OpenCloudOS-Kernel/drivers/usb/core/usb.c

1139 lines
32 KiB
C

/*
* drivers/usb/core/usb.c
*
* (C) Copyright Linus Torvalds 1999
* (C) Copyright Johannes Erdfelt 1999-2001
* (C) Copyright Andreas Gal 1999
* (C) Copyright Gregory P. Smith 1999
* (C) Copyright Deti Fliegl 1999 (new USB architecture)
* (C) Copyright Randy Dunlap 2000
* (C) Copyright David Brownell 2000-2004
* (C) Copyright Yggdrasil Computing, Inc. 2000
* (usb_device_id matching changes by Adam J. Richter)
* (C) Copyright Greg Kroah-Hartman 2002-2003
*
* NOTE! This is not actually a driver at all, rather this is
* just a collection of helper routines that implement the
* generic USB things that the real drivers can use..
*
* Think of this as a "USB library" rather than anything else.
* It should be considered a slave, with no callbacks. Callbacks
* are evil.
*/
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/string.h>
#include <linux/bitops.h>
#include <linux/slab.h>
#include <linux/interrupt.h> /* for in_interrupt() */
#include <linux/kmod.h>
#include <linux/init.h>
#include <linux/spinlock.h>
#include <linux/errno.h>
#include <linux/usb.h>
#include <linux/usb/hcd.h>
#include <linux/mutex.h>
#include <linux/workqueue.h>
#include <linux/debugfs.h>
#include <linux/usb/of.h>
#include <asm/io.h>
#include <linux/scatterlist.h>
#include <linux/mm.h>
#include <linux/dma-mapping.h>
#include "usb.h"
const char *usbcore_name = "usbcore";
static bool nousb; /* Disable USB when built into kernel image */
module_param(nousb, bool, 0444);
/*
* for external read access to <nousb>
*/
int usb_disabled(void)
{
return nousb;
}
EXPORT_SYMBOL_GPL(usb_disabled);
#ifdef CONFIG_PM
static int usb_autosuspend_delay = 2; /* Default delay value,
* in seconds */
module_param_named(autosuspend, usb_autosuspend_delay, int, 0644);
MODULE_PARM_DESC(autosuspend, "default autosuspend delay");
#else
#define usb_autosuspend_delay 0
#endif
/**
* usb_find_alt_setting() - Given a configuration, find the alternate setting
* for the given interface.
* @config: the configuration to search (not necessarily the current config).
* @iface_num: interface number to search in
* @alt_num: alternate interface setting number to search for.
*
* Search the configuration's interface cache for the given alt setting.
*
* Return: The alternate setting, if found. %NULL otherwise.
*/
struct usb_host_interface *usb_find_alt_setting(
struct usb_host_config *config,
unsigned int iface_num,
unsigned int alt_num)
{
struct usb_interface_cache *intf_cache = NULL;
int i;
for (i = 0; i < config->desc.bNumInterfaces; i++) {
if (config->intf_cache[i]->altsetting[0].desc.bInterfaceNumber
== iface_num) {
intf_cache = config->intf_cache[i];
break;
}
}
if (!intf_cache)
return NULL;
for (i = 0; i < intf_cache->num_altsetting; i++)
if (intf_cache->altsetting[i].desc.bAlternateSetting == alt_num)
return &intf_cache->altsetting[i];
printk(KERN_DEBUG "Did not find alt setting %u for intf %u, "
"config %u\n", alt_num, iface_num,
config->desc.bConfigurationValue);
return NULL;
}
EXPORT_SYMBOL_GPL(usb_find_alt_setting);
/**
* usb_ifnum_to_if - get the interface object with a given interface number
* @dev: the device whose current configuration is considered
* @ifnum: the desired interface
*
* This walks the device descriptor for the currently active configuration
* to find the interface object with the particular interface number.
*
* Note that configuration descriptors are not required to assign interface
* numbers sequentially, so that it would be incorrect to assume that
* the first interface in that descriptor corresponds to interface zero.
* This routine helps device drivers avoid such mistakes.
* However, you should make sure that you do the right thing with any
* alternate settings available for this interfaces.
*
* Don't call this function unless you are bound to one of the interfaces
* on this device or you have locked the device!
*
* Return: A pointer to the interface that has @ifnum as interface number,
* if found. %NULL otherwise.
*/
struct usb_interface *usb_ifnum_to_if(const struct usb_device *dev,
unsigned ifnum)
{
struct usb_host_config *config = dev->actconfig;
int i;
if (!config)
return NULL;
for (i = 0; i < config->desc.bNumInterfaces; i++)
if (config->interface[i]->altsetting[0]
.desc.bInterfaceNumber == ifnum)
return config->interface[i];
return NULL;
}
EXPORT_SYMBOL_GPL(usb_ifnum_to_if);
/**
* usb_altnum_to_altsetting - get the altsetting structure with a given alternate setting number.
* @intf: the interface containing the altsetting in question
* @altnum: the desired alternate setting number
*
* This searches the altsetting array of the specified interface for
* an entry with the correct bAlternateSetting value.
*
* Note that altsettings need not be stored sequentially by number, so
* it would be incorrect to assume that the first altsetting entry in
* the array corresponds to altsetting zero. This routine helps device
* drivers avoid such mistakes.
*
* Don't call this function unless you are bound to the intf interface
* or you have locked the device!
*
* Return: A pointer to the entry of the altsetting array of @intf that
* has @altnum as the alternate setting number. %NULL if not found.
*/
struct usb_host_interface *usb_altnum_to_altsetting(
const struct usb_interface *intf,
unsigned int altnum)
{
int i;
for (i = 0; i < intf->num_altsetting; i++) {
if (intf->altsetting[i].desc.bAlternateSetting == altnum)
return &intf->altsetting[i];
}
return NULL;
}
EXPORT_SYMBOL_GPL(usb_altnum_to_altsetting);
struct find_interface_arg {
int minor;
struct device_driver *drv;
};
static int __find_interface(struct device *dev, void *data)
{
struct find_interface_arg *arg = data;
struct usb_interface *intf;
if (!is_usb_interface(dev))
return 0;
if (dev->driver != arg->drv)
return 0;
intf = to_usb_interface(dev);
return intf->minor == arg->minor;
}
/**
* usb_find_interface - find usb_interface pointer for driver and device
* @drv: the driver whose current configuration is considered
* @minor: the minor number of the desired device
*
* This walks the bus device list and returns a pointer to the interface
* with the matching minor and driver. Note, this only works for devices
* that share the USB major number.
*
* Return: A pointer to the interface with the matching major and @minor.
*/
struct usb_interface *usb_find_interface(struct usb_driver *drv, int minor)
{
struct find_interface_arg argb;
struct device *dev;
argb.minor = minor;
argb.drv = &drv->drvwrap.driver;
dev = bus_find_device(&usb_bus_type, NULL, &argb, __find_interface);
/* Drop reference count from bus_find_device */
put_device(dev);
return dev ? to_usb_interface(dev) : NULL;
}
EXPORT_SYMBOL_GPL(usb_find_interface);
struct each_dev_arg {
void *data;
int (*fn)(struct usb_device *, void *);
};
static int __each_dev(struct device *dev, void *data)
{
struct each_dev_arg *arg = (struct each_dev_arg *)data;
/* There are struct usb_interface on the same bus, filter them out */
if (!is_usb_device(dev))
return 0;
return arg->fn(to_usb_device(dev), arg->data);
}
/**
* usb_for_each_dev - iterate over all USB devices in the system
* @data: data pointer that will be handed to the callback function
* @fn: callback function to be called for each USB device
*
* Iterate over all USB devices and call @fn for each, passing it @data. If it
* returns anything other than 0, we break the iteration prematurely and return
* that value.
*/
int usb_for_each_dev(void *data, int (*fn)(struct usb_device *, void *))
{
struct each_dev_arg arg = {data, fn};
return bus_for_each_dev(&usb_bus_type, NULL, &arg, __each_dev);
}
EXPORT_SYMBOL_GPL(usb_for_each_dev);
/**
* usb_release_dev - free a usb device structure when all users of it are finished.
* @dev: device that's been disconnected
*
* Will be called only by the device core when all users of this usb device are
* done.
*/
static void usb_release_dev(struct device *dev)
{
struct usb_device *udev;
struct usb_hcd *hcd;
udev = to_usb_device(dev);
hcd = bus_to_hcd(udev->bus);
usb_destroy_configuration(udev);
usb_release_bos_descriptor(udev);
usb_put_hcd(hcd);
kfree(udev->product);
kfree(udev->manufacturer);
kfree(udev->serial);
kfree(udev);
}
static int usb_dev_uevent(struct device *dev, struct kobj_uevent_env *env)
{
struct usb_device *usb_dev;
usb_dev = to_usb_device(dev);
if (add_uevent_var(env, "BUSNUM=%03d", usb_dev->bus->busnum))
return -ENOMEM;
if (add_uevent_var(env, "DEVNUM=%03d", usb_dev->devnum))
return -ENOMEM;
return 0;
}
#ifdef CONFIG_PM
/* USB device Power-Management thunks.
* There's no need to distinguish here between quiescing a USB device
* and powering it down; the generic_suspend() routine takes care of
* it by skipping the usb_port_suspend() call for a quiesce. And for
* USB interfaces there's no difference at all.
*/
static int usb_dev_prepare(struct device *dev)
{
return 0; /* Implement eventually? */
}
static void usb_dev_complete(struct device *dev)
{
/* Currently used only for rebinding interfaces */
usb_resume_complete(dev);
}
static int usb_dev_suspend(struct device *dev)
{
return usb_suspend(dev, PMSG_SUSPEND);
}
static int usb_dev_resume(struct device *dev)
{
return usb_resume(dev, PMSG_RESUME);
}
static int usb_dev_freeze(struct device *dev)
{
return usb_suspend(dev, PMSG_FREEZE);
}
static int usb_dev_thaw(struct device *dev)
{
return usb_resume(dev, PMSG_THAW);
}
static int usb_dev_poweroff(struct device *dev)
{
return usb_suspend(dev, PMSG_HIBERNATE);
}
static int usb_dev_restore(struct device *dev)
{
return usb_resume(dev, PMSG_RESTORE);
}
static const struct dev_pm_ops usb_device_pm_ops = {
.prepare = usb_dev_prepare,
.complete = usb_dev_complete,
.suspend = usb_dev_suspend,
.resume = usb_dev_resume,
.freeze = usb_dev_freeze,
.thaw = usb_dev_thaw,
.poweroff = usb_dev_poweroff,
.restore = usb_dev_restore,
.runtime_suspend = usb_runtime_suspend,
.runtime_resume = usb_runtime_resume,
.runtime_idle = usb_runtime_idle,
};
#endif /* CONFIG_PM */
static char *usb_devnode(struct device *dev,
umode_t *mode, kuid_t *uid, kgid_t *gid)
{
struct usb_device *usb_dev;
usb_dev = to_usb_device(dev);
return kasprintf(GFP_KERNEL, "bus/usb/%03d/%03d",
usb_dev->bus->busnum, usb_dev->devnum);
}
struct device_type usb_device_type = {
.name = "usb_device",
.release = usb_release_dev,
.uevent = usb_dev_uevent,
.devnode = usb_devnode,
#ifdef CONFIG_PM
.pm = &usb_device_pm_ops,
#endif
};
/* Returns 1 if @usb_bus is WUSB, 0 otherwise */
static unsigned usb_bus_is_wusb(struct usb_bus *bus)
{
struct usb_hcd *hcd = bus_to_hcd(bus);
return hcd->wireless;
}
/**
* usb_alloc_dev - usb device constructor (usbcore-internal)
* @parent: hub to which device is connected; null to allocate a root hub
* @bus: bus used to access the device
* @port1: one-based index of port; ignored for root hubs
* Context: !in_interrupt()
*
* Only hub drivers (including virtual root hub drivers for host
* controllers) should ever call this.
*
* This call may not be used in a non-sleeping context.
*
* Return: On success, a pointer to the allocated usb device. %NULL on
* failure.
*/
struct usb_device *usb_alloc_dev(struct usb_device *parent,
struct usb_bus *bus, unsigned port1)
{
struct usb_device *dev;
struct usb_hcd *usb_hcd = bus_to_hcd(bus);
unsigned root_hub = 0;
unsigned raw_port = port1;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev)
return NULL;
if (!usb_get_hcd(usb_hcd)) {
kfree(dev);
return NULL;
}
/* Root hubs aren't true devices, so don't allocate HCD resources */
if (usb_hcd->driver->alloc_dev && parent &&
!usb_hcd->driver->alloc_dev(usb_hcd, dev)) {
usb_put_hcd(bus_to_hcd(bus));
kfree(dev);
return NULL;
}
device_initialize(&dev->dev);
dev->dev.bus = &usb_bus_type;
dev->dev.type = &usb_device_type;
dev->dev.groups = usb_device_groups;
/*
* Fake a dma_mask/offset for the USB device:
* We cannot really use the dma-mapping API (dma_alloc_* and
* dma_map_*) for USB devices but instead need to use
* usb_alloc_coherent and pass data in 'urb's, but some subsystems
* manually look into the mask/offset pair to determine whether
* they need bounce buffers.
* Note: calling dma_set_mask() on a USB device would set the
* mask for the entire HCD, so don't do that.
*/
dev->dev.dma_mask = bus->controller->dma_mask;
dev->dev.dma_pfn_offset = bus->controller->dma_pfn_offset;
set_dev_node(&dev->dev, dev_to_node(bus->controller));
dev->state = USB_STATE_ATTACHED;
dev->lpm_disable_count = 1;
atomic_set(&dev->urbnum, 0);
INIT_LIST_HEAD(&dev->ep0.urb_list);
dev->ep0.desc.bLength = USB_DT_ENDPOINT_SIZE;
dev->ep0.desc.bDescriptorType = USB_DT_ENDPOINT;
/* ep0 maxpacket comes later, from device descriptor */
usb_enable_endpoint(dev, &dev->ep0, false);
dev->can_submit = 1;
/* Save readable and stable topology id, distinguishing devices
* by location for diagnostics, tools, driver model, etc. The
* string is a path along hub ports, from the root. Each device's
* dev->devpath will be stable until USB is re-cabled, and hubs
* are often labeled with these port numbers. The name isn't
* as stable: bus->busnum changes easily from modprobe order,
* cardbus or pci hotplugging, and so on.
*/
if (unlikely(!parent)) {
dev->devpath[0] = '0';
dev->route = 0;
dev->dev.parent = bus->controller;
dev_set_name(&dev->dev, "usb%d", bus->busnum);
root_hub = 1;
} else {
/* match any labeling on the hubs; it's one-based */
if (parent->devpath[0] == '0') {
snprintf(dev->devpath, sizeof dev->devpath,
"%d", port1);
/* Root ports are not counted in route string */
dev->route = 0;
} else {
snprintf(dev->devpath, sizeof dev->devpath,
"%s.%d", parent->devpath, port1);
/* Route string assumes hubs have less than 16 ports */
if (port1 < 15)
dev->route = parent->route +
(port1 << ((parent->level - 1)*4));
else
dev->route = parent->route +
(15 << ((parent->level - 1)*4));
}
dev->dev.parent = &parent->dev;
dev_set_name(&dev->dev, "%d-%s", bus->busnum, dev->devpath);
if (!parent->parent) {
/* device under root hub's port */
raw_port = usb_hcd_find_raw_port_number(usb_hcd,
port1);
}
dev->dev.of_node = usb_of_get_child_node(parent->dev.of_node,
raw_port);
/* hub driver sets up TT records */
}
dev->portnum = port1;
dev->bus = bus;
dev->parent = parent;
INIT_LIST_HEAD(&dev->filelist);
#ifdef CONFIG_PM
pm_runtime_set_autosuspend_delay(&dev->dev,
usb_autosuspend_delay * 1000);
dev->connect_time = jiffies;
dev->active_duration = -jiffies;
#endif
if (root_hub) /* Root hub always ok [and always wired] */
dev->authorized = 1;
else {
dev->authorized = !!HCD_DEV_AUTHORIZED(usb_hcd);
dev->wusb = usb_bus_is_wusb(bus) ? 1 : 0;
}
return dev;
}
EXPORT_SYMBOL_GPL(usb_alloc_dev);
/**
* usb_get_dev - increments the reference count of the usb device structure
* @dev: the device being referenced
*
* Each live reference to a device should be refcounted.
*
* Drivers for USB interfaces should normally record such references in
* their probe() methods, when they bind to an interface, and release
* them by calling usb_put_dev(), in their disconnect() methods.
*
* Return: A pointer to the device with the incremented reference counter.
*/
struct usb_device *usb_get_dev(struct usb_device *dev)
{
if (dev)
get_device(&dev->dev);
return dev;
}
EXPORT_SYMBOL_GPL(usb_get_dev);
/**
* usb_put_dev - release a use of the usb device structure
* @dev: device that's been disconnected
*
* Must be called when a user of a device is finished with it. When the last
* user of the device calls this function, the memory of the device is freed.
*/
void usb_put_dev(struct usb_device *dev)
{
if (dev)
put_device(&dev->dev);
}
EXPORT_SYMBOL_GPL(usb_put_dev);
/**
* usb_get_intf - increments the reference count of the usb interface structure
* @intf: the interface being referenced
*
* Each live reference to a interface must be refcounted.
*
* Drivers for USB interfaces should normally record such references in
* their probe() methods, when they bind to an interface, and release
* them by calling usb_put_intf(), in their disconnect() methods.
*
* Return: A pointer to the interface with the incremented reference counter.
*/
struct usb_interface *usb_get_intf(struct usb_interface *intf)
{
if (intf)
get_device(&intf->dev);
return intf;
}
EXPORT_SYMBOL_GPL(usb_get_intf);
/**
* usb_put_intf - release a use of the usb interface structure
* @intf: interface that's been decremented
*
* Must be called when a user of an interface is finished with it. When the
* last user of the interface calls this function, the memory of the interface
* is freed.
*/
void usb_put_intf(struct usb_interface *intf)
{
if (intf)
put_device(&intf->dev);
}
EXPORT_SYMBOL_GPL(usb_put_intf);
/* USB device locking
*
* USB devices and interfaces are locked using the semaphore in their
* embedded struct device. The hub driver guarantees that whenever a
* device is connected or disconnected, drivers are called with the
* USB device locked as well as their particular interface.
*
* Complications arise when several devices are to be locked at the same
* time. Only hub-aware drivers that are part of usbcore ever have to
* do this; nobody else needs to worry about it. The rule for locking
* is simple:
*
* When locking both a device and its parent, always lock the
* the parent first.
*/
/**
* usb_lock_device_for_reset - cautiously acquire the lock for a usb device structure
* @udev: device that's being locked
* @iface: interface bound to the driver making the request (optional)
*
* Attempts to acquire the device lock, but fails if the device is
* NOTATTACHED or SUSPENDED, or if iface is specified and the interface
* is neither BINDING nor BOUND. Rather than sleeping to wait for the
* lock, the routine polls repeatedly. This is to prevent deadlock with
* disconnect; in some drivers (such as usb-storage) the disconnect()
* or suspend() method will block waiting for a device reset to complete.
*
* Return: A negative error code for failure, otherwise 0.
*/
int usb_lock_device_for_reset(struct usb_device *udev,
const struct usb_interface *iface)
{
unsigned long jiffies_expire = jiffies + HZ;
if (udev->state == USB_STATE_NOTATTACHED)
return -ENODEV;
if (udev->state == USB_STATE_SUSPENDED)
return -EHOSTUNREACH;
if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
iface->condition == USB_INTERFACE_UNBOUND))
return -EINTR;
while (!usb_trylock_device(udev)) {
/* If we can't acquire the lock after waiting one second,
* we're probably deadlocked */
if (time_after(jiffies, jiffies_expire))
return -EBUSY;
msleep(15);
if (udev->state == USB_STATE_NOTATTACHED)
return -ENODEV;
if (udev->state == USB_STATE_SUSPENDED)
return -EHOSTUNREACH;
if (iface && (iface->condition == USB_INTERFACE_UNBINDING ||
iface->condition == USB_INTERFACE_UNBOUND))
return -EINTR;
}
return 0;
}
EXPORT_SYMBOL_GPL(usb_lock_device_for_reset);
/**
* usb_get_current_frame_number - return current bus frame number
* @dev: the device whose bus is being queried
*
* Return: The current frame number for the USB host controller used
* with the given USB device. This can be used when scheduling
* isochronous requests.
*
* Note: Different kinds of host controller have different "scheduling
* horizons". While one type might support scheduling only 32 frames
* into the future, others could support scheduling up to 1024 frames
* into the future.
*
*/
int usb_get_current_frame_number(struct usb_device *dev)
{
return usb_hcd_get_frame_number(dev);
}
EXPORT_SYMBOL_GPL(usb_get_current_frame_number);
/*-------------------------------------------------------------------*/
/*
* __usb_get_extra_descriptor() finds a descriptor of specific type in the
* extra field of the interface and endpoint descriptor structs.
*/
int __usb_get_extra_descriptor(char *buffer, unsigned size,
unsigned char type, void **ptr)
{
struct usb_descriptor_header *header;
while (size >= sizeof(struct usb_descriptor_header)) {
header = (struct usb_descriptor_header *)buffer;
if (header->bLength < 2) {
printk(KERN_ERR
"%s: bogus descriptor, type %d length %d\n",
usbcore_name,
header->bDescriptorType,
header->bLength);
return -1;
}
if (header->bDescriptorType == type) {
*ptr = header;
return 0;
}
buffer += header->bLength;
size -= header->bLength;
}
return -1;
}
EXPORT_SYMBOL_GPL(__usb_get_extra_descriptor);
/**
* usb_alloc_coherent - allocate dma-consistent buffer for URB_NO_xxx_DMA_MAP
* @dev: device the buffer will be used with
* @size: requested buffer size
* @mem_flags: affect whether allocation may block
* @dma: used to return DMA address of buffer
*
* Return: Either null (indicating no buffer could be allocated), or the
* cpu-space pointer to a buffer that may be used to perform DMA to the
* specified device. Such cpu-space buffers are returned along with the DMA
* address (through the pointer provided).
*
* Note:
* These buffers are used with URB_NO_xxx_DMA_MAP set in urb->transfer_flags
* to avoid behaviors like using "DMA bounce buffers", or thrashing IOMMU
* hardware during URB completion/resubmit. The implementation varies between
* platforms, depending on details of how DMA will work to this device.
* Using these buffers also eliminates cacheline sharing problems on
* architectures where CPU caches are not DMA-coherent. On systems without
* bus-snooping caches, these buffers are uncached.
*
* When the buffer is no longer used, free it with usb_free_coherent().
*/
void *usb_alloc_coherent(struct usb_device *dev, size_t size, gfp_t mem_flags,
dma_addr_t *dma)
{
if (!dev || !dev->bus)
return NULL;
return hcd_buffer_alloc(dev->bus, size, mem_flags, dma);
}
EXPORT_SYMBOL_GPL(usb_alloc_coherent);
/**
* usb_free_coherent - free memory allocated with usb_alloc_coherent()
* @dev: device the buffer was used with
* @size: requested buffer size
* @addr: CPU address of buffer
* @dma: DMA address of buffer
*
* This reclaims an I/O buffer, letting it be reused. The memory must have
* been allocated using usb_alloc_coherent(), and the parameters must match
* those provided in that allocation request.
*/
void usb_free_coherent(struct usb_device *dev, size_t size, void *addr,
dma_addr_t dma)
{
if (!dev || !dev->bus)
return;
if (!addr)
return;
hcd_buffer_free(dev->bus, size, addr, dma);
}
EXPORT_SYMBOL_GPL(usb_free_coherent);
/**
* usb_buffer_map - create DMA mapping(s) for an urb
* @urb: urb whose transfer_buffer/setup_packet will be mapped
*
* URB_NO_TRANSFER_DMA_MAP is added to urb->transfer_flags if the operation
* succeeds. If the device is connected to this system through a non-DMA
* controller, this operation always succeeds.
*
* This call would normally be used for an urb which is reused, perhaps
* as the target of a large periodic transfer, with usb_buffer_dmasync()
* calls to synchronize memory and dma state.
*
* Reverse the effect of this call with usb_buffer_unmap().
*
* Return: Either %NULL (indicating no buffer could be mapped), or @urb.
*
*/
#if 0
struct urb *usb_buffer_map(struct urb *urb)
{
struct usb_bus *bus;
struct device *controller;
if (!urb
|| !urb->dev
|| !(bus = urb->dev->bus)
|| !(controller = bus->controller))
return NULL;
if (controller->dma_mask) {
urb->transfer_dma = dma_map_single(controller,
urb->transfer_buffer, urb->transfer_buffer_length,
usb_pipein(urb->pipe)
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
/* FIXME generic api broken like pci, can't report errors */
/* if (urb->transfer_dma == DMA_ADDR_INVALID) return 0; */
} else
urb->transfer_dma = ~0;
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
return urb;
}
EXPORT_SYMBOL_GPL(usb_buffer_map);
#endif /* 0 */
/* XXX DISABLED, no users currently. If you wish to re-enable this
* XXX please determine whether the sync is to transfer ownership of
* XXX the buffer from device to cpu or vice verse, and thusly use the
* XXX appropriate _for_{cpu,device}() method. -DaveM
*/
#if 0
/**
* usb_buffer_dmasync - synchronize DMA and CPU view of buffer(s)
* @urb: urb whose transfer_buffer/setup_packet will be synchronized
*/
void usb_buffer_dmasync(struct urb *urb)
{
struct usb_bus *bus;
struct device *controller;
if (!urb
|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
|| !urb->dev
|| !(bus = urb->dev->bus)
|| !(controller = bus->controller))
return;
if (controller->dma_mask) {
dma_sync_single_for_cpu(controller,
urb->transfer_dma, urb->transfer_buffer_length,
usb_pipein(urb->pipe)
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
if (usb_pipecontrol(urb->pipe))
dma_sync_single_for_cpu(controller,
urb->setup_dma,
sizeof(struct usb_ctrlrequest),
DMA_TO_DEVICE);
}
}
EXPORT_SYMBOL_GPL(usb_buffer_dmasync);
#endif
/**
* usb_buffer_unmap - free DMA mapping(s) for an urb
* @urb: urb whose transfer_buffer will be unmapped
*
* Reverses the effect of usb_buffer_map().
*/
#if 0
void usb_buffer_unmap(struct urb *urb)
{
struct usb_bus *bus;
struct device *controller;
if (!urb
|| !(urb->transfer_flags & URB_NO_TRANSFER_DMA_MAP)
|| !urb->dev
|| !(bus = urb->dev->bus)
|| !(controller = bus->controller))
return;
if (controller->dma_mask) {
dma_unmap_single(controller,
urb->transfer_dma, urb->transfer_buffer_length,
usb_pipein(urb->pipe)
? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
urb->transfer_flags &= ~URB_NO_TRANSFER_DMA_MAP;
}
EXPORT_SYMBOL_GPL(usb_buffer_unmap);
#endif /* 0 */
#if 0
/**
* usb_buffer_map_sg - create scatterlist DMA mapping(s) for an endpoint
* @dev: device to which the scatterlist will be mapped
* @is_in: mapping transfer direction
* @sg: the scatterlist to map
* @nents: the number of entries in the scatterlist
*
* Return: Either < 0 (indicating no buffers could be mapped), or the
* number of DMA mapping array entries in the scatterlist.
*
* Note:
* The caller is responsible for placing the resulting DMA addresses from
* the scatterlist into URB transfer buffer pointers, and for setting the
* URB_NO_TRANSFER_DMA_MAP transfer flag in each of those URBs.
*
* Top I/O rates come from queuing URBs, instead of waiting for each one
* to complete before starting the next I/O. This is particularly easy
* to do with scatterlists. Just allocate and submit one URB for each DMA
* mapping entry returned, stopping on the first error or when all succeed.
* Better yet, use the usb_sg_*() calls, which do that (and more) for you.
*
* This call would normally be used when translating scatterlist requests,
* rather than usb_buffer_map(), since on some hardware (with IOMMUs) it
* may be able to coalesce mappings for improved I/O efficiency.
*
* Reverse the effect of this call with usb_buffer_unmap_sg().
*/
int usb_buffer_map_sg(const struct usb_device *dev, int is_in,
struct scatterlist *sg, int nents)
{
struct usb_bus *bus;
struct device *controller;
if (!dev
|| !(bus = dev->bus)
|| !(controller = bus->controller)
|| !controller->dma_mask)
return -EINVAL;
/* FIXME generic api broken like pci, can't report errors */
return dma_map_sg(controller, sg, nents,
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE) ? : -ENOMEM;
}
EXPORT_SYMBOL_GPL(usb_buffer_map_sg);
#endif
/* XXX DISABLED, no users currently. If you wish to re-enable this
* XXX please determine whether the sync is to transfer ownership of
* XXX the buffer from device to cpu or vice verse, and thusly use the
* XXX appropriate _for_{cpu,device}() method. -DaveM
*/
#if 0
/**
* usb_buffer_dmasync_sg - synchronize DMA and CPU view of scatterlist buffer(s)
* @dev: device to which the scatterlist will be mapped
* @is_in: mapping transfer direction
* @sg: the scatterlist to synchronize
* @n_hw_ents: the positive return value from usb_buffer_map_sg
*
* Use this when you are re-using a scatterlist's data buffers for
* another USB request.
*/
void usb_buffer_dmasync_sg(const struct usb_device *dev, int is_in,
struct scatterlist *sg, int n_hw_ents)
{
struct usb_bus *bus;
struct device *controller;
if (!dev
|| !(bus = dev->bus)
|| !(controller = bus->controller)
|| !controller->dma_mask)
return;
dma_sync_sg_for_cpu(controller, sg, n_hw_ents,
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(usb_buffer_dmasync_sg);
#endif
#if 0
/**
* usb_buffer_unmap_sg - free DMA mapping(s) for a scatterlist
* @dev: device to which the scatterlist will be mapped
* @is_in: mapping transfer direction
* @sg: the scatterlist to unmap
* @n_hw_ents: the positive return value from usb_buffer_map_sg
*
* Reverses the effect of usb_buffer_map_sg().
*/
void usb_buffer_unmap_sg(const struct usb_device *dev, int is_in,
struct scatterlist *sg, int n_hw_ents)
{
struct usb_bus *bus;
struct device *controller;
if (!dev
|| !(bus = dev->bus)
|| !(controller = bus->controller)
|| !controller->dma_mask)
return;
dma_unmap_sg(controller, sg, n_hw_ents,
is_in ? DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
EXPORT_SYMBOL_GPL(usb_buffer_unmap_sg);
#endif
/*
* Notifications of device and interface registration
*/
static int usb_bus_notify(struct notifier_block *nb, unsigned long action,
void *data)
{
struct device *dev = data;
switch (action) {
case BUS_NOTIFY_ADD_DEVICE:
if (dev->type == &usb_device_type)
(void) usb_create_sysfs_dev_files(to_usb_device(dev));
else if (dev->type == &usb_if_device_type)
usb_create_sysfs_intf_files(to_usb_interface(dev));
break;
case BUS_NOTIFY_DEL_DEVICE:
if (dev->type == &usb_device_type)
usb_remove_sysfs_dev_files(to_usb_device(dev));
else if (dev->type == &usb_if_device_type)
usb_remove_sysfs_intf_files(to_usb_interface(dev));
break;
}
return 0;
}
static struct notifier_block usb_bus_nb = {
.notifier_call = usb_bus_notify,
};
struct dentry *usb_debug_root;
EXPORT_SYMBOL_GPL(usb_debug_root);
static struct dentry *usb_debug_devices;
static int usb_debugfs_init(void)
{
usb_debug_root = debugfs_create_dir("usb", NULL);
if (!usb_debug_root)
return -ENOENT;
usb_debug_devices = debugfs_create_file("devices", 0444,
usb_debug_root, NULL,
&usbfs_devices_fops);
if (!usb_debug_devices) {
debugfs_remove(usb_debug_root);
usb_debug_root = NULL;
return -ENOENT;
}
return 0;
}
static void usb_debugfs_cleanup(void)
{
debugfs_remove(usb_debug_devices);
debugfs_remove(usb_debug_root);
}
/*
* Init
*/
static int __init usb_init(void)
{
int retval;
if (usb_disabled()) {
pr_info("%s: USB support disabled\n", usbcore_name);
return 0;
}
usb_init_pool_max();
retval = usb_debugfs_init();
if (retval)
goto out;
usb_acpi_register();
retval = bus_register(&usb_bus_type);
if (retval)
goto bus_register_failed;
retval = bus_register_notifier(&usb_bus_type, &usb_bus_nb);
if (retval)
goto bus_notifier_failed;
retval = usb_major_init();
if (retval)
goto major_init_failed;
retval = usb_register(&usbfs_driver);
if (retval)
goto driver_register_failed;
retval = usb_devio_init();
if (retval)
goto usb_devio_init_failed;
retval = usb_hub_init();
if (retval)
goto hub_init_failed;
retval = usb_register_device_driver(&usb_generic_driver, THIS_MODULE);
if (!retval)
goto out;
usb_hub_cleanup();
hub_init_failed:
usb_devio_cleanup();
usb_devio_init_failed:
usb_deregister(&usbfs_driver);
driver_register_failed:
usb_major_cleanup();
major_init_failed:
bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
bus_notifier_failed:
bus_unregister(&usb_bus_type);
bus_register_failed:
usb_acpi_unregister();
usb_debugfs_cleanup();
out:
return retval;
}
/*
* Cleanup
*/
static void __exit usb_exit(void)
{
/* This will matter if shutdown/reboot does exitcalls. */
if (usb_disabled())
return;
usb_deregister_device_driver(&usb_generic_driver);
usb_major_cleanup();
usb_deregister(&usbfs_driver);
usb_devio_cleanup();
usb_hub_cleanup();
bus_unregister_notifier(&usb_bus_type, &usb_bus_nb);
bus_unregister(&usb_bus_type);
usb_acpi_unregister();
usb_debugfs_cleanup();
idr_destroy(&usb_bus_idr);
}
subsys_initcall(usb_init);
module_exit(usb_exit);
MODULE_LICENSE("GPL");