_held(&priv->shrd->mutex);
/* Check whether AP or GO mode is active. */
if (rssi_ena) {
for_each_context(priv, ctx) {
if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_AP &&
iwl_is_associated_ctx(ctx)) {
found_ap = true;
break;
}
}
}
/*
* If disable was received or If GO/AP mode, disable RSSI
* measurements.
*/
if (!rssi_ena || found_ap) {
if (priv->cur_rssi_ctx) {
ctx = priv->cur_rssi_ctx;
ieee80211_disable_rssi_reports(ctx->vif);
priv->cur_rssi_ctx = NULL;
}
return;
}
/*
* If rssi measurements need to be enabled, consider all cases now.
* Figure out how many contexts are active.
*/
for_each_context(priv, ctx) {
if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION &&
iwl_is_associated_ctx(ctx)) {
found_ctx = ctx;
break;
}
}
/*
* rssi monitor already enabled for the correct interface...nothing
* to do.
*/
if (found_ctx == priv->cur_rssi_ctx)
return;
/*
* Figure out if rssi monitor is currently enabled, and needs
* to be changed. If rssi monitor is already enabled, disable
* it first else just enable rssi measurements on the
* interface found above.
*/
if (priv->cur_rssi_ctx) {
ctx = priv->cur_rssi_ctx;
if (ctx->vif)
ieee80211_disable_rssi_reports(ctx->vif);
}
priv->cur_rssi_ctx = found_ctx;
if (!found_ctx)
return;
ieee80211_enable_rssi_reports(found_ctx->vif,
IWLAGN_BT_PSP_MIN_RSSI_THRESHOLD,
IWLAGN_BT_PSP_MAX_RSSI_THRESHOLD);
}
static bool iwlagn_bt_traffic_is_sco(struct iwl_bt_uart_msg *uart_msg)
{
return BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3 >>
BT_UART_MSG_FRAME3SCOESCO_POS;
}
static void iwlagn_bt_traffic_change_work(struct work_struct *work)
{
struct iwl_priv *priv =
container_of(work, struct iwl_priv, bt_traffic_change_work);
struct iwl_rxon_context *ctx;
int smps_request = -1;
if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
/* bt coex disabled */
return;
}
/*
* Note: bt_traffic_load can be overridden by scan complete and
* coex profile notifications. Ignore that since only bad consequence
* can be not matching debug print with actual state.
*/
IWL_DEBUG_COEX(priv, "BT traffic load changes: %d\n",
priv->bt_traffic_load);
switch (priv->bt_traffic_load) {
case IWL_BT_COEX_TRAFFIC_LOAD_NONE:
if (priv->bt_status)
smps_request = IEEE80211_SMPS_DYNAMIC;
else
smps_request = IEEE80211_SMPS_AUTOMATIC;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_LOW:
smps_request = IEEE80211_SMPS_DYNAMIC;
break;
case IWL_BT_COEX_TRAFFIC_LOAD_HIGH:
case IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS:
smps_request = IEEE80211_SMPS_STATIC;
break;
default:
IWL_ERR(priv, "Invalid BT traffic load: %d\n",
priv->bt_traffic_load);
break;
}
mutex_lock(&priv->shrd->mutex);
/*
* We can not send command to firmware while scanning. When the scan
* complete we will schedule this work again. We do check with mutex
* locked to prevent new scan request to arrive. We do not check
* STATUS_SCANNING to avoid race when queue_work two times from
* different notifications, but quit and not perform any work at all.
*/
if (test_bit(STATUS_SCAN_HW, &priv->shrd->status))
goto out;
iwl_update_chain_flags(priv);
if (smps_request != -1) {
priv->current_ht_config.smps = smps_request;
for_each_context(priv, ctx) {
if (ctx->vif && ctx->vif->type == NL80211_IFTYPE_STATION)
ieee80211_request_smps(ctx->vif, smps_request);
}
}
/*
* Dynamic PS poll related functionality. Adjust RSSI measurements if
* necessary.
*/
iwlagn_bt_coex_rssi_monitor(priv);
out:
mutex_unlock(&priv->shrd->mutex);
}
/*
* If BT sco traffic, and RSSI monitor is enabled, move measurements to the
* correct interface or disable it if this is the last interface to be
* removed.
*/
void iwlagn_bt_coex_rssi_monitor(struct iwl_priv *priv)
{
if (priv->bt_is_sco &&
priv->bt_traffic_load == IWL_BT_COEX_TRAFFIC_LOAD_CONTINUOUS)
iwlagn_bt_adjust_rssi_monitor(priv, true);
else
iwlagn_bt_adjust_rssi_monitor(priv, false);
}
static void iwlagn_print_uartmsg(struct iwl_priv *priv,
struct iwl_bt_uart_msg *uart_msg)
{
IWL_DEBUG_COEX(priv, "Message Type = 0x%X, SSN = 0x%X, "
"Update Req = 0x%X",
(BT_UART_MSG_FRAME1MSGTYPE_MSK & uart_msg->frame1) >>
BT_UART_MSG_FRAME1MSGTYPE_POS,
(BT_UART_MSG_FRAME1SSN_MSK & uart_msg->frame1) >>
BT_UART_MSG_FRAME1SSN_POS,
(BT_UART_MSG_FRAME1UPDATEREQ_MSK & uart_msg->frame1) >>
BT_UART_MSG_FRAME1UPDATEREQ_POS);
IWL_DEBUG_COEX(priv, "Open connections = 0x%X, Traffic load = 0x%X, "
"Chl_SeqN = 0x%X, In band = 0x%X",
(BT_UART_MSG_FRAME2OPENCONNECTIONS_MSK & uart_msg->frame2) >>
BT_UART_MSG_FRAME2OPENCONNECTIONS_POS,
(BT_UART_MSG_FRAME2TRAFFICLOAD_MSK & uart_msg->frame2) >>
BT_UART_MSG_FRAME2TRAFFICLOAD_POS,
(BT_UART_MSG_FRAME2CHLSEQN_MSK & uart_msg->frame2) >>
BT_UART_MSG_FRAME2CHLSEQN_POS,
(BT_UART_MSG_FRAME2INBAND_MSK & uart_msg->frame2) >>
BT_UART_MSG_FRAME2INBAND_POS);
IWL_DEBUG_COEX(priv, "SCO/eSCO = 0x%X, Sniff = 0x%X, A2DP = 0x%X, "
"ACL = 0x%X, Master = 0x%X, OBEX = 0x%X",
(BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3SCOESCO_POS,
(BT_UART_MSG_FRAME3SNIFF_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3SNIFF_POS,
(BT_UART_MSG_FRAME3A2DP_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3A2DP_POS,
(BT_UART_MSG_FRAME3ACL_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3ACL_POS,
(BT_UART_MSG_FRAME3MASTER_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3MASTER_POS,
(BT_UART_MSG_FRAME3OBEX_MSK & uart_msg->frame3) >>
BT_UART_MSG_FRAME3OBEX_POS);
IWL_DEBUG_COEX(priv, "Idle duration = 0x%X",
(BT_UART_MSG_FRAME4IDLEDURATION_MSK & uart_msg->frame4) >>
BT_UART_MSG_FRAME4IDLEDURATION_POS);
IWL_DEBUG_COEX(priv, "Tx Activity = 0x%X, Rx Activity = 0x%X, "
"eSCO Retransmissions = 0x%X",
(BT_UART_MSG_FRAME5TXACTIVITY_MSK & uart_msg->frame5) >>
BT_UART_MSG_FRAME5TXACTIVITY_POS,
(BT_UART_MSG_FRAME5RXACTIVITY_MSK & uart_msg->frame5) >>
BT_UART_MSG_FRAME5RXACTIVITY_POS,
(BT_UART_MSG_FRAME5ESCORETRANSMIT_MSK & uart_msg->frame5) >>
BT_UART_MSG_FRAME5ESCORETRANSMIT_POS);
IWL_DEBUG_COEX(priv, "Sniff Interval = 0x%X, Discoverable = 0x%X",
(BT_UART_MSG_FRAME6SNIFFINTERVAL_MSK & uart_msg->frame6) >>
BT_UART_MSG_FRAME6SNIFFINTERVAL_POS,
(BT_UART_MSG_FRAME6DISCOVERABLE_MSK & uart_msg->frame6) >>
BT_UART_MSG_FRAME6DISCOVERABLE_POS);
IWL_DEBUG_COEX(priv, "Sniff Activity = 0x%X, Page = "
"0x%X, Inquiry = 0x%X, Connectable = 0x%X",
(BT_UART_MSG_FRAME7SNIFFACTIVITY_MSK & uart_msg->frame7) >>
BT_UART_MSG_FRAME7SNIFFACTIVITY_POS,
(BT_UART_MSG_FRAME7PAGE_MSK & uart_msg->frame7) >>
BT_UART_MSG_FRAME7PAGE_POS,
(BT_UART_MSG_FRAME7INQUIRY_MSK & uart_msg->frame7) >>
BT_UART_MSG_FRAME7INQUIRY_POS,
(BT_UART_MSG_FRAME7CONNECTABLE_MSK & uart_msg->frame7) >>
BT_UART_MSG_FRAME7CONNECTABLE_POS);
}
static void iwlagn_set_kill_msk(struct iwl_priv *priv,
struct iwl_bt_uart_msg *uart_msg)
{
u8 kill_msk;
static const __le32 bt_kill_ack_msg[2] = {
IWLAGN_BT_KILL_ACK_MASK_DEFAULT,
IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
static const __le32 bt_kill_cts_msg[2] = {
IWLAGN_BT_KILL_CTS_MASK_DEFAULT,
IWLAGN_BT_KILL_ACK_CTS_MASK_SCO };
kill_msk = (BT_UART_MSG_FRAME3SCOESCO_MSK & uart_msg->frame3)
? 1 : 0;
if (priv->kill_ack_mask != bt_kill_ack_msg[kill_msk] ||
priv->kill_cts_mask != bt_kill_cts_msg[kill_msk]) {
priv->bt_valid |= IWLAGN_BT_VALID_KILL_ACK_MASK;
priv->kill_ack_mask = bt_kill_ack_msg[kill_msk];
priv->bt_valid |= IWLAGN_BT_VALID_KILL_CTS_MASK;
priv->kill_cts_mask = bt_kill_cts_msg[kill_msk];
/* schedule to send runtime bt_config */
queue_work(priv->shrd->workqueue, &priv->bt_runtime_config);
}
}
void iwlagn_bt_coex_profile_notif(struct iwl_priv *priv,
struct iwl_rx_mem_buffer *rxb)
{
unsigned long flags;
struct iwl_rx_packet *pkt = rxb_addr(rxb);
struct iwl_bt_coex_profile_notif *coex = &pkt->u.bt_coex_profile_notif;
struct iwl_bt_uart_msg *uart_msg = &coex->last_bt_uart_msg;
if (priv->bt_enable_flag == IWLAGN_BT_FLAG_COEX_MODE_DISABLED) {
/* bt coex disabled */
return;
}
IWL_DEBUG_COEX(priv, "BT Coex notification:\n");
IWL_DEBUG_COEX(priv, " status: %d\n", coex->bt_status);
IWL_DEBUG_COEX(priv, " traffic load: %d\n", coex->bt_traffic_load);
IWL_DEBUG_COEX(priv, " CI compliance: %d\n",
coex->bt_ci_compliance);
iwlagn_print_uartmsg(priv, uart_msg);
priv->last_bt_traffic_load = priv->bt_traffic_load;
priv->bt_is_sco = iwlagn_bt_traffic_is_sco(uart_msg);
if (priv->iw_mode != NL80211_IFTYPE_ADHOC) {
if (priv->bt_status != coex->bt_status ||
priv->last_bt_traffic_load != coex->bt_traffic_load) {
if (coex->bt_status) {
/* BT on */
if (!priv->bt_ch_announce)
priv->bt_traffic_load =
IWL_BT_COEX_TRAFFIC_LOAD_HIGH;
else
priv->bt_traffic_load =
coex->bt_traffic_load;
} else {
/* BT off */
priv->bt_traffic_load =
IWL_BT_COEX_TRAFFIC_LOAD_NONE;
}
priv->bt_status = coex->bt_status;
queue_work(priv->shrd->workqueue,
&priv->bt_traffic_change_work);
}
}
iwlagn_set_kill_msk(priv, uart_msg);
/* FIXME: based on notification, adjust the prio_boost */
spin_lock_irqsave(&priv->shrd->lock, flags);
priv->bt_ci_compliance = coex->bt_ci_compliance;
spin_unlock_irqrestore(&priv->shrd->lock, flags);
}
void iwlagn_bt_rx_handler_setup(struct iwl_priv *priv)
{
priv->rx_handlers[REPLY_BT_COEX_PROFILE_NOTIF] =
iwlagn_bt_coex_profile_notif;
}
void iwlagn_bt_setup_deferred_work(struct iwl_priv *priv)
{
INIT_WORK(&priv->bt_traffic_change_work,
iwlagn_bt_traffic_change_work);
}
void iwlagn_bt_cancel_deferred_work(struct iwl_priv *priv)
{
cancel_work_sync(&priv->bt_traffic_change_work);
}
static bool is_single_rx_stream(struct iwl_priv *priv)
{
return priv->current_ht_config.smps == IEEE80211_SMPS_STATIC ||
priv->current_ht_config.single_chain_sufficient;
}
#define IWL_NUM_RX_CHAINS_MULTIPLE 3
#define IWL_NUM_RX_CHAINS_SINGLE 2
#define IWL_NUM_IDLE_CHAINS_DUAL 2
#define IWL_NUM_IDLE_CHAINS_SINGLE 1
/*
* Determine how many receiver/antenna chains to use.
*
* More provides better reception via diversity. Fewer saves power
* at the expense of throughput, but only when not in powersave to
* start with.
*
* MIMO (dual stream) requires at least 2, but works better with 3.
* This does not determine *which* chains to use, just how many.
*/
static int iwl_get_active_rx_chain_count(struct iwl_priv *priv)
{
if (priv->cfg->bt_params &&
priv->cfg->bt_params->advanced_bt_coexist &&
(priv->bt_full_concurrent ||
priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
/*
* only use chain 'A' in bt high traffic load or
* full concurrency mode
*/
return IWL_NUM_RX_CHAINS_SINGLE;
}
/* # of Rx chains to use when expecting MIMO. */
if (is_single_rx_stream(priv))
return IWL_NUM_RX_CHAINS_SINGLE;
else
return IWL_NUM_RX_CHAINS_MULTIPLE;
}
/*
* When we are in power saving mode, unless device support spatial
* multiplexing power save, use the active count for rx chain count.
*/
static int iwl_get_idle_rx_chain_count(struct iwl_priv *priv, int active_cnt)
{
/* # Rx chains when idling, depending on SMPS mode */
switch (priv->current_ht_config.smps) {
case IEEE80211_SMPS_STATIC:
case IEEE80211_SMPS_DYNAMIC:
return IWL_NUM_IDLE_CHAINS_SINGLE;
case IEEE80211_SMPS_OFF:
return active_cnt;
default:
WARN(1, "invalid SMPS mode %d",
priv->current_ht_config.smps);
return active_cnt;
}
}
/* up to 4 chains */
static u8 iwl_count_chain_bitmap(u32 chain_bitmap)
{
u8 res;
res = (chain_bitmap & BIT(0)) >> 0;
res += (chain_bitmap & BIT(1)) >> 1;
res += (chain_bitmap & BIT(2)) >> 2;
res += (chain_bitmap & BIT(3)) >> 3;
return res;
}
/**
* iwlagn_set_rxon_chain - Set up Rx chain usage in "staging" RXON image
*
* Selects how many and which Rx receivers/antennas/chains to use.
* This should not be used for scan command ... it puts data in wrong place.
*/
void iwlagn_set_rxon_chain(struct iwl_priv *priv, struct iwl_rxon_context *ctx)
{
bool is_single = is_single_rx_stream(priv);
bool is_cam = !test_bit(STATUS_POWER_PMI, &priv->shrd->status);
u8 idle_rx_cnt, active_rx_cnt, valid_rx_cnt;
u32 active_chains;
u16 rx_chain;
/* Tell uCode which antennas are actually connected.
* Before first association, we assume all antennas are connected.
* Just after first association, iwl_chain_noise_calibration()
* checks which antennas actually *are* connected. */
if (priv->chain_noise_data.active_chains)
active_chains = priv->chain_noise_data.active_chains;
else
active_chains = hw_params(priv).valid_rx_ant;
if (priv->cfg->bt_params &&
priv->cfg->bt_params->advanced_bt_coexist &&
(priv->bt_full_concurrent ||
priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)) {
/*
* only use chain 'A' in bt high traffic load or
* full concurrency mode
*/
active_chains = first_antenna(active_chains);
}
rx_chain = active_chains << RXON_RX_CHAIN_VALID_POS;
/* How many receivers should we use? */
active_rx_cnt = iwl_get_active_rx_chain_count(priv);
idle_rx_cnt = iwl_get_idle_rx_chain_count(priv, active_rx_cnt);
/* correct rx chain count according hw settings
* and chain noise calibration
*/
valid_rx_cnt = iwl_count_chain_bitmap(active_chains);
if (valid_rx_cnt < active_rx_cnt)
active_rx_cnt = valid_rx_cnt;
if (valid_rx_cnt < idle_rx_cnt)
idle_rx_cnt = valid_rx_cnt;
rx_chain |= active_rx_cnt << RXON_RX_CHAIN_MIMO_CNT_POS;
rx_chain |= idle_rx_cnt << RXON_RX_CHAIN_CNT_POS;
ctx->staging.rx_chain = cpu_to_le16(rx_chain);
if (!is_single && (active_rx_cnt >= IWL_NUM_RX_CHAINS_SINGLE) && is_cam)
ctx->staging.rx_chain |= RXON_RX_CHAIN_MIMO_FORCE_MSK;
else
ctx->staging.rx_chain &= ~RXON_RX_CHAIN_MIMO_FORCE_MSK;
IWL_DEBUG_ASSOC(priv, "rx_chain=0x%X active=%d idle=%d\n",
ctx->staging.rx_chain,
active_rx_cnt, idle_rx_cnt);
WARN_ON(active_rx_cnt == 0 || idle_rx_cnt == 0 ||
active_rx_cnt < idle_rx_cnt);
}
u8 iwl_toggle_tx_ant(struct iwl_priv *priv, u8 ant, u8 valid)
{
int i;
u8 ind = ant;
if (priv->band == IEEE80211_BAND_2GHZ &&
priv->bt_traffic_load >= IWL_BT_COEX_TRAFFIC_LOAD_HIGH)
return 0;
for (i = 0; i < RATE_ANT_NUM - 1; i++) {
ind = (ind + 1) < RATE_ANT_NUM ? ind + 1 : 0;
if (valid & BIT(ind))
return ind;
}
return ant;
}
/* notification wait support */
void iwlagn_init_notification_wait(struct iwl_priv *priv,
struct iwl_notification_wait *wait_entry,
u8 cmd,
void (*fn)(struct iwl_priv *priv,
struct iwl_rx_packet *pkt,
void *data),
void *fn_data)
{
wait_entry->fn = fn;
wait_entry->fn_data = fn_data;
wait_entry->cmd = cmd;
wait_entry->triggered = false;
wait_entry->aborted = false;
spin_lock_bh(&priv->notif_wait_lock);
list_add(&wait_entry->list, &priv->notif_waits);
spin_unlock_bh(&priv->notif_wait_lock);
}
int iwlagn_wait_notification(struct iwl_priv *priv,
struct iwl_notification_wait *wait_entry,
unsigned long timeout)
{
int ret;
ret = wait_event_timeout(priv->notif_waitq,
wait_entry->triggered || wait_entry->aborted,
timeout);
spin_lock_bh(&priv->notif_wait_lock);
list_del(&wait_entry->list);
spin_unlock_bh(&priv->notif_wait_lock);
if (wait_entry->aborted)
return -EIO;
/* return value is always >= 0 */
if (ret <= 0)
return -ETIMEDOUT;
return 0;
}
void iwlagn_remove_notification(struct iwl_priv *priv,
struct iwl_notification_wait *wait_entry)
{
spin_lock_bh(&priv->notif_wait_lock);
list_del(&wait_entry->list);
spin_unlock_bh(&priv->notif_wait_lock);
}