OpenCloudOS-Kernel/arch/x86/kvm/vmx/nested.c

6289 lines
192 KiB
C

// SPDX-License-Identifier: GPL-2.0
#include <linux/frame.h>
#include <linux/percpu.h>
#include <asm/debugreg.h>
#include <asm/mmu_context.h>
#include "cpuid.h"
#include "hyperv.h"
#include "mmu.h"
#include "nested.h"
#include "pmu.h"
#include "trace.h"
#include "x86.h"
static bool __read_mostly enable_shadow_vmcs = 1;
module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
static bool __read_mostly nested_early_check = 0;
module_param(nested_early_check, bool, S_IRUGO);
#define CC(consistency_check) \
({ \
bool failed = (consistency_check); \
if (failed) \
trace_kvm_nested_vmenter_failed(#consistency_check, 0); \
failed; \
})
/*
* Hyper-V requires all of these, so mark them as supported even though
* they are just treated the same as all-context.
*/
#define VMX_VPID_EXTENT_SUPPORTED_MASK \
(VMX_VPID_EXTENT_INDIVIDUAL_ADDR_BIT | \
VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT | \
VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT | \
VMX_VPID_EXTENT_SINGLE_NON_GLOBAL_BIT)
#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
enum {
VMX_VMREAD_BITMAP,
VMX_VMWRITE_BITMAP,
VMX_BITMAP_NR
};
static unsigned long *vmx_bitmap[VMX_BITMAP_NR];
#define vmx_vmread_bitmap (vmx_bitmap[VMX_VMREAD_BITMAP])
#define vmx_vmwrite_bitmap (vmx_bitmap[VMX_VMWRITE_BITMAP])
struct shadow_vmcs_field {
u16 encoding;
u16 offset;
};
static struct shadow_vmcs_field shadow_read_only_fields[] = {
#define SHADOW_FIELD_RO(x, y) { x, offsetof(struct vmcs12, y) },
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_only_fields =
ARRAY_SIZE(shadow_read_only_fields);
static struct shadow_vmcs_field shadow_read_write_fields[] = {
#define SHADOW_FIELD_RW(x, y) { x, offsetof(struct vmcs12, y) },
#include "vmcs_shadow_fields.h"
};
static int max_shadow_read_write_fields =
ARRAY_SIZE(shadow_read_write_fields);
static void init_vmcs_shadow_fields(void)
{
int i, j;
memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
for (i = j = 0; i < max_shadow_read_only_fields; i++) {
struct shadow_vmcs_field entry = shadow_read_only_fields[i];
u16 field = entry.encoding;
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
(i + 1 == max_shadow_read_only_fields ||
shadow_read_only_fields[i + 1].encoding != field + 1))
pr_err("Missing field from shadow_read_only_field %x\n",
field + 1);
clear_bit(field, vmx_vmread_bitmap);
if (field & 1)
#ifdef CONFIG_X86_64
continue;
#else
entry.offset += sizeof(u32);
#endif
shadow_read_only_fields[j++] = entry;
}
max_shadow_read_only_fields = j;
for (i = j = 0; i < max_shadow_read_write_fields; i++) {
struct shadow_vmcs_field entry = shadow_read_write_fields[i];
u16 field = entry.encoding;
if (vmcs_field_width(field) == VMCS_FIELD_WIDTH_U64 &&
(i + 1 == max_shadow_read_write_fields ||
shadow_read_write_fields[i + 1].encoding != field + 1))
pr_err("Missing field from shadow_read_write_field %x\n",
field + 1);
WARN_ONCE(field >= GUEST_ES_AR_BYTES &&
field <= GUEST_TR_AR_BYTES,
"Update vmcs12_write_any() to drop reserved bits from AR_BYTES");
/*
* PML and the preemption timer can be emulated, but the
* processor cannot vmwrite to fields that don't exist
* on bare metal.
*/
switch (field) {
case GUEST_PML_INDEX:
if (!cpu_has_vmx_pml())
continue;
break;
case VMX_PREEMPTION_TIMER_VALUE:
if (!cpu_has_vmx_preemption_timer())
continue;
break;
case GUEST_INTR_STATUS:
if (!cpu_has_vmx_apicv())
continue;
break;
default:
break;
}
clear_bit(field, vmx_vmwrite_bitmap);
clear_bit(field, vmx_vmread_bitmap);
if (field & 1)
#ifdef CONFIG_X86_64
continue;
#else
entry.offset += sizeof(u32);
#endif
shadow_read_write_fields[j++] = entry;
}
max_shadow_read_write_fields = j;
}
/*
* The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
* set the success or error code of an emulated VMX instruction (as specified
* by Vol 2B, VMX Instruction Reference, "Conventions"), and skip the emulated
* instruction.
*/
static int nested_vmx_succeed(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
{
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_CF);
return kvm_skip_emulated_instruction(vcpu);
}
static int nested_vmx_failValid(struct kvm_vcpu *vcpu,
u32 vm_instruction_error)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* failValid writes the error number to the current VMCS, which
* can't be done if there isn't a current VMCS.
*/
if (vmx->nested.current_vmptr == -1ull && !vmx->nested.hv_evmcs)
return nested_vmx_failInvalid(vcpu);
vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
& ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
X86_EFLAGS_SF | X86_EFLAGS_OF))
| X86_EFLAGS_ZF);
get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
/*
* We don't need to force a shadow sync because
* VM_INSTRUCTION_ERROR is not shadowed
*/
return kvm_skip_emulated_instruction(vcpu);
}
static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
{
/* TODO: not to reset guest simply here. */
kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
pr_debug_ratelimited("kvm: nested vmx abort, indicator %d\n", indicator);
}
static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
{
return fixed_bits_valid(control, low, high);
}
static inline u64 vmx_control_msr(u32 low, u32 high)
{
return low | ((u64)high << 32);
}
static void vmx_disable_shadow_vmcs(struct vcpu_vmx *vmx)
{
secondary_exec_controls_clearbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
vmx->nested.need_vmcs12_to_shadow_sync = false;
}
static inline void nested_release_evmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.hv_evmcs)
return;
kvm_vcpu_unmap(vcpu, &vmx->nested.hv_evmcs_map, true);
vmx->nested.hv_evmcs_vmptr = 0;
vmx->nested.hv_evmcs = NULL;
}
/*
* Free whatever needs to be freed from vmx->nested when L1 goes down, or
* just stops using VMX.
*/
static void free_nested(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!vmx->nested.vmxon && !vmx->nested.smm.vmxon)
return;
kvm_clear_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
vmx->nested.vmxon = false;
vmx->nested.smm.vmxon = false;
free_vpid(vmx->nested.vpid02);
vmx->nested.posted_intr_nv = -1;
vmx->nested.current_vmptr = -1ull;
if (enable_shadow_vmcs) {
vmx_disable_shadow_vmcs(vmx);
vmcs_clear(vmx->vmcs01.shadow_vmcs);
free_vmcs(vmx->vmcs01.shadow_vmcs);
vmx->vmcs01.shadow_vmcs = NULL;
}
kfree(vmx->nested.cached_vmcs12);
vmx->nested.cached_vmcs12 = NULL;
kfree(vmx->nested.cached_shadow_vmcs12);
vmx->nested.cached_shadow_vmcs12 = NULL;
/* Unpin physical memory we referred to in the vmcs02 */
if (vmx->nested.apic_access_page) {
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
vmx->nested.pi_desc = NULL;
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
nested_release_evmcs(vcpu);
free_loaded_vmcs(&vmx->nested.vmcs02);
}
static void vmx_sync_vmcs_host_state(struct vcpu_vmx *vmx,
struct loaded_vmcs *prev)
{
struct vmcs_host_state *dest, *src;
if (unlikely(!vmx->guest_state_loaded))
return;
src = &prev->host_state;
dest = &vmx->loaded_vmcs->host_state;
vmx_set_host_fs_gs(dest, src->fs_sel, src->gs_sel, src->fs_base, src->gs_base);
dest->ldt_sel = src->ldt_sel;
#ifdef CONFIG_X86_64
dest->ds_sel = src->ds_sel;
dest->es_sel = src->es_sel;
#endif
}
static void vmx_switch_vmcs(struct kvm_vcpu *vcpu, struct loaded_vmcs *vmcs)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct loaded_vmcs *prev;
int cpu;
if (vmx->loaded_vmcs == vmcs)
return;
cpu = get_cpu();
prev = vmx->loaded_vmcs;
vmx->loaded_vmcs = vmcs;
vmx_vcpu_load_vmcs(vcpu, cpu);
vmx_sync_vmcs_host_state(vmx, prev);
put_cpu();
vmx_segment_cache_clear(vmx);
}
/*
* Ensure that the current vmcs of the logical processor is the
* vmcs01 of the vcpu before calling free_nested().
*/
void nested_vmx_free_vcpu(struct kvm_vcpu *vcpu)
{
vcpu_load(vcpu);
vmx_leave_nested(vcpu);
vmx_switch_vmcs(vcpu, &to_vmx(vcpu)->vmcs01);
free_nested(vcpu);
vcpu_put(vcpu);
}
static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 exit_reason;
unsigned long exit_qualification = vcpu->arch.exit_qualification;
if (vmx->nested.pml_full) {
exit_reason = EXIT_REASON_PML_FULL;
vmx->nested.pml_full = false;
exit_qualification &= INTR_INFO_UNBLOCK_NMI;
} else if (fault->error_code & PFERR_RSVD_MASK)
exit_reason = EXIT_REASON_EPT_MISCONFIG;
else
exit_reason = EXIT_REASON_EPT_VIOLATION;
nested_vmx_vmexit(vcpu, exit_reason, 0, exit_qualification);
vmcs12->guest_physical_address = fault->address;
}
static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
{
WARN_ON(mmu_is_nested(vcpu));
vcpu->arch.mmu = &vcpu->arch.guest_mmu;
kvm_init_shadow_ept_mmu(vcpu,
to_vmx(vcpu)->nested.msrs.ept_caps &
VMX_EPT_EXECUTE_ONLY_BIT,
nested_ept_ad_enabled(vcpu),
nested_ept_get_eptp(vcpu));
vcpu->arch.mmu->get_guest_pgd = nested_ept_get_eptp;
vcpu->arch.mmu->inject_page_fault = nested_ept_inject_page_fault;
vcpu->arch.mmu->get_pdptr = kvm_pdptr_read;
vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
}
static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
{
vcpu->arch.mmu = &vcpu->arch.root_mmu;
vcpu->arch.walk_mmu = &vcpu->arch.root_mmu;
}
static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
u16 error_code)
{
bool inequality, bit;
bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
inequality =
(error_code & vmcs12->page_fault_error_code_mask) !=
vmcs12->page_fault_error_code_match;
return inequality ^ bit;
}
/*
* KVM wants to inject page-faults which it got to the guest. This function
* checks whether in a nested guest, we need to inject them to L1 or L2.
*/
static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned long *exit_qual)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned int nr = vcpu->arch.exception.nr;
bool has_payload = vcpu->arch.exception.has_payload;
unsigned long payload = vcpu->arch.exception.payload;
if (nr == PF_VECTOR) {
if (vcpu->arch.exception.nested_apf) {
*exit_qual = vcpu->arch.apf.nested_apf_token;
return 1;
}
if (nested_vmx_is_page_fault_vmexit(vmcs12,
vcpu->arch.exception.error_code)) {
*exit_qual = has_payload ? payload : vcpu->arch.cr2;
return 1;
}
} else if (vmcs12->exception_bitmap & (1u << nr)) {
if (nr == DB_VECTOR) {
if (!has_payload) {
payload = vcpu->arch.dr6;
payload &= ~(DR6_FIXED_1 | DR6_BT);
payload ^= DR6_RTM;
}
*exit_qual = payload;
} else
*exit_qual = 0;
return 1;
}
return 0;
}
static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
struct x86_exception *fault)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
WARN_ON(!is_guest_mode(vcpu));
if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code) &&
!to_vmx(vcpu)->nested.nested_run_pending) {
vmcs12->vm_exit_intr_error_code = fault->error_code;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
PF_VECTOR | INTR_TYPE_HARD_EXCEPTION |
INTR_INFO_DELIVER_CODE_MASK | INTR_INFO_VALID_MASK,
fault->address);
} else {
kvm_inject_page_fault(vcpu, fault);
}
}
static bool page_address_valid(struct kvm_vcpu *vcpu, gpa_t gpa)
{
return PAGE_ALIGNED(gpa) && !(gpa >> cpuid_maxphyaddr(vcpu));
}
static int nested_vmx_check_io_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->io_bitmap_a)) ||
CC(!page_address_valid(vcpu, vmcs12->io_bitmap_b)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->msr_bitmap)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_tpr_shadow_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->virtual_apic_page_addr)))
return -EINVAL;
return 0;
}
/*
* Check if MSR is intercepted for L01 MSR bitmap.
*/
static bool msr_write_intercepted_l01(struct kvm_vcpu *vcpu, u32 msr)
{
unsigned long *msr_bitmap;
int f = sizeof(unsigned long);
if (!cpu_has_vmx_msr_bitmap())
return true;
msr_bitmap = to_vmx(vcpu)->vmcs01.msr_bitmap;
if (msr <= 0x1fff) {
return !!test_bit(msr, msr_bitmap + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
return !!test_bit(msr, msr_bitmap + 0xc00 / f);
}
return true;
}
/*
* If a msr is allowed by L0, we should check whether it is allowed by L1.
* The corresponding bit will be cleared unless both of L0 and L1 allow it.
*/
static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
unsigned long *msr_bitmap_nested,
u32 msr, int type)
{
int f = sizeof(unsigned long);
/*
* See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
* have the write-low and read-high bitmap offsets the wrong way round.
* We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
*/
if (msr <= 0x1fff) {
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x000 / f))
/* read-low */
__clear_bit(msr, msr_bitmap_nested + 0x000 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0x800 / f))
/* write-low */
__clear_bit(msr, msr_bitmap_nested + 0x800 / f);
} else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
msr &= 0x1fff;
if (type & MSR_TYPE_R &&
!test_bit(msr, msr_bitmap_l1 + 0x400 / f))
/* read-high */
__clear_bit(msr, msr_bitmap_nested + 0x400 / f);
if (type & MSR_TYPE_W &&
!test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
/* write-high */
__clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
}
}
static inline void enable_x2apic_msr_intercepts(unsigned long *msr_bitmap)
{
int msr;
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
unsigned word = msr / BITS_PER_LONG;
msr_bitmap[word] = ~0;
msr_bitmap[word + (0x800 / sizeof(long))] = ~0;
}
}
/*
* Merge L0's and L1's MSR bitmap, return false to indicate that
* we do not use the hardware.
*/
static inline bool nested_vmx_prepare_msr_bitmap(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int msr;
unsigned long *msr_bitmap_l1;
unsigned long *msr_bitmap_l0 = to_vmx(vcpu)->nested.vmcs02.msr_bitmap;
struct kvm_host_map *map = &to_vmx(vcpu)->nested.msr_bitmap_map;
/* Nothing to do if the MSR bitmap is not in use. */
if (!cpu_has_vmx_msr_bitmap() ||
!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return false;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->msr_bitmap), map))
return false;
msr_bitmap_l1 = (unsigned long *)map->hva;
/*
* To keep the control flow simple, pay eight 8-byte writes (sixteen
* 4-byte writes on 32-bit systems) up front to enable intercepts for
* the x2APIC MSR range and selectively disable them below.
*/
enable_x2apic_msr_intercepts(msr_bitmap_l0);
if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
if (nested_cpu_has_apic_reg_virt(vmcs12)) {
/*
* L0 need not intercept reads for MSRs between 0x800
* and 0x8ff, it just lets the processor take the value
* from the virtual-APIC page; take those 256 bits
* directly from the L1 bitmap.
*/
for (msr = 0x800; msr <= 0x8ff; msr += BITS_PER_LONG) {
unsigned word = msr / BITS_PER_LONG;
msr_bitmap_l0[word] = msr_bitmap_l1[word];
}
}
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_TASKPRI),
MSR_TYPE_R | MSR_TYPE_W);
if (nested_cpu_has_vid(vmcs12)) {
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_EOI),
MSR_TYPE_W);
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
X2APIC_MSR(APIC_SELF_IPI),
MSR_TYPE_W);
}
}
/* KVM unconditionally exposes the FS/GS base MSRs to L1. */
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_FS_BASE, MSR_TYPE_RW);
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_GS_BASE, MSR_TYPE_RW);
nested_vmx_disable_intercept_for_msr(msr_bitmap_l1, msr_bitmap_l0,
MSR_KERNEL_GS_BASE, MSR_TYPE_RW);
/*
* Checking the L0->L1 bitmap is trying to verify two things:
*
* 1. L0 gave a permission to L1 to actually passthrough the MSR. This
* ensures that we do not accidentally generate an L02 MSR bitmap
* from the L12 MSR bitmap that is too permissive.
* 2. That L1 or L2s have actually used the MSR. This avoids
* unnecessarily merging of the bitmap if the MSR is unused. This
* works properly because we only update the L01 MSR bitmap lazily.
* So even if L0 should pass L1 these MSRs, the L01 bitmap is only
* updated to reflect this when L1 (or its L2s) actually write to
* the MSR.
*/
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_SPEC_CTRL))
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
MSR_IA32_SPEC_CTRL,
MSR_TYPE_R | MSR_TYPE_W);
if (!msr_write_intercepted_l01(vcpu, MSR_IA32_PRED_CMD))
nested_vmx_disable_intercept_for_msr(
msr_bitmap_l1, msr_bitmap_l0,
MSR_IA32_PRED_CMD,
MSR_TYPE_W);
kvm_vcpu_unmap(vcpu, &to_vmx(vcpu)->nested.msr_bitmap_map, false);
return true;
}
static void nested_cache_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_host_map map;
struct vmcs12 *shadow;
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
vmcs12->vmcs_link_pointer == -1ull)
return;
shadow = get_shadow_vmcs12(vcpu);
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map))
return;
memcpy(shadow, map.hva, VMCS12_SIZE);
kvm_vcpu_unmap(vcpu, &map, false);
}
static void nested_flush_cached_shadow_vmcs12(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!nested_cpu_has_shadow_vmcs(vmcs12) ||
vmcs12->vmcs_link_pointer == -1ull)
return;
kvm_write_guest(vmx->vcpu.kvm, vmcs12->vmcs_link_pointer,
get_shadow_vmcs12(vcpu), VMCS12_SIZE);
}
/*
* In nested virtualization, check if L1 has set
* VM_EXIT_ACK_INTR_ON_EXIT
*/
static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
{
return get_vmcs12(vcpu)->vm_exit_controls &
VM_EXIT_ACK_INTR_ON_EXIT;
}
static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
{
return nested_cpu_has_nmi_exiting(get_vmcs12(vcpu));
}
static int nested_vmx_check_apic_access_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) &&
CC(!page_address_valid(vcpu, vmcs12->apic_access_addr)))
return -EINVAL;
else
return 0;
}
static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
!nested_cpu_has_apic_reg_virt(vmcs12) &&
!nested_cpu_has_vid(vmcs12) &&
!nested_cpu_has_posted_intr(vmcs12))
return 0;
/*
* If virtualize x2apic mode is enabled,
* virtualize apic access must be disabled.
*/
if (CC(nested_cpu_has_virt_x2apic_mode(vmcs12) &&
nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)))
return -EINVAL;
/*
* If virtual interrupt delivery is enabled,
* we must exit on external interrupts.
*/
if (CC(nested_cpu_has_vid(vmcs12) && !nested_exit_on_intr(vcpu)))
return -EINVAL;
/*
* bits 15:8 should be zero in posted_intr_nv,
* the descriptor address has been already checked
* in nested_get_vmcs12_pages.
*
* bits 5:0 of posted_intr_desc_addr should be zero.
*/
if (nested_cpu_has_posted_intr(vmcs12) &&
(CC(!nested_cpu_has_vid(vmcs12)) ||
CC(!nested_exit_intr_ack_set(vcpu)) ||
CC((vmcs12->posted_intr_nv & 0xff00)) ||
CC((vmcs12->posted_intr_desc_addr & 0x3f)) ||
CC((vmcs12->posted_intr_desc_addr >> cpuid_maxphyaddr(vcpu)))))
return -EINVAL;
/* tpr shadow is needed by all apicv features. */
if (CC(!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
u32 count, u64 addr)
{
int maxphyaddr;
if (count == 0)
return 0;
maxphyaddr = cpuid_maxphyaddr(vcpu);
if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
(addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr)
return -EINVAL;
return 0;
}
static int nested_vmx_check_exit_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_exit_msr_load_count,
vmcs12->vm_exit_msr_load_addr)) ||
CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_exit_msr_store_count,
vmcs12->vm_exit_msr_store_addr)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_entry_msr_switch_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_vmx_check_msr_switch(vcpu,
vmcs12->vm_entry_msr_load_count,
vmcs12->vm_entry_msr_load_addr)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_pml_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_pml(vmcs12))
return 0;
if (CC(!nested_cpu_has_ept(vmcs12)) ||
CC(!page_address_valid(vcpu, vmcs12->pml_address)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_unrestricted_guest_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST) &&
!nested_cpu_has_ept(vmcs12)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_mode_based_ept_exec_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (CC(nested_cpu_has2(vmcs12, SECONDARY_EXEC_MODE_BASED_EPT_EXEC) &&
!nested_cpu_has_ept(vmcs12)))
return -EINVAL;
return 0;
}
static int nested_vmx_check_shadow_vmcs_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (!nested_cpu_has_shadow_vmcs(vmcs12))
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->vmread_bitmap)) ||
CC(!page_address_valid(vcpu, vmcs12->vmwrite_bitmap)))
return -EINVAL;
return 0;
}
static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
/* x2APIC MSR accesses are not allowed */
if (CC(vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8))
return -EINVAL;
if (CC(e->index == MSR_IA32_UCODE_WRITE) || /* SDM Table 35-2 */
CC(e->index == MSR_IA32_UCODE_REV))
return -EINVAL;
if (CC(e->reserved != 0))
return -EINVAL;
return 0;
}
static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (CC(e->index == MSR_FS_BASE) ||
CC(e->index == MSR_GS_BASE) ||
CC(e->index == MSR_IA32_SMM_MONITOR_CTL) || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
struct vmx_msr_entry *e)
{
if (CC(e->index == MSR_IA32_SMBASE) || /* SMM is not supported */
nested_vmx_msr_check_common(vcpu, e))
return -EINVAL;
return 0;
}
static u32 nested_vmx_max_atomic_switch_msrs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u64 vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
vmx->nested.msrs.misc_high);
return (vmx_misc_max_msr(vmx_misc) + 1) * VMX_MISC_MSR_LIST_MULTIPLIER;
}
/*
* Load guest's/host's msr at nested entry/exit.
* return 0 for success, entry index for failure.
*
* One of the failure modes for MSR load/store is when a list exceeds the
* virtual hardware's capacity. To maintain compatibility with hardware inasmuch
* as possible, process all valid entries before failing rather than precheck
* for a capacity violation.
*/
static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u32 i;
struct vmx_msr_entry e;
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
if (unlikely(i >= max_msr_list_size))
goto fail;
if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
&e, sizeof(e))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(e));
goto fail;
}
if (nested_vmx_load_msr_check(vcpu, &e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e.index, e.reserved);
goto fail;
}
if (kvm_set_msr(vcpu, e.index, e.value)) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, e.value);
goto fail;
}
}
return 0;
fail:
return i + 1;
}
static bool nested_vmx_get_vmexit_msr_value(struct kvm_vcpu *vcpu,
u32 msr_index,
u64 *data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* If the L0 hypervisor stored a more accurate value for the TSC that
* does not include the time taken for emulation of the L2->L1
* VM-exit in L0, use the more accurate value.
*/
if (msr_index == MSR_IA32_TSC) {
int index = vmx_find_msr_index(&vmx->msr_autostore.guest,
MSR_IA32_TSC);
if (index >= 0) {
u64 val = vmx->msr_autostore.guest.val[index].value;
*data = kvm_read_l1_tsc(vcpu, val);
return true;
}
}
if (kvm_get_msr(vcpu, msr_index, data)) {
pr_debug_ratelimited("%s cannot read MSR (0x%x)\n", __func__,
msr_index);
return false;
}
return true;
}
static bool read_and_check_msr_entry(struct kvm_vcpu *vcpu, u64 gpa, int i,
struct vmx_msr_entry *e)
{
if (kvm_vcpu_read_guest(vcpu,
gpa + i * sizeof(*e),
e, 2 * sizeof(u32))) {
pr_debug_ratelimited(
"%s cannot read MSR entry (%u, 0x%08llx)\n",
__func__, i, gpa + i * sizeof(*e));
return false;
}
if (nested_vmx_store_msr_check(vcpu, e)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, i, e->index, e->reserved);
return false;
}
return true;
}
static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
{
u64 data;
u32 i;
struct vmx_msr_entry e;
u32 max_msr_list_size = nested_vmx_max_atomic_switch_msrs(vcpu);
for (i = 0; i < count; i++) {
if (unlikely(i >= max_msr_list_size))
return -EINVAL;
if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
return -EINVAL;
if (!nested_vmx_get_vmexit_msr_value(vcpu, e.index, &data))
return -EINVAL;
if (kvm_vcpu_write_guest(vcpu,
gpa + i * sizeof(e) +
offsetof(struct vmx_msr_entry, value),
&data, sizeof(data))) {
pr_debug_ratelimited(
"%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
__func__, i, e.index, data);
return -EINVAL;
}
}
return 0;
}
static bool nested_msr_store_list_has_msr(struct kvm_vcpu *vcpu, u32 msr_index)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
u32 count = vmcs12->vm_exit_msr_store_count;
u64 gpa = vmcs12->vm_exit_msr_store_addr;
struct vmx_msr_entry e;
u32 i;
for (i = 0; i < count; i++) {
if (!read_and_check_msr_entry(vcpu, gpa, i, &e))
return false;
if (e.index == msr_index)
return true;
}
return false;
}
static void prepare_vmx_msr_autostore_list(struct kvm_vcpu *vcpu,
u32 msr_index)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_msrs *autostore = &vmx->msr_autostore.guest;
bool in_vmcs12_store_list;
int msr_autostore_index;
bool in_autostore_list;
int last;
msr_autostore_index = vmx_find_msr_index(autostore, msr_index);
in_autostore_list = msr_autostore_index >= 0;
in_vmcs12_store_list = nested_msr_store_list_has_msr(vcpu, msr_index);
if (in_vmcs12_store_list && !in_autostore_list) {
if (autostore->nr == NR_LOADSTORE_MSRS) {
/*
* Emulated VMEntry does not fail here. Instead a less
* accurate value will be returned by
* nested_vmx_get_vmexit_msr_value() using kvm_get_msr()
* instead of reading the value from the vmcs02 VMExit
* MSR-store area.
*/
pr_warn_ratelimited(
"Not enough msr entries in msr_autostore. Can't add msr %x\n",
msr_index);
return;
}
last = autostore->nr++;
autostore->val[last].index = msr_index;
} else if (!in_vmcs12_store_list && in_autostore_list) {
last = --autostore->nr;
autostore->val[msr_autostore_index] = autostore->val[last];
}
}
static bool nested_cr3_valid(struct kvm_vcpu *vcpu, unsigned long val)
{
unsigned long invalid_mask;
invalid_mask = (~0ULL) << cpuid_maxphyaddr(vcpu);
return (val & invalid_mask) == 0;
}
/*
* Load guest's/host's cr3 at nested entry/exit. @nested_ept is true if we are
* emulating VM-Entry into a guest with EPT enabled. On failure, the expected
* Exit Qualification (for a VM-Entry consistency check VM-Exit) is assigned to
* @entry_failure_code.
*/
static int nested_vmx_load_cr3(struct kvm_vcpu *vcpu, unsigned long cr3, bool nested_ept,
u32 *entry_failure_code)
{
if (cr3 != kvm_read_cr3(vcpu) || (!nested_ept && pdptrs_changed(vcpu))) {
if (CC(!nested_cr3_valid(vcpu, cr3))) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
/*
* If PAE paging and EPT are both on, CR3 is not used by the CPU and
* must not be dereferenced.
*/
if (is_pae_paging(vcpu) && !nested_ept) {
if (CC(!load_pdptrs(vcpu, vcpu->arch.walk_mmu, cr3))) {
*entry_failure_code = ENTRY_FAIL_PDPTE;
return -EINVAL;
}
}
}
if (!nested_ept)
kvm_mmu_new_cr3(vcpu, cr3, false);
vcpu->arch.cr3 = cr3;
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
kvm_init_mmu(vcpu, false);
return 0;
}
/*
* Returns if KVM is able to config CPU to tag TLB entries
* populated by L2 differently than TLB entries populated
* by L1.
*
* If L0 uses EPT, L1 and L2 run with different EPTP because
* guest_mode is part of kvm_mmu_page_role. Thus, TLB entries
* are tagged with different EPTP.
*
* If L1 uses VPID and we allocated a vpid02, TLB entries are tagged
* with different VPID (L1 entries are tagged with vmx->vpid
* while L2 entries are tagged with vmx->nested.vpid02).
*/
static bool nested_has_guest_tlb_tag(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
return enable_ept ||
(nested_cpu_has_vpid(vmcs12) && to_vmx(vcpu)->nested.vpid02);
}
static u16 nested_get_vpid02(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
return vmx->nested.vpid02 ? vmx->nested.vpid02 : vmx->vpid;
}
static bool is_bitwise_subset(u64 superset, u64 subset, u64 mask)
{
superset &= mask;
subset &= mask;
return (superset | subset) == superset;
}
static int vmx_restore_vmx_basic(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved =
/* feature (except bit 48; see below) */
BIT_ULL(49) | BIT_ULL(54) | BIT_ULL(55) |
/* reserved */
BIT_ULL(31) | GENMASK_ULL(47, 45) | GENMASK_ULL(63, 56);
u64 vmx_basic = vmx->nested.msrs.basic;
if (!is_bitwise_subset(vmx_basic, data, feature_and_reserved))
return -EINVAL;
/*
* KVM does not emulate a version of VMX that constrains physical
* addresses of VMX structures (e.g. VMCS) to 32-bits.
*/
if (data & BIT_ULL(48))
return -EINVAL;
if (vmx_basic_vmcs_revision_id(vmx_basic) !=
vmx_basic_vmcs_revision_id(data))
return -EINVAL;
if (vmx_basic_vmcs_size(vmx_basic) > vmx_basic_vmcs_size(data))
return -EINVAL;
vmx->nested.msrs.basic = data;
return 0;
}
static int
vmx_restore_control_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 supported;
u32 *lowp, *highp;
switch (msr_index) {
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
lowp = &vmx->nested.msrs.pinbased_ctls_low;
highp = &vmx->nested.msrs.pinbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
lowp = &vmx->nested.msrs.procbased_ctls_low;
highp = &vmx->nested.msrs.procbased_ctls_high;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
lowp = &vmx->nested.msrs.exit_ctls_low;
highp = &vmx->nested.msrs.exit_ctls_high;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
lowp = &vmx->nested.msrs.entry_ctls_low;
highp = &vmx->nested.msrs.entry_ctls_high;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
lowp = &vmx->nested.msrs.secondary_ctls_low;
highp = &vmx->nested.msrs.secondary_ctls_high;
break;
default:
BUG();
}
supported = vmx_control_msr(*lowp, *highp);
/* Check must-be-1 bits are still 1. */
if (!is_bitwise_subset(data, supported, GENMASK_ULL(31, 0)))
return -EINVAL;
/* Check must-be-0 bits are still 0. */
if (!is_bitwise_subset(supported, data, GENMASK_ULL(63, 32)))
return -EINVAL;
*lowp = data;
*highp = data >> 32;
return 0;
}
static int vmx_restore_vmx_misc(struct vcpu_vmx *vmx, u64 data)
{
const u64 feature_and_reserved_bits =
/* feature */
BIT_ULL(5) | GENMASK_ULL(8, 6) | BIT_ULL(14) | BIT_ULL(15) |
BIT_ULL(28) | BIT_ULL(29) | BIT_ULL(30) |
/* reserved */
GENMASK_ULL(13, 9) | BIT_ULL(31);
u64 vmx_misc;
vmx_misc = vmx_control_msr(vmx->nested.msrs.misc_low,
vmx->nested.msrs.misc_high);
if (!is_bitwise_subset(vmx_misc, data, feature_and_reserved_bits))
return -EINVAL;
if ((vmx->nested.msrs.pinbased_ctls_high &
PIN_BASED_VMX_PREEMPTION_TIMER) &&
vmx_misc_preemption_timer_rate(data) !=
vmx_misc_preemption_timer_rate(vmx_misc))
return -EINVAL;
if (vmx_misc_cr3_count(data) > vmx_misc_cr3_count(vmx_misc))
return -EINVAL;
if (vmx_misc_max_msr(data) > vmx_misc_max_msr(vmx_misc))
return -EINVAL;
if (vmx_misc_mseg_revid(data) != vmx_misc_mseg_revid(vmx_misc))
return -EINVAL;
vmx->nested.msrs.misc_low = data;
vmx->nested.msrs.misc_high = data >> 32;
return 0;
}
static int vmx_restore_vmx_ept_vpid_cap(struct vcpu_vmx *vmx, u64 data)
{
u64 vmx_ept_vpid_cap;
vmx_ept_vpid_cap = vmx_control_msr(vmx->nested.msrs.ept_caps,
vmx->nested.msrs.vpid_caps);
/* Every bit is either reserved or a feature bit. */
if (!is_bitwise_subset(vmx_ept_vpid_cap, data, -1ULL))
return -EINVAL;
vmx->nested.msrs.ept_caps = data;
vmx->nested.msrs.vpid_caps = data >> 32;
return 0;
}
static int vmx_restore_fixed0_msr(struct vcpu_vmx *vmx, u32 msr_index, u64 data)
{
u64 *msr;
switch (msr_index) {
case MSR_IA32_VMX_CR0_FIXED0:
msr = &vmx->nested.msrs.cr0_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED0:
msr = &vmx->nested.msrs.cr4_fixed0;
break;
default:
BUG();
}
/*
* 1 bits (which indicates bits which "must-be-1" during VMX operation)
* must be 1 in the restored value.
*/
if (!is_bitwise_subset(data, *msr, -1ULL))
return -EINVAL;
*msr = data;
return 0;
}
/*
* Called when userspace is restoring VMX MSRs.
*
* Returns 0 on success, non-0 otherwise.
*/
int vmx_set_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 data)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* Don't allow changes to the VMX capability MSRs while the vCPU
* is in VMX operation.
*/
if (vmx->nested.vmxon)
return -EBUSY;
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
return vmx_restore_vmx_basic(vmx, data);
case MSR_IA32_VMX_PINBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
/*
* The "non-true" VMX capability MSRs are generated from the
* "true" MSRs, so we do not support restoring them directly.
*
* If userspace wants to emulate VMX_BASIC[55]=0, userspace
* should restore the "true" MSRs with the must-be-1 bits
* set according to the SDM Vol 3. A.2 "RESERVED CONTROLS AND
* DEFAULT SETTINGS".
*/
return -EINVAL;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS2:
return vmx_restore_control_msr(vmx, msr_index, data);
case MSR_IA32_VMX_MISC:
return vmx_restore_vmx_misc(vmx, data);
case MSR_IA32_VMX_CR0_FIXED0:
case MSR_IA32_VMX_CR4_FIXED0:
return vmx_restore_fixed0_msr(vmx, msr_index, data);
case MSR_IA32_VMX_CR0_FIXED1:
case MSR_IA32_VMX_CR4_FIXED1:
/*
* These MSRs are generated based on the vCPU's CPUID, so we
* do not support restoring them directly.
*/
return -EINVAL;
case MSR_IA32_VMX_EPT_VPID_CAP:
return vmx_restore_vmx_ept_vpid_cap(vmx, data);
case MSR_IA32_VMX_VMCS_ENUM:
vmx->nested.msrs.vmcs_enum = data;
return 0;
case MSR_IA32_VMX_VMFUNC:
if (data & ~vmx->nested.msrs.vmfunc_controls)
return -EINVAL;
vmx->nested.msrs.vmfunc_controls = data;
return 0;
default:
/*
* The rest of the VMX capability MSRs do not support restore.
*/
return -EINVAL;
}
}
/* Returns 0 on success, non-0 otherwise. */
int vmx_get_vmx_msr(struct nested_vmx_msrs *msrs, u32 msr_index, u64 *pdata)
{
switch (msr_index) {
case MSR_IA32_VMX_BASIC:
*pdata = msrs->basic;
break;
case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
case MSR_IA32_VMX_PINBASED_CTLS:
*pdata = vmx_control_msr(
msrs->pinbased_ctls_low,
msrs->pinbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PINBASED_CTLS)
*pdata |= PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
case MSR_IA32_VMX_PROCBASED_CTLS:
*pdata = vmx_control_msr(
msrs->procbased_ctls_low,
msrs->procbased_ctls_high);
if (msr_index == MSR_IA32_VMX_PROCBASED_CTLS)
*pdata |= CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_EXIT_CTLS:
case MSR_IA32_VMX_EXIT_CTLS:
*pdata = vmx_control_msr(
msrs->exit_ctls_low,
msrs->exit_ctls_high);
if (msr_index == MSR_IA32_VMX_EXIT_CTLS)
*pdata |= VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
case MSR_IA32_VMX_ENTRY_CTLS:
*pdata = vmx_control_msr(
msrs->entry_ctls_low,
msrs->entry_ctls_high);
if (msr_index == MSR_IA32_VMX_ENTRY_CTLS)
*pdata |= VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
break;
case MSR_IA32_VMX_MISC:
*pdata = vmx_control_msr(
msrs->misc_low,
msrs->misc_high);
break;
case MSR_IA32_VMX_CR0_FIXED0:
*pdata = msrs->cr0_fixed0;
break;
case MSR_IA32_VMX_CR0_FIXED1:
*pdata = msrs->cr0_fixed1;
break;
case MSR_IA32_VMX_CR4_FIXED0:
*pdata = msrs->cr4_fixed0;
break;
case MSR_IA32_VMX_CR4_FIXED1:
*pdata = msrs->cr4_fixed1;
break;
case MSR_IA32_VMX_VMCS_ENUM:
*pdata = msrs->vmcs_enum;
break;
case MSR_IA32_VMX_PROCBASED_CTLS2:
*pdata = vmx_control_msr(
msrs->secondary_ctls_low,
msrs->secondary_ctls_high);
break;
case MSR_IA32_VMX_EPT_VPID_CAP:
*pdata = msrs->ept_caps |
((u64)msrs->vpid_caps << 32);
break;
case MSR_IA32_VMX_VMFUNC:
*pdata = msrs->vmfunc_controls;
break;
default:
return 1;
}
return 0;
}
/*
* Copy the writable VMCS shadow fields back to the VMCS12, in case they have
* been modified by the L1 guest. Note, "writable" in this context means
* "writable by the guest", i.e. tagged SHADOW_FIELD_RW; the set of
* fields tagged SHADOW_FIELD_RO may or may not align with the "read-only"
* VM-exit information fields (which are actually writable if the vCPU is
* configured to support "VMWRITE to any supported field in the VMCS").
*/
static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
{
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
struct shadow_vmcs_field field;
unsigned long val;
int i;
if (WARN_ON(!shadow_vmcs))
return;
preempt_disable();
vmcs_load(shadow_vmcs);
for (i = 0; i < max_shadow_read_write_fields; i++) {
field = shadow_read_write_fields[i];
val = __vmcs_readl(field.encoding);
vmcs12_write_any(vmcs12, field.encoding, field.offset, val);
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
{
const struct shadow_vmcs_field *fields[] = {
shadow_read_write_fields,
shadow_read_only_fields
};
const int max_fields[] = {
max_shadow_read_write_fields,
max_shadow_read_only_fields
};
struct vmcs *shadow_vmcs = vmx->vmcs01.shadow_vmcs;
struct vmcs12 *vmcs12 = get_vmcs12(&vmx->vcpu);
struct shadow_vmcs_field field;
unsigned long val;
int i, q;
if (WARN_ON(!shadow_vmcs))
return;
vmcs_load(shadow_vmcs);
for (q = 0; q < ARRAY_SIZE(fields); q++) {
for (i = 0; i < max_fields[q]; i++) {
field = fields[q][i];
val = vmcs12_read_any(vmcs12, field.encoding,
field.offset);
__vmcs_writel(field.encoding, val);
}
}
vmcs_clear(shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
}
static int copy_enlightened_to_vmcs12(struct vcpu_vmx *vmx)
{
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
/* HV_VMX_ENLIGHTENED_CLEAN_FIELD_NONE */
vmcs12->tpr_threshold = evmcs->tpr_threshold;
vmcs12->guest_rip = evmcs->guest_rip;
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_BASIC))) {
vmcs12->guest_rsp = evmcs->guest_rsp;
vmcs12->guest_rflags = evmcs->guest_rflags;
vmcs12->guest_interruptibility_info =
evmcs->guest_interruptibility_info;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_PROC))) {
vmcs12->cpu_based_vm_exec_control =
evmcs->cpu_based_vm_exec_control;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EXCPN))) {
vmcs12->exception_bitmap = evmcs->exception_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_ENTRY))) {
vmcs12->vm_entry_controls = evmcs->vm_entry_controls;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_EVENT))) {
vmcs12->vm_entry_intr_info_field =
evmcs->vm_entry_intr_info_field;
vmcs12->vm_entry_exception_error_code =
evmcs->vm_entry_exception_error_code;
vmcs12->vm_entry_instruction_len =
evmcs->vm_entry_instruction_len;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_GRP1))) {
vmcs12->host_ia32_pat = evmcs->host_ia32_pat;
vmcs12->host_ia32_efer = evmcs->host_ia32_efer;
vmcs12->host_cr0 = evmcs->host_cr0;
vmcs12->host_cr3 = evmcs->host_cr3;
vmcs12->host_cr4 = evmcs->host_cr4;
vmcs12->host_ia32_sysenter_esp = evmcs->host_ia32_sysenter_esp;
vmcs12->host_ia32_sysenter_eip = evmcs->host_ia32_sysenter_eip;
vmcs12->host_rip = evmcs->host_rip;
vmcs12->host_ia32_sysenter_cs = evmcs->host_ia32_sysenter_cs;
vmcs12->host_es_selector = evmcs->host_es_selector;
vmcs12->host_cs_selector = evmcs->host_cs_selector;
vmcs12->host_ss_selector = evmcs->host_ss_selector;
vmcs12->host_ds_selector = evmcs->host_ds_selector;
vmcs12->host_fs_selector = evmcs->host_fs_selector;
vmcs12->host_gs_selector = evmcs->host_gs_selector;
vmcs12->host_tr_selector = evmcs->host_tr_selector;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP1))) {
vmcs12->pin_based_vm_exec_control =
evmcs->pin_based_vm_exec_control;
vmcs12->vm_exit_controls = evmcs->vm_exit_controls;
vmcs12->secondary_vm_exec_control =
evmcs->secondary_vm_exec_control;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_IO_BITMAP))) {
vmcs12->io_bitmap_a = evmcs->io_bitmap_a;
vmcs12->io_bitmap_b = evmcs->io_bitmap_b;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_MSR_BITMAP))) {
vmcs12->msr_bitmap = evmcs->msr_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2))) {
vmcs12->guest_es_base = evmcs->guest_es_base;
vmcs12->guest_cs_base = evmcs->guest_cs_base;
vmcs12->guest_ss_base = evmcs->guest_ss_base;
vmcs12->guest_ds_base = evmcs->guest_ds_base;
vmcs12->guest_fs_base = evmcs->guest_fs_base;
vmcs12->guest_gs_base = evmcs->guest_gs_base;
vmcs12->guest_ldtr_base = evmcs->guest_ldtr_base;
vmcs12->guest_tr_base = evmcs->guest_tr_base;
vmcs12->guest_gdtr_base = evmcs->guest_gdtr_base;
vmcs12->guest_idtr_base = evmcs->guest_idtr_base;
vmcs12->guest_es_limit = evmcs->guest_es_limit;
vmcs12->guest_cs_limit = evmcs->guest_cs_limit;
vmcs12->guest_ss_limit = evmcs->guest_ss_limit;
vmcs12->guest_ds_limit = evmcs->guest_ds_limit;
vmcs12->guest_fs_limit = evmcs->guest_fs_limit;
vmcs12->guest_gs_limit = evmcs->guest_gs_limit;
vmcs12->guest_ldtr_limit = evmcs->guest_ldtr_limit;
vmcs12->guest_tr_limit = evmcs->guest_tr_limit;
vmcs12->guest_gdtr_limit = evmcs->guest_gdtr_limit;
vmcs12->guest_idtr_limit = evmcs->guest_idtr_limit;
vmcs12->guest_es_ar_bytes = evmcs->guest_es_ar_bytes;
vmcs12->guest_cs_ar_bytes = evmcs->guest_cs_ar_bytes;
vmcs12->guest_ss_ar_bytes = evmcs->guest_ss_ar_bytes;
vmcs12->guest_ds_ar_bytes = evmcs->guest_ds_ar_bytes;
vmcs12->guest_fs_ar_bytes = evmcs->guest_fs_ar_bytes;
vmcs12->guest_gs_ar_bytes = evmcs->guest_gs_ar_bytes;
vmcs12->guest_ldtr_ar_bytes = evmcs->guest_ldtr_ar_bytes;
vmcs12->guest_tr_ar_bytes = evmcs->guest_tr_ar_bytes;
vmcs12->guest_es_selector = evmcs->guest_es_selector;
vmcs12->guest_cs_selector = evmcs->guest_cs_selector;
vmcs12->guest_ss_selector = evmcs->guest_ss_selector;
vmcs12->guest_ds_selector = evmcs->guest_ds_selector;
vmcs12->guest_fs_selector = evmcs->guest_fs_selector;
vmcs12->guest_gs_selector = evmcs->guest_gs_selector;
vmcs12->guest_ldtr_selector = evmcs->guest_ldtr_selector;
vmcs12->guest_tr_selector = evmcs->guest_tr_selector;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_GRP2))) {
vmcs12->tsc_offset = evmcs->tsc_offset;
vmcs12->virtual_apic_page_addr = evmcs->virtual_apic_page_addr;
vmcs12->xss_exit_bitmap = evmcs->xss_exit_bitmap;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CRDR))) {
vmcs12->cr0_guest_host_mask = evmcs->cr0_guest_host_mask;
vmcs12->cr4_guest_host_mask = evmcs->cr4_guest_host_mask;
vmcs12->cr0_read_shadow = evmcs->cr0_read_shadow;
vmcs12->cr4_read_shadow = evmcs->cr4_read_shadow;
vmcs12->guest_cr0 = evmcs->guest_cr0;
vmcs12->guest_cr3 = evmcs->guest_cr3;
vmcs12->guest_cr4 = evmcs->guest_cr4;
vmcs12->guest_dr7 = evmcs->guest_dr7;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_HOST_POINTER))) {
vmcs12->host_fs_base = evmcs->host_fs_base;
vmcs12->host_gs_base = evmcs->host_gs_base;
vmcs12->host_tr_base = evmcs->host_tr_base;
vmcs12->host_gdtr_base = evmcs->host_gdtr_base;
vmcs12->host_idtr_base = evmcs->host_idtr_base;
vmcs12->host_rsp = evmcs->host_rsp;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_CONTROL_XLAT))) {
vmcs12->ept_pointer = evmcs->ept_pointer;
vmcs12->virtual_processor_id = evmcs->virtual_processor_id;
}
if (unlikely(!(evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1))) {
vmcs12->vmcs_link_pointer = evmcs->vmcs_link_pointer;
vmcs12->guest_ia32_debugctl = evmcs->guest_ia32_debugctl;
vmcs12->guest_ia32_pat = evmcs->guest_ia32_pat;
vmcs12->guest_ia32_efer = evmcs->guest_ia32_efer;
vmcs12->guest_pdptr0 = evmcs->guest_pdptr0;
vmcs12->guest_pdptr1 = evmcs->guest_pdptr1;
vmcs12->guest_pdptr2 = evmcs->guest_pdptr2;
vmcs12->guest_pdptr3 = evmcs->guest_pdptr3;
vmcs12->guest_pending_dbg_exceptions =
evmcs->guest_pending_dbg_exceptions;
vmcs12->guest_sysenter_esp = evmcs->guest_sysenter_esp;
vmcs12->guest_sysenter_eip = evmcs->guest_sysenter_eip;
vmcs12->guest_bndcfgs = evmcs->guest_bndcfgs;
vmcs12->guest_activity_state = evmcs->guest_activity_state;
vmcs12->guest_sysenter_cs = evmcs->guest_sysenter_cs;
}
/*
* Not used?
* vmcs12->vm_exit_msr_store_addr = evmcs->vm_exit_msr_store_addr;
* vmcs12->vm_exit_msr_load_addr = evmcs->vm_exit_msr_load_addr;
* vmcs12->vm_entry_msr_load_addr = evmcs->vm_entry_msr_load_addr;
* vmcs12->cr3_target_value0 = evmcs->cr3_target_value0;
* vmcs12->cr3_target_value1 = evmcs->cr3_target_value1;
* vmcs12->cr3_target_value2 = evmcs->cr3_target_value2;
* vmcs12->cr3_target_value3 = evmcs->cr3_target_value3;
* vmcs12->page_fault_error_code_mask =
* evmcs->page_fault_error_code_mask;
* vmcs12->page_fault_error_code_match =
* evmcs->page_fault_error_code_match;
* vmcs12->cr3_target_count = evmcs->cr3_target_count;
* vmcs12->vm_exit_msr_store_count = evmcs->vm_exit_msr_store_count;
* vmcs12->vm_exit_msr_load_count = evmcs->vm_exit_msr_load_count;
* vmcs12->vm_entry_msr_load_count = evmcs->vm_entry_msr_load_count;
*/
/*
* Read only fields:
* vmcs12->guest_physical_address = evmcs->guest_physical_address;
* vmcs12->vm_instruction_error = evmcs->vm_instruction_error;
* vmcs12->vm_exit_reason = evmcs->vm_exit_reason;
* vmcs12->vm_exit_intr_info = evmcs->vm_exit_intr_info;
* vmcs12->vm_exit_intr_error_code = evmcs->vm_exit_intr_error_code;
* vmcs12->idt_vectoring_info_field = evmcs->idt_vectoring_info_field;
* vmcs12->idt_vectoring_error_code = evmcs->idt_vectoring_error_code;
* vmcs12->vm_exit_instruction_len = evmcs->vm_exit_instruction_len;
* vmcs12->vmx_instruction_info = evmcs->vmx_instruction_info;
* vmcs12->exit_qualification = evmcs->exit_qualification;
* vmcs12->guest_linear_address = evmcs->guest_linear_address;
*
* Not present in struct vmcs12:
* vmcs12->exit_io_instruction_ecx = evmcs->exit_io_instruction_ecx;
* vmcs12->exit_io_instruction_esi = evmcs->exit_io_instruction_esi;
* vmcs12->exit_io_instruction_edi = evmcs->exit_io_instruction_edi;
* vmcs12->exit_io_instruction_eip = evmcs->exit_io_instruction_eip;
*/
return 0;
}
static int copy_vmcs12_to_enlightened(struct vcpu_vmx *vmx)
{
struct vmcs12 *vmcs12 = vmx->nested.cached_vmcs12;
struct hv_enlightened_vmcs *evmcs = vmx->nested.hv_evmcs;
/*
* Should not be changed by KVM:
*
* evmcs->host_es_selector = vmcs12->host_es_selector;
* evmcs->host_cs_selector = vmcs12->host_cs_selector;
* evmcs->host_ss_selector = vmcs12->host_ss_selector;
* evmcs->host_ds_selector = vmcs12->host_ds_selector;
* evmcs->host_fs_selector = vmcs12->host_fs_selector;
* evmcs->host_gs_selector = vmcs12->host_gs_selector;
* evmcs->host_tr_selector = vmcs12->host_tr_selector;
* evmcs->host_ia32_pat = vmcs12->host_ia32_pat;
* evmcs->host_ia32_efer = vmcs12->host_ia32_efer;
* evmcs->host_cr0 = vmcs12->host_cr0;
* evmcs->host_cr3 = vmcs12->host_cr3;
* evmcs->host_cr4 = vmcs12->host_cr4;
* evmcs->host_ia32_sysenter_esp = vmcs12->host_ia32_sysenter_esp;
* evmcs->host_ia32_sysenter_eip = vmcs12->host_ia32_sysenter_eip;
* evmcs->host_rip = vmcs12->host_rip;
* evmcs->host_ia32_sysenter_cs = vmcs12->host_ia32_sysenter_cs;
* evmcs->host_fs_base = vmcs12->host_fs_base;
* evmcs->host_gs_base = vmcs12->host_gs_base;
* evmcs->host_tr_base = vmcs12->host_tr_base;
* evmcs->host_gdtr_base = vmcs12->host_gdtr_base;
* evmcs->host_idtr_base = vmcs12->host_idtr_base;
* evmcs->host_rsp = vmcs12->host_rsp;
* sync_vmcs02_to_vmcs12() doesn't read these:
* evmcs->io_bitmap_a = vmcs12->io_bitmap_a;
* evmcs->io_bitmap_b = vmcs12->io_bitmap_b;
* evmcs->msr_bitmap = vmcs12->msr_bitmap;
* evmcs->ept_pointer = vmcs12->ept_pointer;
* evmcs->xss_exit_bitmap = vmcs12->xss_exit_bitmap;
* evmcs->vm_exit_msr_store_addr = vmcs12->vm_exit_msr_store_addr;
* evmcs->vm_exit_msr_load_addr = vmcs12->vm_exit_msr_load_addr;
* evmcs->vm_entry_msr_load_addr = vmcs12->vm_entry_msr_load_addr;
* evmcs->cr3_target_value0 = vmcs12->cr3_target_value0;
* evmcs->cr3_target_value1 = vmcs12->cr3_target_value1;
* evmcs->cr3_target_value2 = vmcs12->cr3_target_value2;
* evmcs->cr3_target_value3 = vmcs12->cr3_target_value3;
* evmcs->tpr_threshold = vmcs12->tpr_threshold;
* evmcs->virtual_processor_id = vmcs12->virtual_processor_id;
* evmcs->exception_bitmap = vmcs12->exception_bitmap;
* evmcs->vmcs_link_pointer = vmcs12->vmcs_link_pointer;
* evmcs->pin_based_vm_exec_control = vmcs12->pin_based_vm_exec_control;
* evmcs->vm_exit_controls = vmcs12->vm_exit_controls;
* evmcs->secondary_vm_exec_control = vmcs12->secondary_vm_exec_control;
* evmcs->page_fault_error_code_mask =
* vmcs12->page_fault_error_code_mask;
* evmcs->page_fault_error_code_match =
* vmcs12->page_fault_error_code_match;
* evmcs->cr3_target_count = vmcs12->cr3_target_count;
* evmcs->virtual_apic_page_addr = vmcs12->virtual_apic_page_addr;
* evmcs->tsc_offset = vmcs12->tsc_offset;
* evmcs->guest_ia32_debugctl = vmcs12->guest_ia32_debugctl;
* evmcs->cr0_guest_host_mask = vmcs12->cr0_guest_host_mask;
* evmcs->cr4_guest_host_mask = vmcs12->cr4_guest_host_mask;
* evmcs->cr0_read_shadow = vmcs12->cr0_read_shadow;
* evmcs->cr4_read_shadow = vmcs12->cr4_read_shadow;
* evmcs->vm_exit_msr_store_count = vmcs12->vm_exit_msr_store_count;
* evmcs->vm_exit_msr_load_count = vmcs12->vm_exit_msr_load_count;
* evmcs->vm_entry_msr_load_count = vmcs12->vm_entry_msr_load_count;
*
* Not present in struct vmcs12:
* evmcs->exit_io_instruction_ecx = vmcs12->exit_io_instruction_ecx;
* evmcs->exit_io_instruction_esi = vmcs12->exit_io_instruction_esi;
* evmcs->exit_io_instruction_edi = vmcs12->exit_io_instruction_edi;
* evmcs->exit_io_instruction_eip = vmcs12->exit_io_instruction_eip;
*/
evmcs->guest_es_selector = vmcs12->guest_es_selector;
evmcs->guest_cs_selector = vmcs12->guest_cs_selector;
evmcs->guest_ss_selector = vmcs12->guest_ss_selector;
evmcs->guest_ds_selector = vmcs12->guest_ds_selector;
evmcs->guest_fs_selector = vmcs12->guest_fs_selector;
evmcs->guest_gs_selector = vmcs12->guest_gs_selector;
evmcs->guest_ldtr_selector = vmcs12->guest_ldtr_selector;
evmcs->guest_tr_selector = vmcs12->guest_tr_selector;
evmcs->guest_es_limit = vmcs12->guest_es_limit;
evmcs->guest_cs_limit = vmcs12->guest_cs_limit;
evmcs->guest_ss_limit = vmcs12->guest_ss_limit;
evmcs->guest_ds_limit = vmcs12->guest_ds_limit;
evmcs->guest_fs_limit = vmcs12->guest_fs_limit;
evmcs->guest_gs_limit = vmcs12->guest_gs_limit;
evmcs->guest_ldtr_limit = vmcs12->guest_ldtr_limit;
evmcs->guest_tr_limit = vmcs12->guest_tr_limit;
evmcs->guest_gdtr_limit = vmcs12->guest_gdtr_limit;
evmcs->guest_idtr_limit = vmcs12->guest_idtr_limit;
evmcs->guest_es_ar_bytes = vmcs12->guest_es_ar_bytes;
evmcs->guest_cs_ar_bytes = vmcs12->guest_cs_ar_bytes;
evmcs->guest_ss_ar_bytes = vmcs12->guest_ss_ar_bytes;
evmcs->guest_ds_ar_bytes = vmcs12->guest_ds_ar_bytes;
evmcs->guest_fs_ar_bytes = vmcs12->guest_fs_ar_bytes;
evmcs->guest_gs_ar_bytes = vmcs12->guest_gs_ar_bytes;
evmcs->guest_ldtr_ar_bytes = vmcs12->guest_ldtr_ar_bytes;
evmcs->guest_tr_ar_bytes = vmcs12->guest_tr_ar_bytes;
evmcs->guest_es_base = vmcs12->guest_es_base;
evmcs->guest_cs_base = vmcs12->guest_cs_base;
evmcs->guest_ss_base = vmcs12->guest_ss_base;
evmcs->guest_ds_base = vmcs12->guest_ds_base;
evmcs->guest_fs_base = vmcs12->guest_fs_base;
evmcs->guest_gs_base = vmcs12->guest_gs_base;
evmcs->guest_ldtr_base = vmcs12->guest_ldtr_base;
evmcs->guest_tr_base = vmcs12->guest_tr_base;
evmcs->guest_gdtr_base = vmcs12->guest_gdtr_base;
evmcs->guest_idtr_base = vmcs12->guest_idtr_base;
evmcs->guest_ia32_pat = vmcs12->guest_ia32_pat;
evmcs->guest_ia32_efer = vmcs12->guest_ia32_efer;
evmcs->guest_pdptr0 = vmcs12->guest_pdptr0;
evmcs->guest_pdptr1 = vmcs12->guest_pdptr1;
evmcs->guest_pdptr2 = vmcs12->guest_pdptr2;
evmcs->guest_pdptr3 = vmcs12->guest_pdptr3;
evmcs->guest_pending_dbg_exceptions =
vmcs12->guest_pending_dbg_exceptions;
evmcs->guest_sysenter_esp = vmcs12->guest_sysenter_esp;
evmcs->guest_sysenter_eip = vmcs12->guest_sysenter_eip;
evmcs->guest_activity_state = vmcs12->guest_activity_state;
evmcs->guest_sysenter_cs = vmcs12->guest_sysenter_cs;
evmcs->guest_cr0 = vmcs12->guest_cr0;
evmcs->guest_cr3 = vmcs12->guest_cr3;
evmcs->guest_cr4 = vmcs12->guest_cr4;
evmcs->guest_dr7 = vmcs12->guest_dr7;
evmcs->guest_physical_address = vmcs12->guest_physical_address;
evmcs->vm_instruction_error = vmcs12->vm_instruction_error;
evmcs->vm_exit_reason = vmcs12->vm_exit_reason;
evmcs->vm_exit_intr_info = vmcs12->vm_exit_intr_info;
evmcs->vm_exit_intr_error_code = vmcs12->vm_exit_intr_error_code;
evmcs->idt_vectoring_info_field = vmcs12->idt_vectoring_info_field;
evmcs->idt_vectoring_error_code = vmcs12->idt_vectoring_error_code;
evmcs->vm_exit_instruction_len = vmcs12->vm_exit_instruction_len;
evmcs->vmx_instruction_info = vmcs12->vmx_instruction_info;
evmcs->exit_qualification = vmcs12->exit_qualification;
evmcs->guest_linear_address = vmcs12->guest_linear_address;
evmcs->guest_rsp = vmcs12->guest_rsp;
evmcs->guest_rflags = vmcs12->guest_rflags;
evmcs->guest_interruptibility_info =
vmcs12->guest_interruptibility_info;
evmcs->cpu_based_vm_exec_control = vmcs12->cpu_based_vm_exec_control;
evmcs->vm_entry_controls = vmcs12->vm_entry_controls;
evmcs->vm_entry_intr_info_field = vmcs12->vm_entry_intr_info_field;
evmcs->vm_entry_exception_error_code =
vmcs12->vm_entry_exception_error_code;
evmcs->vm_entry_instruction_len = vmcs12->vm_entry_instruction_len;
evmcs->guest_rip = vmcs12->guest_rip;
evmcs->guest_bndcfgs = vmcs12->guest_bndcfgs;
return 0;
}
/*
* This is an equivalent of the nested hypervisor executing the vmptrld
* instruction.
*/
static enum nested_evmptrld_status nested_vmx_handle_enlightened_vmptrld(
struct kvm_vcpu *vcpu, bool from_launch)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
bool evmcs_gpa_changed = false;
u64 evmcs_gpa;
if (likely(!vmx->nested.enlightened_vmcs_enabled))
return EVMPTRLD_DISABLED;
if (!nested_enlightened_vmentry(vcpu, &evmcs_gpa))
return EVMPTRLD_DISABLED;
if (unlikely(!vmx->nested.hv_evmcs ||
evmcs_gpa != vmx->nested.hv_evmcs_vmptr)) {
if (!vmx->nested.hv_evmcs)
vmx->nested.current_vmptr = -1ull;
nested_release_evmcs(vcpu);
if (kvm_vcpu_map(vcpu, gpa_to_gfn(evmcs_gpa),
&vmx->nested.hv_evmcs_map))
return EVMPTRLD_ERROR;
vmx->nested.hv_evmcs = vmx->nested.hv_evmcs_map.hva;
/*
* Currently, KVM only supports eVMCS version 1
* (== KVM_EVMCS_VERSION) and thus we expect guest to set this
* value to first u32 field of eVMCS which should specify eVMCS
* VersionNumber.
*
* Guest should be aware of supported eVMCS versions by host by
* examining CPUID.0x4000000A.EAX[0:15]. Host userspace VMM is
* expected to set this CPUID leaf according to the value
* returned in vmcs_version from nested_enable_evmcs().
*
* However, it turns out that Microsoft Hyper-V fails to comply
* to their own invented interface: When Hyper-V use eVMCS, it
* just sets first u32 field of eVMCS to revision_id specified
* in MSR_IA32_VMX_BASIC. Instead of used eVMCS version number
* which is one of the supported versions specified in
* CPUID.0x4000000A.EAX[0:15].
*
* To overcome Hyper-V bug, we accept here either a supported
* eVMCS version or VMCS12 revision_id as valid values for first
* u32 field of eVMCS.
*/
if ((vmx->nested.hv_evmcs->revision_id != KVM_EVMCS_VERSION) &&
(vmx->nested.hv_evmcs->revision_id != VMCS12_REVISION)) {
nested_release_evmcs(vcpu);
return EVMPTRLD_VMFAIL;
}
vmx->nested.dirty_vmcs12 = true;
vmx->nested.hv_evmcs_vmptr = evmcs_gpa;
evmcs_gpa_changed = true;
/*
* Unlike normal vmcs12, enlightened vmcs12 is not fully
* reloaded from guest's memory (read only fields, fields not
* present in struct hv_enlightened_vmcs, ...). Make sure there
* are no leftovers.
*/
if (from_launch) {
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
memset(vmcs12, 0, sizeof(*vmcs12));
vmcs12->hdr.revision_id = VMCS12_REVISION;
}
}
/*
* Clean fields data can't be used on VMLAUNCH and when we switch
* between different L2 guests as KVM keeps a single VMCS12 per L1.
*/
if (from_launch || evmcs_gpa_changed)
vmx->nested.hv_evmcs->hv_clean_fields &=
~HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
return EVMPTRLD_SUCCEEDED;
}
void nested_sync_vmcs12_to_shadow(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.hv_evmcs) {
copy_vmcs12_to_enlightened(vmx);
/* All fields are clean */
vmx->nested.hv_evmcs->hv_clean_fields |=
HV_VMX_ENLIGHTENED_CLEAN_FIELD_ALL;
} else {
copy_vmcs12_to_shadow(vmx);
}
vmx->nested.need_vmcs12_to_shadow_sync = false;
}
static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
{
struct vcpu_vmx *vmx =
container_of(timer, struct vcpu_vmx, nested.preemption_timer);
vmx->nested.preemption_timer_expired = true;
kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
kvm_vcpu_kick(&vmx->vcpu);
return HRTIMER_NORESTART;
}
static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
{
u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
struct vcpu_vmx *vmx = to_vmx(vcpu);
/*
* A timer value of zero is architecturally guaranteed to cause
* a VMExit prior to executing any instructions in the guest.
*/
if (preemption_timeout == 0) {
vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
return;
}
if (vcpu->arch.virtual_tsc_khz == 0)
return;
preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
preemption_timeout *= 1000000;
do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
hrtimer_start(&vmx->nested.preemption_timer,
ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
}
static u64 nested_vmx_calc_efer(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER))
return vmcs12->guest_ia32_efer;
else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
return vmx->vcpu.arch.efer | (EFER_LMA | EFER_LME);
else
return vmx->vcpu.arch.efer & ~(EFER_LMA | EFER_LME);
}
static void prepare_vmcs02_constant_state(struct vcpu_vmx *vmx)
{
/*
* If vmcs02 hasn't been initialized, set the constant vmcs02 state
* according to L0's settings (vmcs12 is irrelevant here). Host
* fields that come from L0 and are not constant, e.g. HOST_CR3,
* will be set as needed prior to VMLAUNCH/VMRESUME.
*/
if (vmx->nested.vmcs02_initialized)
return;
vmx->nested.vmcs02_initialized = true;
/*
* We don't care what the EPTP value is we just need to guarantee
* it's valid so we don't get a false positive when doing early
* consistency checks.
*/
if (enable_ept && nested_early_check)
vmcs_write64(EPT_POINTER, construct_eptp(&vmx->vcpu, 0));
/* All VMFUNCs are currently emulated through L0 vmexits. */
if (cpu_has_vmx_vmfunc())
vmcs_write64(VM_FUNCTION_CONTROL, 0);
if (cpu_has_vmx_posted_intr())
vmcs_write16(POSTED_INTR_NV, POSTED_INTR_NESTED_VECTOR);
if (cpu_has_vmx_msr_bitmap())
vmcs_write64(MSR_BITMAP, __pa(vmx->nested.vmcs02.msr_bitmap));
/*
* The PML address never changes, so it is constant in vmcs02.
* Conceptually we want to copy the PML index from vmcs01 here,
* and then back to vmcs01 on nested vmexit. But since we flush
* the log and reset GUEST_PML_INDEX on each vmexit, the PML
* index is also effectively constant in vmcs02.
*/
if (enable_pml) {
vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
}
if (cpu_has_vmx_encls_vmexit())
vmcs_write64(ENCLS_EXITING_BITMAP, -1ull);
/*
* Set the MSR load/store lists to match L0's settings. Only the
* addresses are constant (for vmcs02), the counts can change based
* on L2's behavior, e.g. switching to/from long mode.
*/
vmcs_write64(VM_EXIT_MSR_STORE_ADDR, __pa(vmx->msr_autostore.guest.val));
vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host.val));
vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest.val));
vmx_set_constant_host_state(vmx);
}
static void prepare_vmcs02_early_rare(struct vcpu_vmx *vmx,
struct vmcs12 *vmcs12)
{
prepare_vmcs02_constant_state(vmx);
vmcs_write64(VMCS_LINK_POINTER, -1ull);
if (enable_vpid) {
if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02)
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
else
vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
}
}
static void prepare_vmcs02_early(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
u32 exec_control, vmcs12_exec_ctrl;
u64 guest_efer = nested_vmx_calc_efer(vmx, vmcs12);
if (vmx->nested.dirty_vmcs12 || vmx->nested.hv_evmcs)
prepare_vmcs02_early_rare(vmx, vmcs12);
/*
* PIN CONTROLS
*/
exec_control = vmx_pin_based_exec_ctrl(vmx);
exec_control |= (vmcs12->pin_based_vm_exec_control &
~PIN_BASED_VMX_PREEMPTION_TIMER);
/* Posted interrupts setting is only taken from vmcs12. */
if (nested_cpu_has_posted_intr(vmcs12)) {
vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
vmx->nested.pi_pending = false;
} else {
exec_control &= ~PIN_BASED_POSTED_INTR;
}
pin_controls_set(vmx, exec_control);
/*
* EXEC CONTROLS
*/
exec_control = vmx_exec_control(vmx); /* L0's desires */
exec_control &= ~CPU_BASED_INTR_WINDOW_EXITING;
exec_control &= ~CPU_BASED_NMI_WINDOW_EXITING;
exec_control &= ~CPU_BASED_TPR_SHADOW;
exec_control |= vmcs12->cpu_based_vm_exec_control;
vmx->nested.l1_tpr_threshold = -1;
if (exec_control & CPU_BASED_TPR_SHADOW)
vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
#ifdef CONFIG_X86_64
else
exec_control |= CPU_BASED_CR8_LOAD_EXITING |
CPU_BASED_CR8_STORE_EXITING;
#endif
/*
* A vmexit (to either L1 hypervisor or L0 userspace) is always needed
* for I/O port accesses.
*/
exec_control |= CPU_BASED_UNCOND_IO_EXITING;
exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
/*
* This bit will be computed in nested_get_vmcs12_pages, because
* we do not have access to L1's MSR bitmap yet. For now, keep
* the same bit as before, hoping to avoid multiple VMWRITEs that
* only set/clear this bit.
*/
exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
exec_control |= exec_controls_get(vmx) & CPU_BASED_USE_MSR_BITMAPS;
exec_controls_set(vmx, exec_control);
/*
* SECONDARY EXEC CONTROLS
*/
if (cpu_has_secondary_exec_ctrls()) {
exec_control = vmx->secondary_exec_control;
/* Take the following fields only from vmcs12 */
exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_XSAVES |
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_ENABLE_VMFUNC);
if (nested_cpu_has(vmcs12,
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)) {
vmcs12_exec_ctrl = vmcs12->secondary_vm_exec_control &
~SECONDARY_EXEC_ENABLE_PML;
exec_control |= vmcs12_exec_ctrl;
}
/* VMCS shadowing for L2 is emulated for now */
exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
/*
* Preset *DT exiting when emulating UMIP, so that vmx_set_cr4()
* will not have to rewrite the controls just for this bit.
*/
if (!boot_cpu_has(X86_FEATURE_UMIP) && vmx_umip_emulated() &&
(vmcs12->guest_cr4 & X86_CR4_UMIP))
exec_control |= SECONDARY_EXEC_DESC;
if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
vmcs_write16(GUEST_INTR_STATUS,
vmcs12->guest_intr_status);
secondary_exec_controls_set(vmx, exec_control);
}
/*
* ENTRY CONTROLS
*
* vmcs12's VM_{ENTRY,EXIT}_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE
* are emulated by vmx_set_efer() in prepare_vmcs02(), but speculate
* on the related bits (if supported by the CPU) in the hope that
* we can avoid VMWrites during vmx_set_efer().
*/
exec_control = (vmcs12->vm_entry_controls | vmx_vmentry_ctrl()) &
~VM_ENTRY_IA32E_MODE & ~VM_ENTRY_LOAD_IA32_EFER;
if (cpu_has_load_ia32_efer()) {
if (guest_efer & EFER_LMA)
exec_control |= VM_ENTRY_IA32E_MODE;
if (guest_efer != host_efer)
exec_control |= VM_ENTRY_LOAD_IA32_EFER;
}
vm_entry_controls_set(vmx, exec_control);
/*
* EXIT CONTROLS
*
* L2->L1 exit controls are emulated - the hardware exit is to L0 so
* we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
* bits may be modified by vmx_set_efer() in prepare_vmcs02().
*/
exec_control = vmx_vmexit_ctrl();
if (cpu_has_load_ia32_efer() && guest_efer != host_efer)
exec_control |= VM_EXIT_LOAD_IA32_EFER;
vm_exit_controls_set(vmx, exec_control);
/*
* Interrupt/Exception Fields
*/
if (vmx->nested.nested_run_pending) {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
vmcs12->vm_entry_intr_info_field);
vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
vmcs12->vm_entry_exception_error_code);
vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
vmcs12->vm_entry_instruction_len);
vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
vmcs12->guest_interruptibility_info);
vmx->loaded_vmcs->nmi_known_unmasked =
!(vmcs12->guest_interruptibility_info & GUEST_INTR_STATE_NMI);
} else {
vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
}
}
static void prepare_vmcs02_rare(struct vcpu_vmx *vmx, struct vmcs12 *vmcs12)
{
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP2)) {
vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
}
if (!hv_evmcs || !(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1)) {
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vmcs12->guest_pending_dbg_exceptions);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
/*
* L1 may access the L2's PDPTR, so save them to construct
* vmcs12
*/
if (enable_ept) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
if (kvm_mpx_supported() && vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
}
if (nested_cpu_has_xsaves(vmcs12))
vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
/*
* Whether page-faults are trapped is determined by a combination of
* 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
* If enable_ept, L0 doesn't care about page faults and we should
* set all of these to L1's desires. However, if !enable_ept, L0 does
* care about (at least some) page faults, and because it is not easy
* (if at all possible?) to merge L0 and L1's desires, we simply ask
* to exit on each and every L2 page fault. This is done by setting
* MASK=MATCH=0 and (see below) EB.PF=1.
* Note that below we don't need special code to set EB.PF beyond the
* "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
* vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
* !enable_ept, EB.PF is 1, so the "or" will always be 1.
*/
vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
enable_ept ? vmcs12->page_fault_error_code_mask : 0);
vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
enable_ept ? vmcs12->page_fault_error_code_match : 0);
if (cpu_has_vmx_apicv()) {
vmcs_write64(EOI_EXIT_BITMAP0, vmcs12->eoi_exit_bitmap0);
vmcs_write64(EOI_EXIT_BITMAP1, vmcs12->eoi_exit_bitmap1);
vmcs_write64(EOI_EXIT_BITMAP2, vmcs12->eoi_exit_bitmap2);
vmcs_write64(EOI_EXIT_BITMAP3, vmcs12->eoi_exit_bitmap3);
}
/*
* Make sure the msr_autostore list is up to date before we set the
* count in the vmcs02.
*/
prepare_vmx_msr_autostore_list(&vmx->vcpu, MSR_IA32_TSC);
vmcs_write32(VM_EXIT_MSR_STORE_COUNT, vmx->msr_autostore.guest.nr);
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
set_cr4_guest_host_mask(vmx);
}
/*
* prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
* L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
* with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
* guest in a way that will both be appropriate to L1's requests, and our
* needs. In addition to modifying the active vmcs (which is vmcs02), this
* function also has additional necessary side-effects, like setting various
* vcpu->arch fields.
* Returns 0 on success, 1 on failure. Invalid state exit qualification code
* is assigned to entry_failure_code on failure.
*/
static int prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 *entry_failure_code)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct hv_enlightened_vmcs *hv_evmcs = vmx->nested.hv_evmcs;
bool load_guest_pdptrs_vmcs12 = false;
if (vmx->nested.dirty_vmcs12 || hv_evmcs) {
prepare_vmcs02_rare(vmx, vmcs12);
vmx->nested.dirty_vmcs12 = false;
load_guest_pdptrs_vmcs12 = !hv_evmcs ||
!(hv_evmcs->hv_clean_fields &
HV_VMX_ENLIGHTENED_CLEAN_FIELD_GUEST_GRP1);
}
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS)) {
kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
} else {
kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
}
if (kvm_mpx_supported() && (!vmx->nested.nested_run_pending ||
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)))
vmcs_write64(GUEST_BNDCFGS, vmx->nested.vmcs01_guest_bndcfgs);
vmx_set_rflags(vcpu, vmcs12->guest_rflags);
/* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
* bitwise-or of what L1 wants to trap for L2, and what we want to
* trap. Note that CR0.TS also needs updating - we do this later.
*/
update_exception_bitmap(vcpu);
vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
if (vmx->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT)) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
vcpu->arch.pat = vmcs12->guest_ia32_pat;
} else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
}
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (enable_vpid) {
/*
* There is no direct mapping between vpid02 and vpid12, the
* vpid02 is per-vCPU for L0 and reused while the value of
* vpid12 is changed w/ one invvpid during nested vmentry.
* The vpid12 is allocated by L1 for L2, so it will not
* influence global bitmap(for vpid01 and vpid02 allocation)
* even if spawn a lot of nested vCPUs.
*/
if (nested_cpu_has_vpid(vmcs12) && nested_has_guest_tlb_tag(vcpu)) {
if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
vmx->nested.last_vpid = vmcs12->virtual_processor_id;
__vmx_flush_tlb(vcpu, nested_get_vpid02(vcpu), false);
}
} else {
/*
* If L1 use EPT, then L0 needs to execute INVEPT on
* EPTP02 instead of EPTP01. Therefore, delay TLB
* flush until vmcs02->eptp is fully updated by
* KVM_REQ_LOAD_MMU_PGD. Note that this assumes
* KVM_REQ_TLB_FLUSH is evaluated after
* KVM_REQ_LOAD_MMU_PGD in vcpu_enter_guest().
*/
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
}
if (nested_cpu_has_ept(vmcs12))
nested_ept_init_mmu_context(vcpu);
/*
* This sets GUEST_CR0 to vmcs12->guest_cr0, possibly modifying those
* bits which we consider mandatory enabled.
* The CR0_READ_SHADOW is what L2 should have expected to read given
* the specifications by L1; It's not enough to take
* vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
* have more bits than L1 expected.
*/
vmx_set_cr0(vcpu, vmcs12->guest_cr0);
vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
vmx_set_cr4(vcpu, vmcs12->guest_cr4);
vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
vcpu->arch.efer = nested_vmx_calc_efer(vmx, vmcs12);
/* Note: may modify VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
vmx_set_efer(vcpu, vcpu->arch.efer);
/*
* Guest state is invalid and unrestricted guest is disabled,
* which means L1 attempted VMEntry to L2 with invalid state.
* Fail the VMEntry.
*/
if (vmx->emulation_required) {
*entry_failure_code = ENTRY_FAIL_DEFAULT;
return -EINVAL;
}
/* Shadow page tables on either EPT or shadow page tables. */
if (nested_vmx_load_cr3(vcpu, vmcs12->guest_cr3, nested_cpu_has_ept(vmcs12),
entry_failure_code))
return -EINVAL;
/*
* Immediately write vmcs02.GUEST_CR3. It will be propagated to vmcs12
* on nested VM-Exit, which can occur without actually running L2 and
* thus without hitting vmx_load_mmu_pgd(), e.g. if L1 is entering L2 with
* vmcs12.GUEST_ACTIVITYSTATE=HLT, in which case KVM will intercept the
* transition to HLT instead of running L2.
*/
if (enable_ept)
vmcs_writel(GUEST_CR3, vmcs12->guest_cr3);
/* Late preparation of GUEST_PDPTRs now that EFER and CRs are set. */
if (load_guest_pdptrs_vmcs12 && nested_cpu_has_ept(vmcs12) &&
is_pae_paging(vcpu)) {
vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
}
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
vmcs12->guest_ia32_perf_global_ctrl)))
return -EINVAL;
kvm_rsp_write(vcpu, vmcs12->guest_rsp);
kvm_rip_write(vcpu, vmcs12->guest_rip);
return 0;
}
static int nested_vmx_check_nmi_controls(struct vmcs12 *vmcs12)
{
if (CC(!nested_cpu_has_nmi_exiting(vmcs12) &&
nested_cpu_has_virtual_nmis(vmcs12)))
return -EINVAL;
if (CC(!nested_cpu_has_virtual_nmis(vmcs12) &&
nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING)))
return -EINVAL;
return 0;
}
static bool nested_vmx_check_eptp(struct kvm_vcpu *vcpu, u64 new_eptp)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int maxphyaddr = cpuid_maxphyaddr(vcpu);
/* Check for memory type validity */
switch (new_eptp & VMX_EPTP_MT_MASK) {
case VMX_EPTP_MT_UC:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_UC_BIT)))
return false;
break;
case VMX_EPTP_MT_WB:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPTP_WB_BIT)))
return false;
break;
default:
return false;
}
/* Page-walk levels validity. */
switch (new_eptp & VMX_EPTP_PWL_MASK) {
case VMX_EPTP_PWL_5:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_5_BIT)))
return false;
break;
case VMX_EPTP_PWL_4:
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_PAGE_WALK_4_BIT)))
return false;
break;
default:
return false;
}
/* Reserved bits should not be set */
if (CC(new_eptp >> maxphyaddr || ((new_eptp >> 7) & 0x1f)))
return false;
/* AD, if set, should be supported */
if (new_eptp & VMX_EPTP_AD_ENABLE_BIT) {
if (CC(!(vmx->nested.msrs.ept_caps & VMX_EPT_AD_BIT)))
return false;
}
return true;
}
/*
* Checks related to VM-Execution Control Fields
*/
static int nested_check_vm_execution_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->pin_based_vm_exec_control,
vmx->nested.msrs.pinbased_ctls_low,
vmx->nested.msrs.pinbased_ctls_high)) ||
CC(!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
vmx->nested.msrs.procbased_ctls_low,
vmx->nested.msrs.procbased_ctls_high)))
return -EINVAL;
if (nested_cpu_has(vmcs12, CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
CC(!vmx_control_verify(vmcs12->secondary_vm_exec_control,
vmx->nested.msrs.secondary_ctls_low,
vmx->nested.msrs.secondary_ctls_high)))
return -EINVAL;
if (CC(vmcs12->cr3_target_count > nested_cpu_vmx_misc_cr3_count(vcpu)) ||
nested_vmx_check_io_bitmap_controls(vcpu, vmcs12) ||
nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12) ||
nested_vmx_check_tpr_shadow_controls(vcpu, vmcs12) ||
nested_vmx_check_apic_access_controls(vcpu, vmcs12) ||
nested_vmx_check_apicv_controls(vcpu, vmcs12) ||
nested_vmx_check_nmi_controls(vmcs12) ||
nested_vmx_check_pml_controls(vcpu, vmcs12) ||
nested_vmx_check_unrestricted_guest_controls(vcpu, vmcs12) ||
nested_vmx_check_mode_based_ept_exec_controls(vcpu, vmcs12) ||
nested_vmx_check_shadow_vmcs_controls(vcpu, vmcs12) ||
CC(nested_cpu_has_vpid(vmcs12) && !vmcs12->virtual_processor_id))
return -EINVAL;
if (!nested_cpu_has_preemption_timer(vmcs12) &&
nested_cpu_has_save_preemption_timer(vmcs12))
return -EINVAL;
if (nested_cpu_has_ept(vmcs12) &&
CC(!nested_vmx_check_eptp(vcpu, vmcs12->ept_pointer)))
return -EINVAL;
if (nested_cpu_has_vmfunc(vmcs12)) {
if (CC(vmcs12->vm_function_control &
~vmx->nested.msrs.vmfunc_controls))
return -EINVAL;
if (nested_cpu_has_eptp_switching(vmcs12)) {
if (CC(!nested_cpu_has_ept(vmcs12)) ||
CC(!page_address_valid(vcpu, vmcs12->eptp_list_address)))
return -EINVAL;
}
}
return 0;
}
/*
* Checks related to VM-Exit Control Fields
*/
static int nested_check_vm_exit_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->vm_exit_controls,
vmx->nested.msrs.exit_ctls_low,
vmx->nested.msrs.exit_ctls_high)) ||
CC(nested_vmx_check_exit_msr_switch_controls(vcpu, vmcs12)))
return -EINVAL;
return 0;
}
/*
* Checks related to VM-Entry Control Fields
*/
static int nested_check_vm_entry_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (CC(!vmx_control_verify(vmcs12->vm_entry_controls,
vmx->nested.msrs.entry_ctls_low,
vmx->nested.msrs.entry_ctls_high)))
return -EINVAL;
/*
* From the Intel SDM, volume 3:
* Fields relevant to VM-entry event injection must be set properly.
* These fields are the VM-entry interruption-information field, the
* VM-entry exception error code, and the VM-entry instruction length.
*/
if (vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) {
u32 intr_info = vmcs12->vm_entry_intr_info_field;
u8 vector = intr_info & INTR_INFO_VECTOR_MASK;
u32 intr_type = intr_info & INTR_INFO_INTR_TYPE_MASK;
bool has_error_code = intr_info & INTR_INFO_DELIVER_CODE_MASK;
bool should_have_error_code;
bool urg = nested_cpu_has2(vmcs12,
SECONDARY_EXEC_UNRESTRICTED_GUEST);
bool prot_mode = !urg || vmcs12->guest_cr0 & X86_CR0_PE;
/* VM-entry interruption-info field: interruption type */
if (CC(intr_type == INTR_TYPE_RESERVED) ||
CC(intr_type == INTR_TYPE_OTHER_EVENT &&
!nested_cpu_supports_monitor_trap_flag(vcpu)))
return -EINVAL;
/* VM-entry interruption-info field: vector */
if (CC(intr_type == INTR_TYPE_NMI_INTR && vector != NMI_VECTOR) ||
CC(intr_type == INTR_TYPE_HARD_EXCEPTION && vector > 31) ||
CC(intr_type == INTR_TYPE_OTHER_EVENT && vector != 0))
return -EINVAL;
/* VM-entry interruption-info field: deliver error code */
should_have_error_code =
intr_type == INTR_TYPE_HARD_EXCEPTION && prot_mode &&
x86_exception_has_error_code(vector);
if (CC(has_error_code != should_have_error_code))
return -EINVAL;
/* VM-entry exception error code */
if (CC(has_error_code &&
vmcs12->vm_entry_exception_error_code & GENMASK(31, 16)))
return -EINVAL;
/* VM-entry interruption-info field: reserved bits */
if (CC(intr_info & INTR_INFO_RESVD_BITS_MASK))
return -EINVAL;
/* VM-entry instruction length */
switch (intr_type) {
case INTR_TYPE_SOFT_EXCEPTION:
case INTR_TYPE_SOFT_INTR:
case INTR_TYPE_PRIV_SW_EXCEPTION:
if (CC(vmcs12->vm_entry_instruction_len > 15) ||
CC(vmcs12->vm_entry_instruction_len == 0 &&
CC(!nested_cpu_has_zero_length_injection(vcpu))))
return -EINVAL;
}
}
if (nested_vmx_check_entry_msr_switch_controls(vcpu, vmcs12))
return -EINVAL;
return 0;
}
static int nested_vmx_check_controls(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
if (nested_check_vm_execution_controls(vcpu, vmcs12) ||
nested_check_vm_exit_controls(vcpu, vmcs12) ||
nested_check_vm_entry_controls(vcpu, vmcs12))
return -EINVAL;
if (to_vmx(vcpu)->nested.enlightened_vmcs_enabled)
return nested_evmcs_check_controls(vmcs12);
return 0;
}
static int nested_vmx_check_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
bool ia32e;
if (CC(!nested_host_cr0_valid(vcpu, vmcs12->host_cr0)) ||
CC(!nested_host_cr4_valid(vcpu, vmcs12->host_cr4)) ||
CC(!nested_cr3_valid(vcpu, vmcs12->host_cr3)))
return -EINVAL;
if (CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_esp, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_ia32_sysenter_eip, vcpu)))
return -EINVAL;
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) &&
CC(!kvm_pat_valid(vmcs12->host_ia32_pat)))
return -EINVAL;
if ((vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL) &&
CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
vmcs12->host_ia32_perf_global_ctrl)))
return -EINVAL;
#ifdef CONFIG_X86_64
ia32e = !!(vcpu->arch.efer & EFER_LMA);
#else
ia32e = false;
#endif
if (ia32e) {
if (CC(!(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)) ||
CC(!(vmcs12->host_cr4 & X86_CR4_PAE)))
return -EINVAL;
} else {
if (CC(vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE) ||
CC(vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) ||
CC(vmcs12->host_cr4 & X86_CR4_PCIDE) ||
CC((vmcs12->host_rip) >> 32))
return -EINVAL;
}
if (CC(vmcs12->host_cs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_ss_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_ds_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_es_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_fs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_gs_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_tr_selector & (SEGMENT_RPL_MASK | SEGMENT_TI_MASK)) ||
CC(vmcs12->host_cs_selector == 0) ||
CC(vmcs12->host_tr_selector == 0) ||
CC(vmcs12->host_ss_selector == 0 && !ia32e))
return -EINVAL;
if (CC(is_noncanonical_address(vmcs12->host_fs_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_gs_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_gdtr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_idtr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_tr_base, vcpu)) ||
CC(is_noncanonical_address(vmcs12->host_rip, vcpu)))
return -EINVAL;
/*
* If the load IA32_EFER VM-exit control is 1, bits reserved in the
* IA32_EFER MSR must be 0 in the field for that register. In addition,
* the values of the LMA and LME bits in the field must each be that of
* the host address-space size VM-exit control.
*/
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
if (CC(!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer)) ||
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA)) ||
CC(ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)))
return -EINVAL;
}
return 0;
}
static int nested_vmx_check_vmcs_link_ptr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
int r = 0;
struct vmcs12 *shadow;
struct kvm_host_map map;
if (vmcs12->vmcs_link_pointer == -1ull)
return 0;
if (CC(!page_address_valid(vcpu, vmcs12->vmcs_link_pointer)))
return -EINVAL;
if (CC(kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->vmcs_link_pointer), &map)))
return -EINVAL;
shadow = map.hva;
if (CC(shadow->hdr.revision_id != VMCS12_REVISION) ||
CC(shadow->hdr.shadow_vmcs != nested_cpu_has_shadow_vmcs(vmcs12)))
r = -EINVAL;
kvm_vcpu_unmap(vcpu, &map, false);
return r;
}
/*
* Checks related to Guest Non-register State
*/
static int nested_check_guest_non_reg_state(struct vmcs12 *vmcs12)
{
if (CC(vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT))
return -EINVAL;
return 0;
}
static int nested_vmx_check_guest_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12,
u32 *exit_qual)
{
bool ia32e;
*exit_qual = ENTRY_FAIL_DEFAULT;
if (CC(!nested_guest_cr0_valid(vcpu, vmcs12->guest_cr0)) ||
CC(!nested_guest_cr4_valid(vcpu, vmcs12->guest_cr4)))
return -EINVAL;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) &&
CC(!kvm_dr7_valid(vmcs12->guest_dr7)))
return -EINVAL;
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) &&
CC(!kvm_pat_valid(vmcs12->guest_ia32_pat)))
return -EINVAL;
if (nested_vmx_check_vmcs_link_ptr(vcpu, vmcs12)) {
*exit_qual = ENTRY_FAIL_VMCS_LINK_PTR;
return -EINVAL;
}
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL) &&
CC(!kvm_valid_perf_global_ctrl(vcpu_to_pmu(vcpu),
vmcs12->guest_ia32_perf_global_ctrl)))
return -EINVAL;
/*
* If the load IA32_EFER VM-entry control is 1, the following checks
* are performed on the field for the IA32_EFER MSR:
* - Bits reserved in the IA32_EFER MSR must be 0.
* - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
* the IA-32e mode guest VM-exit control. It must also be identical
* to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
* CR0.PG) is 1.
*/
if (to_vmx(vcpu)->nested.nested_run_pending &&
(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)) {
ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
if (CC(!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer)) ||
CC(ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA)) ||
CC(((vmcs12->guest_cr0 & X86_CR0_PG) &&
ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))))
return -EINVAL;
}
if ((vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS) &&
(CC(is_noncanonical_address(vmcs12->guest_bndcfgs & PAGE_MASK, vcpu)) ||
CC((vmcs12->guest_bndcfgs & MSR_IA32_BNDCFGS_RSVD))))
return -EINVAL;
if (nested_check_guest_non_reg_state(vmcs12))
return -EINVAL;
return 0;
}
static int nested_vmx_check_vmentry_hw(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long cr3, cr4;
bool vm_fail;
if (!nested_early_check)
return 0;
if (vmx->msr_autoload.host.nr)
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
if (vmx->msr_autoload.guest.nr)
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
preempt_disable();
vmx_prepare_switch_to_guest(vcpu);
/*
* Induce a consistency check VMExit by clearing bit 1 in GUEST_RFLAGS,
* which is reserved to '1' by hardware. GUEST_RFLAGS is guaranteed to
* be written (by prepare_vmcs02()) before the "real" VMEnter, i.e.
* there is no need to preserve other bits or save/restore the field.
*/
vmcs_writel(GUEST_RFLAGS, 0);
cr3 = __get_current_cr3_fast();
if (unlikely(cr3 != vmx->loaded_vmcs->host_state.cr3)) {
vmcs_writel(HOST_CR3, cr3);
vmx->loaded_vmcs->host_state.cr3 = cr3;
}
cr4 = cr4_read_shadow();
if (unlikely(cr4 != vmx->loaded_vmcs->host_state.cr4)) {
vmcs_writel(HOST_CR4, cr4);
vmx->loaded_vmcs->host_state.cr4 = cr4;
}
asm(
"sub $%c[wordsize], %%" _ASM_SP "\n\t" /* temporarily adjust RSP for CALL */
"cmp %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
"je 1f \n\t"
__ex("vmwrite %%" _ASM_SP ", %[HOST_RSP]") "\n\t"
"mov %%" _ASM_SP ", %c[host_state_rsp](%[loaded_vmcs]) \n\t"
"1: \n\t"
"add $%c[wordsize], %%" _ASM_SP "\n\t" /* un-adjust RSP */
/* Check if vmlaunch or vmresume is needed */
"cmpb $0, %c[launched](%[loaded_vmcs])\n\t"
/*
* VMLAUNCH and VMRESUME clear RFLAGS.{CF,ZF} on VM-Exit, set
* RFLAGS.CF on VM-Fail Invalid and set RFLAGS.ZF on VM-Fail
* Valid. vmx_vmenter() directly "returns" RFLAGS, and so the
* results of VM-Enter is captured via CC_{SET,OUT} to vm_fail.
*/
"call vmx_vmenter\n\t"
CC_SET(be)
: ASM_CALL_CONSTRAINT, CC_OUT(be) (vm_fail)
: [HOST_RSP]"r"((unsigned long)HOST_RSP),
[loaded_vmcs]"r"(vmx->loaded_vmcs),
[launched]"i"(offsetof(struct loaded_vmcs, launched)),
[host_state_rsp]"i"(offsetof(struct loaded_vmcs, host_state.rsp)),
[wordsize]"i"(sizeof(ulong))
: "memory"
);
if (vmx->msr_autoload.host.nr)
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
if (vmx->msr_autoload.guest.nr)
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
if (vm_fail) {
u32 error = vmcs_read32(VM_INSTRUCTION_ERROR);
preempt_enable();
trace_kvm_nested_vmenter_failed(
"early hardware check VM-instruction error: ", error);
WARN_ON_ONCE(error != VMXERR_ENTRY_INVALID_CONTROL_FIELD);
return 1;
}
/*
* VMExit clears RFLAGS.IF and DR7, even on a consistency check.
*/
local_irq_enable();
if (hw_breakpoint_active())
set_debugreg(__this_cpu_read(cpu_dr7), 7);
preempt_enable();
/*
* A non-failing VMEntry means we somehow entered guest mode with
* an illegal RIP, and that's just the tip of the iceberg. There
* is no telling what memory has been modified or what state has
* been exposed to unknown code. Hitting this all but guarantees
* a (very critical) hardware issue.
*/
WARN_ON(!(vmcs_read32(VM_EXIT_REASON) &
VMX_EXIT_REASONS_FAILED_VMENTRY));
return 0;
}
static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct kvm_host_map *map;
struct page *page;
u64 hpa;
/*
* hv_evmcs may end up being not mapped after migration (when
* L2 was running), map it here to make sure vmcs12 changes are
* properly reflected.
*/
if (vmx->nested.enlightened_vmcs_enabled && !vmx->nested.hv_evmcs) {
enum nested_evmptrld_status evmptrld_status =
nested_vmx_handle_enlightened_vmptrld(vcpu, false);
if (evmptrld_status == EVMPTRLD_VMFAIL ||
evmptrld_status == EVMPTRLD_ERROR) {
pr_debug_ratelimited("%s: enlightened vmptrld failed\n",
__func__);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return false;
}
}
if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* Translate L1 physical address to host physical
* address for vmcs02. Keep the page pinned, so this
* physical address remains valid. We keep a reference
* to it so we can release it later.
*/
if (vmx->nested.apic_access_page) { /* shouldn't happen */
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
page = kvm_vcpu_gpa_to_page(vcpu, vmcs12->apic_access_addr);
if (!is_error_page(page)) {
vmx->nested.apic_access_page = page;
hpa = page_to_phys(vmx->nested.apic_access_page);
vmcs_write64(APIC_ACCESS_ADDR, hpa);
} else {
pr_debug_ratelimited("%s: no backing 'struct page' for APIC-access address in vmcs12\n",
__func__);
vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
vcpu->run->internal.suberror =
KVM_INTERNAL_ERROR_EMULATION;
vcpu->run->internal.ndata = 0;
return false;
}
}
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
map = &vmx->nested.virtual_apic_map;
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->virtual_apic_page_addr), map)) {
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, pfn_to_hpa(map->pfn));
} else if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING) &&
nested_cpu_has(vmcs12, CPU_BASED_CR8_STORE_EXITING) &&
!nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
/*
* The processor will never use the TPR shadow, simply
* clear the bit from the execution control. Such a
* configuration is useless, but it happens in tests.
* For any other configuration, failing the vm entry is
* _not_ what the processor does but it's basically the
* only possibility we have.
*/
exec_controls_clearbit(vmx, CPU_BASED_TPR_SHADOW);
} else {
/*
* Write an illegal value to VIRTUAL_APIC_PAGE_ADDR to
* force VM-Entry to fail.
*/
vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, -1ull);
}
}
if (nested_cpu_has_posted_intr(vmcs12)) {
map = &vmx->nested.pi_desc_map;
if (!kvm_vcpu_map(vcpu, gpa_to_gfn(vmcs12->posted_intr_desc_addr), map)) {
vmx->nested.pi_desc =
(struct pi_desc *)(((void *)map->hva) +
offset_in_page(vmcs12->posted_intr_desc_addr));
vmcs_write64(POSTED_INTR_DESC_ADDR,
pfn_to_hpa(map->pfn) + offset_in_page(vmcs12->posted_intr_desc_addr));
}
}
if (nested_vmx_prepare_msr_bitmap(vcpu, vmcs12))
exec_controls_setbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
else
exec_controls_clearbit(vmx, CPU_BASED_USE_MSR_BITMAPS);
return true;
}
/*
* Intel's VMX Instruction Reference specifies a common set of prerequisites
* for running VMX instructions (except VMXON, whose prerequisites are
* slightly different). It also specifies what exception to inject otherwise.
* Note that many of these exceptions have priority over VM exits, so they
* don't have to be checked again here.
*/
static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
{
if (!to_vmx(vcpu)->nested.vmxon) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 0;
}
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 0;
}
return 1;
}
static u8 vmx_has_apicv_interrupt(struct kvm_vcpu *vcpu)
{
u8 rvi = vmx_get_rvi();
u8 vppr = kvm_lapic_get_reg(vcpu->arch.apic, APIC_PROCPRI);
return ((rvi & 0xf0) > (vppr & 0xf0));
}
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12);
/*
* If from_vmentry is false, this is being called from state restore (either RSM
* or KVM_SET_NESTED_STATE). Otherwise it's called from vmlaunch/vmresume.
*
* Returns:
* NVMX_VMENTRY_SUCCESS: Entered VMX non-root mode
* NVMX_VMENTRY_VMFAIL: Consistency check VMFail
* NVMX_VMENTRY_VMEXIT: Consistency check VMExit
* NVMX_VMENTRY_KVM_INTERNAL_ERROR: KVM internal error
*/
enum nvmx_vmentry_status nested_vmx_enter_non_root_mode(struct kvm_vcpu *vcpu,
bool from_vmentry)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
bool evaluate_pending_interrupts;
u32 exit_reason = EXIT_REASON_INVALID_STATE;
u32 exit_qual;
evaluate_pending_interrupts = exec_controls_get(vmx) &
(CPU_BASED_INTR_WINDOW_EXITING | CPU_BASED_NMI_WINDOW_EXITING);
if (likely(!evaluate_pending_interrupts) && kvm_vcpu_apicv_active(vcpu))
evaluate_pending_interrupts |= vmx_has_apicv_interrupt(vcpu);
if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
if (kvm_mpx_supported() &&
!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS))
vmx->nested.vmcs01_guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
/*
* Overwrite vmcs01.GUEST_CR3 with L1's CR3 if EPT is disabled *and*
* nested early checks are disabled. In the event of a "late" VM-Fail,
* i.e. a VM-Fail detected by hardware but not KVM, KVM must unwind its
* software model to the pre-VMEntry host state. When EPT is disabled,
* GUEST_CR3 holds KVM's shadow CR3, not L1's "real" CR3, which causes
* nested_vmx_restore_host_state() to corrupt vcpu->arch.cr3. Stuffing
* vmcs01.GUEST_CR3 results in the unwind naturally setting arch.cr3 to
* the correct value. Smashing vmcs01.GUEST_CR3 is safe because nested
* VM-Exits, and the unwind, reset KVM's MMU, i.e. vmcs01.GUEST_CR3 is
* guaranteed to be overwritten with a shadow CR3 prior to re-entering
* L1. Don't stuff vmcs01.GUEST_CR3 when using nested early checks as
* KVM modifies vcpu->arch.cr3 if and only if the early hardware checks
* pass, and early VM-Fails do not reset KVM's MMU, i.e. the VM-Fail
* path would need to manually save/restore vmcs01.GUEST_CR3.
*/
if (!enable_ept && !nested_early_check)
vmcs_writel(GUEST_CR3, vcpu->arch.cr3);
vmx_switch_vmcs(vcpu, &vmx->nested.vmcs02);
prepare_vmcs02_early(vmx, vmcs12);
if (from_vmentry) {
if (unlikely(!nested_get_vmcs12_pages(vcpu)))
return NVMX_VMENTRY_KVM_INTERNAL_ERROR;
if (nested_vmx_check_vmentry_hw(vcpu)) {
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
return NVMX_VMENTRY_VMFAIL;
}
if (nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
goto vmentry_fail_vmexit;
}
enter_guest_mode(vcpu);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset += vmcs12->tsc_offset;
if (prepare_vmcs02(vcpu, vmcs12, &exit_qual))
goto vmentry_fail_vmexit_guest_mode;
if (from_vmentry) {
exit_reason = EXIT_REASON_MSR_LOAD_FAIL;
exit_qual = nested_vmx_load_msr(vcpu,
vmcs12->vm_entry_msr_load_addr,
vmcs12->vm_entry_msr_load_count);
if (exit_qual)
goto vmentry_fail_vmexit_guest_mode;
} else {
/*
* The MMU is not initialized to point at the right entities yet and
* "get pages" would need to read data from the guest (i.e. we will
* need to perform gpa to hpa translation). Request a call
* to nested_get_vmcs12_pages before the next VM-entry. The MSRs
* have already been set at vmentry time and should not be reset.
*/
kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
}
/*
* If L1 had a pending IRQ/NMI until it executed
* VMLAUNCH/VMRESUME which wasn't delivered because it was
* disallowed (e.g. interrupts disabled), L0 needs to
* evaluate if this pending event should cause an exit from L2
* to L1 or delivered directly to L2 (e.g. In case L1 don't
* intercept EXTERNAL_INTERRUPT).
*
* Usually this would be handled by the processor noticing an
* IRQ/NMI window request, or checking RVI during evaluation of
* pending virtual interrupts. However, this setting was done
* on VMCS01 and now VMCS02 is active instead. Thus, we force L0
* to perform pending event evaluation by requesting a KVM_REQ_EVENT.
*/
if (unlikely(evaluate_pending_interrupts))
kvm_make_request(KVM_REQ_EVENT, vcpu);
/*
* Do not start the preemption timer hrtimer until after we know
* we are successful, so that only nested_vmx_vmexit needs to cancel
* the timer.
*/
vmx->nested.preemption_timer_expired = false;
if (nested_cpu_has_preemption_timer(vmcs12))
vmx_start_preemption_timer(vcpu);
/*
* Note no nested_vmx_succeed or nested_vmx_fail here. At this point
* we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
* returned as far as L1 is concerned. It will only return (and set
* the success flag) when L2 exits (see nested_vmx_vmexit()).
*/
return NVMX_VMENTRY_SUCCESS;
/*
* A failed consistency check that leads to a VMExit during L1's
* VMEnter to L2 is a variation of a normal VMexit, as explained in
* 26.7 "VM-entry failures during or after loading guest state".
*/
vmentry_fail_vmexit_guest_mode:
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
leave_guest_mode(vcpu);
vmentry_fail_vmexit:
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
if (!from_vmentry)
return NVMX_VMENTRY_VMEXIT;
load_vmcs12_host_state(vcpu, vmcs12);
vmcs12->vm_exit_reason = exit_reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
vmcs12->exit_qualification = exit_qual;
if (enable_shadow_vmcs || vmx->nested.hv_evmcs)
vmx->nested.need_vmcs12_to_shadow_sync = true;
return NVMX_VMENTRY_VMEXIT;
}
/*
* nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
* for running an L2 nested guest.
*/
static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
{
struct vmcs12 *vmcs12;
enum nvmx_vmentry_status status;
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 interrupt_shadow = vmx_get_interrupt_shadow(vcpu);
enum nested_evmptrld_status evmptrld_status;
if (!nested_vmx_check_permission(vcpu))
return 1;
evmptrld_status = nested_vmx_handle_enlightened_vmptrld(vcpu, launch);
if (evmptrld_status == EVMPTRLD_ERROR) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
} else if (evmptrld_status == EVMPTRLD_VMFAIL) {
return nested_vmx_failInvalid(vcpu);
}
if (!vmx->nested.hv_evmcs && vmx->nested.current_vmptr == -1ull)
return nested_vmx_failInvalid(vcpu);
vmcs12 = get_vmcs12(vcpu);
/*
* Can't VMLAUNCH or VMRESUME a shadow VMCS. Despite the fact
* that there *is* a valid VMCS pointer, RFLAGS.CF is set
* rather than RFLAGS.ZF, and no error number is stored to the
* VM-instruction error field.
*/
if (vmcs12->hdr.shadow_vmcs)
return nested_vmx_failInvalid(vcpu);
if (vmx->nested.hv_evmcs) {
copy_enlightened_to_vmcs12(vmx);
/* Enlightened VMCS doesn't have launch state */
vmcs12->launch_state = !launch;
} else if (enable_shadow_vmcs) {
copy_shadow_to_vmcs12(vmx);
}
/*
* The nested entry process starts with enforcing various prerequisites
* on vmcs12 as required by the Intel SDM, and act appropriately when
* they fail: As the SDM explains, some conditions should cause the
* instruction to fail, while others will cause the instruction to seem
* to succeed, but return an EXIT_REASON_INVALID_STATE.
* To speed up the normal (success) code path, we should avoid checking
* for misconfigurations which will anyway be caught by the processor
* when using the merged vmcs02.
*/
if (interrupt_shadow & KVM_X86_SHADOW_INT_MOV_SS)
return nested_vmx_failValid(vcpu,
VMXERR_ENTRY_EVENTS_BLOCKED_BY_MOV_SS);
if (vmcs12->launch_state == launch)
return nested_vmx_failValid(vcpu,
launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
: VMXERR_VMRESUME_NONLAUNCHED_VMCS);
if (nested_vmx_check_controls(vcpu, vmcs12))
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
if (nested_vmx_check_host_state(vcpu, vmcs12))
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
/*
* We're finally done with prerequisite checking, and can start with
* the nested entry.
*/
vmx->nested.nested_run_pending = 1;
status = nested_vmx_enter_non_root_mode(vcpu, true);
if (unlikely(status != NVMX_VMENTRY_SUCCESS))
goto vmentry_failed;
/* Hide L1D cache contents from the nested guest. */
vmx->vcpu.arch.l1tf_flush_l1d = true;
/*
* Must happen outside of nested_vmx_enter_non_root_mode() as it will
* also be used as part of restoring nVMX state for
* snapshot restore (migration).
*
* In this flow, it is assumed that vmcs12 cache was
* trasferred as part of captured nVMX state and should
* therefore not be read from guest memory (which may not
* exist on destination host yet).
*/
nested_cache_shadow_vmcs12(vcpu, vmcs12);
/*
* If we're entering a halted L2 vcpu and the L2 vcpu won't be
* awakened by event injection or by an NMI-window VM-exit or
* by an interrupt-window VM-exit, halt the vcpu.
*/
if ((vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT) &&
!(vmcs12->vm_entry_intr_info_field & INTR_INFO_VALID_MASK) &&
!(vmcs12->cpu_based_vm_exec_control & CPU_BASED_NMI_WINDOW_EXITING) &&
!((vmcs12->cpu_based_vm_exec_control & CPU_BASED_INTR_WINDOW_EXITING) &&
(vmcs12->guest_rflags & X86_EFLAGS_IF))) {
vmx->nested.nested_run_pending = 0;
return kvm_vcpu_halt(vcpu);
}
return 1;
vmentry_failed:
vmx->nested.nested_run_pending = 0;
if (status == NVMX_VMENTRY_KVM_INTERNAL_ERROR)
return 0;
if (status == NVMX_VMENTRY_VMEXIT)
return 1;
WARN_ON_ONCE(status != NVMX_VMENTRY_VMFAIL);
return nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
}
/*
* On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
* because L2 may have changed some cr0 bits directly (CR0_GUEST_HOST_MASK).
* This function returns the new value we should put in vmcs12.guest_cr0.
* It's not enough to just return the vmcs02 GUEST_CR0. Rather,
* 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
* available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
* didn't trap the bit, because if L1 did, so would L0).
* 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
* been modified by L2, and L1 knows it. So just leave the old value of
* the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
* isn't relevant, because if L0 traps this bit it can set it to anything.
* 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
* changed these bits, and therefore they need to be updated, but L0
* didn't necessarily allow them to be changed in GUEST_CR0 - and rather
* put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
*/
static inline unsigned long
vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
/*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
vcpu->arch.cr0_guest_owned_bits));
}
static inline unsigned long
vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
return
/*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
/*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
/*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
vcpu->arch.cr4_guest_owned_bits));
}
static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 idt_vectoring;
unsigned int nr;
if (vcpu->arch.exception.injected) {
nr = vcpu->arch.exception.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (kvm_exception_is_soft(nr)) {
vmcs12->vm_exit_instruction_len =
vcpu->arch.event_exit_inst_len;
idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
} else
idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
if (vcpu->arch.exception.has_error_code) {
idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
vmcs12->idt_vectoring_error_code =
vcpu->arch.exception.error_code;
}
vmcs12->idt_vectoring_info_field = idt_vectoring;
} else if (vcpu->arch.nmi_injected) {
vmcs12->idt_vectoring_info_field =
INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
} else if (vcpu->arch.interrupt.injected) {
nr = vcpu->arch.interrupt.nr;
idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
if (vcpu->arch.interrupt.soft) {
idt_vectoring |= INTR_TYPE_SOFT_INTR;
vmcs12->vm_entry_instruction_len =
vcpu->arch.event_exit_inst_len;
} else
idt_vectoring |= INTR_TYPE_EXT_INTR;
vmcs12->idt_vectoring_info_field = idt_vectoring;
}
}
void nested_mark_vmcs12_pages_dirty(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
gfn_t gfn;
/*
* Don't need to mark the APIC access page dirty; it is never
* written to by the CPU during APIC virtualization.
*/
if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
gfn = vmcs12->virtual_apic_page_addr >> PAGE_SHIFT;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
}
if (nested_cpu_has_posted_intr(vmcs12)) {
gfn = vmcs12->posted_intr_desc_addr >> PAGE_SHIFT;
kvm_vcpu_mark_page_dirty(vcpu, gfn);
}
}
static void vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int max_irr;
void *vapic_page;
u16 status;
if (!vmx->nested.pi_desc || !vmx->nested.pi_pending)
return;
vmx->nested.pi_pending = false;
if (!pi_test_and_clear_on(vmx->nested.pi_desc))
return;
max_irr = find_last_bit((unsigned long *)vmx->nested.pi_desc->pir, 256);
if (max_irr != 256) {
vapic_page = vmx->nested.virtual_apic_map.hva;
if (!vapic_page)
return;
__kvm_apic_update_irr(vmx->nested.pi_desc->pir,
vapic_page, &max_irr);
status = vmcs_read16(GUEST_INTR_STATUS);
if ((u8)max_irr > ((u8)status & 0xff)) {
status &= ~0xff;
status |= (u8)max_irr;
vmcs_write16(GUEST_INTR_STATUS, status);
}
}
nested_mark_vmcs12_pages_dirty(vcpu);
}
static void nested_vmx_inject_exception_vmexit(struct kvm_vcpu *vcpu,
unsigned long exit_qual)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
unsigned int nr = vcpu->arch.exception.nr;
u32 intr_info = nr | INTR_INFO_VALID_MASK;
if (vcpu->arch.exception.has_error_code) {
vmcs12->vm_exit_intr_error_code = vcpu->arch.exception.error_code;
intr_info |= INTR_INFO_DELIVER_CODE_MASK;
}
if (kvm_exception_is_soft(nr))
intr_info |= INTR_TYPE_SOFT_EXCEPTION;
else
intr_info |= INTR_TYPE_HARD_EXCEPTION;
if (!(vmcs12->idt_vectoring_info_field & VECTORING_INFO_VALID_MASK) &&
vmx_get_nmi_mask(vcpu))
intr_info |= INTR_INFO_UNBLOCK_NMI;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI, intr_info, exit_qual);
}
/*
* Returns true if a debug trap is pending delivery.
*
* In KVM, debug traps bear an exception payload. As such, the class of a #DB
* exception may be inferred from the presence of an exception payload.
*/
static inline bool vmx_pending_dbg_trap(struct kvm_vcpu *vcpu)
{
return vcpu->arch.exception.pending &&
vcpu->arch.exception.nr == DB_VECTOR &&
vcpu->arch.exception.payload;
}
/*
* Certain VM-exits set the 'pending debug exceptions' field to indicate a
* recognized #DB (data or single-step) that has yet to be delivered. Since KVM
* represents these debug traps with a payload that is said to be compatible
* with the 'pending debug exceptions' field, write the payload to the VMCS
* field if a VM-exit is delivered before the debug trap.
*/
static void nested_vmx_update_pending_dbg(struct kvm_vcpu *vcpu)
{
if (vmx_pending_dbg_trap(vcpu))
vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
vcpu->arch.exception.payload);
}
static int vmx_check_nested_events(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
unsigned long exit_qual;
bool block_nested_events =
vmx->nested.nested_run_pending || kvm_event_needs_reinjection(vcpu);
bool mtf_pending = vmx->nested.mtf_pending;
struct kvm_lapic *apic = vcpu->arch.apic;
/*
* Clear the MTF state. If a higher priority VM-exit is delivered first,
* this state is discarded.
*/
vmx->nested.mtf_pending = false;
if (lapic_in_kernel(vcpu) &&
test_bit(KVM_APIC_INIT, &apic->pending_events)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_update_pending_dbg(vcpu);
clear_bit(KVM_APIC_INIT, &apic->pending_events);
nested_vmx_vmexit(vcpu, EXIT_REASON_INIT_SIGNAL, 0, 0);
return 0;
}
/*
* Process any exceptions that are not debug traps before MTF.
*/
if (vcpu->arch.exception.pending &&
!vmx_pending_dbg_trap(vcpu) &&
nested_vmx_check_exception(vcpu, &exit_qual)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
return 0;
}
if (mtf_pending) {
if (block_nested_events)
return -EBUSY;
nested_vmx_update_pending_dbg(vcpu);
nested_vmx_vmexit(vcpu, EXIT_REASON_MONITOR_TRAP_FLAG, 0, 0);
return 0;
}
if (vcpu->arch.exception.pending &&
nested_vmx_check_exception(vcpu, &exit_qual)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_inject_exception_vmexit(vcpu, exit_qual);
return 0;
}
if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
vmx->nested.preemption_timer_expired) {
if (block_nested_events)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
return 0;
}
if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
NMI_VECTOR | INTR_TYPE_NMI_INTR |
INTR_INFO_VALID_MASK, 0);
/*
* The NMI-triggered VM exit counts as injection:
* clear this one and block further NMIs.
*/
vcpu->arch.nmi_pending = 0;
vmx_set_nmi_mask(vcpu, true);
return 0;
}
if (kvm_cpu_has_interrupt(vcpu) && nested_exit_on_intr(vcpu)) {
if (block_nested_events)
return -EBUSY;
nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
return 0;
}
vmx_complete_nested_posted_interrupt(vcpu);
return 0;
}
static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
{
ktime_t remaining =
hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
u64 value;
if (ktime_to_ns(remaining) <= 0)
return 0;
value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
do_div(value, 1000000);
return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
}
static bool is_vmcs12_ext_field(unsigned long field)
{
switch (field) {
case GUEST_ES_SELECTOR:
case GUEST_CS_SELECTOR:
case GUEST_SS_SELECTOR:
case GUEST_DS_SELECTOR:
case GUEST_FS_SELECTOR:
case GUEST_GS_SELECTOR:
case GUEST_LDTR_SELECTOR:
case GUEST_TR_SELECTOR:
case GUEST_ES_LIMIT:
case GUEST_CS_LIMIT:
case GUEST_SS_LIMIT:
case GUEST_DS_LIMIT:
case GUEST_FS_LIMIT:
case GUEST_GS_LIMIT:
case GUEST_LDTR_LIMIT:
case GUEST_TR_LIMIT:
case GUEST_GDTR_LIMIT:
case GUEST_IDTR_LIMIT:
case GUEST_ES_AR_BYTES:
case GUEST_DS_AR_BYTES:
case GUEST_FS_AR_BYTES:
case GUEST_GS_AR_BYTES:
case GUEST_LDTR_AR_BYTES:
case GUEST_TR_AR_BYTES:
case GUEST_ES_BASE:
case GUEST_CS_BASE:
case GUEST_SS_BASE:
case GUEST_DS_BASE:
case GUEST_FS_BASE:
case GUEST_GS_BASE:
case GUEST_LDTR_BASE:
case GUEST_TR_BASE:
case GUEST_GDTR_BASE:
case GUEST_IDTR_BASE:
case GUEST_PENDING_DBG_EXCEPTIONS:
case GUEST_BNDCFGS:
return true;
default:
break;
}
return false;
}
static void sync_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
vmcs12->guest_pending_dbg_exceptions =
vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
if (kvm_mpx_supported())
vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = false;
}
static void copy_vmcs02_to_vmcs12_rare(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int cpu;
if (!vmx->nested.need_sync_vmcs02_to_vmcs12_rare)
return;
WARN_ON_ONCE(vmx->loaded_vmcs != &vmx->vmcs01);
cpu = get_cpu();
vmx->loaded_vmcs = &vmx->nested.vmcs02;
vmx_vcpu_load(&vmx->vcpu, cpu);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->loaded_vmcs = &vmx->vmcs01;
vmx_vcpu_load(&vmx->vcpu, cpu);
put_cpu();
}
/*
* Update the guest state fields of vmcs12 to reflect changes that
* occurred while L2 was running. (The "IA-32e mode guest" bit of the
* VM-entry controls is also updated, since this is really a guest
* state bit.)
*/
static void sync_vmcs02_to_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.hv_evmcs)
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
vmx->nested.need_sync_vmcs02_to_vmcs12_rare = !vmx->nested.hv_evmcs;
vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
vmcs12->guest_rsp = kvm_rsp_read(vcpu);
vmcs12->guest_rip = kvm_rip_read(vcpu);
vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
vmcs12->guest_interruptibility_info =
vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
else
vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
if (nested_cpu_has_preemption_timer(vmcs12) &&
vmcs12->vm_exit_controls & VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
vmcs12->vmx_preemption_timer_value =
vmx_get_preemption_timer_value(vcpu);
/*
* In some cases (usually, nested EPT), L2 is allowed to change its
* own CR3 without exiting. If it has changed it, we must keep it.
* Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
* by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
*
* Additionally, restore L2's PDPTR to vmcs12.
*/
if (enable_ept) {
vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
if (nested_cpu_has_ept(vmcs12) && is_pae_paging(vcpu)) {
vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
}
}
vmcs12->guest_linear_address = vmcs_readl(GUEST_LINEAR_ADDRESS);
if (nested_cpu_has_vid(vmcs12))
vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
vmcs12->vm_entry_controls =
(vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
(vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS)
kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
vmcs12->guest_ia32_efer = vcpu->arch.efer;
}
/*
* prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
* and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
* and this function updates it to reflect the changes to the guest state while
* L2 was running (and perhaps made some exits which were handled directly by L0
* without going back to L1), and to reflect the exit reason.
* Note that we do not have to copy here all VMCS fields, just those that
* could have changed by the L2 guest or the exit - i.e., the guest-state and
* exit-information fields only. Other fields are modified by L1 with VMWRITE,
* which already writes to vmcs12 directly.
*/
static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
u32 exit_reason, u32 exit_intr_info,
unsigned long exit_qualification)
{
/* update exit information fields: */
vmcs12->vm_exit_reason = exit_reason;
vmcs12->exit_qualification = exit_qualification;
vmcs12->vm_exit_intr_info = exit_intr_info;
vmcs12->idt_vectoring_info_field = 0;
vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
vmcs12->launch_state = 1;
/* vm_entry_intr_info_field is cleared on exit. Emulate this
* instead of reading the real value. */
vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
/*
* Transfer the event that L0 or L1 may wanted to inject into
* L2 to IDT_VECTORING_INFO_FIELD.
*/
vmcs12_save_pending_event(vcpu, vmcs12);
/*
* According to spec, there's no need to store the guest's
* MSRs if the exit is due to a VM-entry failure that occurs
* during or after loading the guest state. Since this exit
* does not fall in that category, we need to save the MSRs.
*/
if (nested_vmx_store_msr(vcpu,
vmcs12->vm_exit_msr_store_addr,
vmcs12->vm_exit_msr_store_count))
nested_vmx_abort(vcpu,
VMX_ABORT_SAVE_GUEST_MSR_FAIL);
}
/*
* Drop what we picked up for L2 via vmx_complete_interrupts. It is
* preserved above and would only end up incorrectly in L1.
*/
vcpu->arch.nmi_injected = false;
kvm_clear_exception_queue(vcpu);
kvm_clear_interrupt_queue(vcpu);
}
/*
* A part of what we need to when the nested L2 guest exits and we want to
* run its L1 parent, is to reset L1's guest state to the host state specified
* in vmcs12.
* This function is to be called not only on normal nested exit, but also on
* a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
* Failures During or After Loading Guest State").
* This function should be called when the active VMCS is L1's (vmcs01).
*/
static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
struct kvm_segment seg;
u32 entry_failure_code;
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
vcpu->arch.efer = vmcs12->host_ia32_efer;
else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
vcpu->arch.efer |= (EFER_LMA | EFER_LME);
else
vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
vmx_set_efer(vcpu, vcpu->arch.efer);
kvm_rsp_write(vcpu, vmcs12->host_rsp);
kvm_rip_write(vcpu, vmcs12->host_rip);
vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
vmx_set_interrupt_shadow(vcpu, 0);
/*
* Note that calling vmx_set_cr0 is important, even if cr0 hasn't
* actually changed, because vmx_set_cr0 refers to efer set above.
*
* CR0_GUEST_HOST_MASK is already set in the original vmcs01
* (KVM doesn't change it);
*/
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs12->host_cr0);
/* Same as above - no reason to call set_cr4_guest_host_mask(). */
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
vmx_set_cr4(vcpu, vmcs12->host_cr4);
nested_ept_uninit_mmu_context(vcpu);
/*
* Only PDPTE load can fail as the value of cr3 was checked on entry and
* couldn't have changed.
*/
if (nested_vmx_load_cr3(vcpu, vmcs12->host_cr3, false, &entry_failure_code))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_PDPTE_FAIL);
if (!enable_ept)
vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
/*
* If vmcs01 doesn't use VPID, CPU flushes TLB on every
* VMEntry/VMExit. Thus, no need to flush TLB.
*
* If vmcs12 doesn't use VPID, L1 expects TLB to be
* flushed on every VMEntry/VMExit.
*
* Otherwise, we can preserve TLB entries as long as we are
* able to tag L1 TLB entries differently than L2 TLB entries.
*
* If vmcs12 uses EPT, we need to execute this flush on EPTP01
* and therefore we request the TLB flush to happen only after VMCS EPTP
* has been set by KVM_REQ_LOAD_MMU_PGD.
*/
if (enable_vpid &&
(!nested_cpu_has_vpid(vmcs12) || !nested_has_guest_tlb_tag(vcpu))) {
kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
}
vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
vmcs_write32(GUEST_IDTR_LIMIT, 0xFFFF);
vmcs_write32(GUEST_GDTR_LIMIT, 0xFFFF);
/* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
vmcs_write64(GUEST_BNDCFGS, 0);
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
vcpu->arch.pat = vmcs12->host_ia32_pat;
}
if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
WARN_ON_ONCE(kvm_set_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL,
vmcs12->host_ia32_perf_global_ctrl));
/* Set L1 segment info according to Intel SDM
27.5.2 Loading Host Segment and Descriptor-Table Registers */
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.selector = vmcs12->host_cs_selector,
.type = 11,
.present = 1,
.s = 1,
.g = 1
};
if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
seg.l = 1;
else
seg.db = 1;
vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
seg = (struct kvm_segment) {
.base = 0,
.limit = 0xFFFFFFFF,
.type = 3,
.present = 1,
.s = 1,
.db = 1,
.g = 1
};
seg.selector = vmcs12->host_ds_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
seg.selector = vmcs12->host_es_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
seg.selector = vmcs12->host_ss_selector;
vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
seg.selector = vmcs12->host_fs_selector;
seg.base = vmcs12->host_fs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
seg.selector = vmcs12->host_gs_selector;
seg.base = vmcs12->host_gs_base;
vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
seg = (struct kvm_segment) {
.base = vmcs12->host_tr_base,
.limit = 0x67,
.selector = vmcs12->host_tr_selector,
.type = 11,
.present = 1
};
vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
kvm_set_dr(vcpu, 7, 0x400);
vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(vcpu);
if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
vmcs12->vm_exit_msr_load_count))
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
static inline u64 nested_vmx_get_vmcs01_guest_efer(struct vcpu_vmx *vmx)
{
struct shared_msr_entry *efer_msr;
unsigned int i;
if (vm_entry_controls_get(vmx) & VM_ENTRY_LOAD_IA32_EFER)
return vmcs_read64(GUEST_IA32_EFER);
if (cpu_has_load_ia32_efer())
return host_efer;
for (i = 0; i < vmx->msr_autoload.guest.nr; ++i) {
if (vmx->msr_autoload.guest.val[i].index == MSR_EFER)
return vmx->msr_autoload.guest.val[i].value;
}
efer_msr = find_msr_entry(vmx, MSR_EFER);
if (efer_msr)
return efer_msr->data;
return host_efer;
}
static void nested_vmx_restore_host_state(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmx_msr_entry g, h;
gpa_t gpa;
u32 i, j;
vcpu->arch.pat = vmcs_read64(GUEST_IA32_PAT);
if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
/*
* L1's host DR7 is lost if KVM_GUESTDBG_USE_HW_BP is set
* as vmcs01.GUEST_DR7 contains a userspace defined value
* and vcpu->arch.dr7 is not squirreled away before the
* nested VMENTER (not worth adding a variable in nested_vmx).
*/
if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP)
kvm_set_dr(vcpu, 7, DR7_FIXED_1);
else
WARN_ON(kvm_set_dr(vcpu, 7, vmcs_readl(GUEST_DR7)));
}
/*
* Note that calling vmx_set_{efer,cr0,cr4} is important as they
* handle a variety of side effects to KVM's software model.
*/
vmx_set_efer(vcpu, nested_vmx_get_vmcs01_guest_efer(vmx));
vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
vmx_set_cr0(vcpu, vmcs_readl(CR0_READ_SHADOW));
vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
vmx_set_cr4(vcpu, vmcs_readl(CR4_READ_SHADOW));
nested_ept_uninit_mmu_context(vcpu);
vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
kvm_register_mark_available(vcpu, VCPU_EXREG_CR3);
/*
* Use ept_save_pdptrs(vcpu) to load the MMU's cached PDPTRs
* from vmcs01 (if necessary). The PDPTRs are not loaded on
* VMFail, like everything else we just need to ensure our
* software model is up-to-date.
*/
if (enable_ept)
ept_save_pdptrs(vcpu);
kvm_mmu_reset_context(vcpu);
if (cpu_has_vmx_msr_bitmap())
vmx_update_msr_bitmap(vcpu);
/*
* This nasty bit of open coding is a compromise between blindly
* loading L1's MSRs using the exit load lists (incorrect emulation
* of VMFail), leaving the nested VM's MSRs in the software model
* (incorrect behavior) and snapshotting the modified MSRs (too
* expensive since the lists are unbound by hardware). For each
* MSR that was (prematurely) loaded from the nested VMEntry load
* list, reload it from the exit load list if it exists and differs
* from the guest value. The intent is to stuff host state as
* silently as possible, not to fully process the exit load list.
*/
for (i = 0; i < vmcs12->vm_entry_msr_load_count; i++) {
gpa = vmcs12->vm_entry_msr_load_addr + (i * sizeof(g));
if (kvm_vcpu_read_guest(vcpu, gpa, &g, sizeof(g))) {
pr_debug_ratelimited(
"%s read MSR index failed (%u, 0x%08llx)\n",
__func__, i, gpa);
goto vmabort;
}
for (j = 0; j < vmcs12->vm_exit_msr_load_count; j++) {
gpa = vmcs12->vm_exit_msr_load_addr + (j * sizeof(h));
if (kvm_vcpu_read_guest(vcpu, gpa, &h, sizeof(h))) {
pr_debug_ratelimited(
"%s read MSR failed (%u, 0x%08llx)\n",
__func__, j, gpa);
goto vmabort;
}
if (h.index != g.index)
continue;
if (h.value == g.value)
break;
if (nested_vmx_load_msr_check(vcpu, &h)) {
pr_debug_ratelimited(
"%s check failed (%u, 0x%x, 0x%x)\n",
__func__, j, h.index, h.reserved);
goto vmabort;
}
if (kvm_set_msr(vcpu, h.index, h.value)) {
pr_debug_ratelimited(
"%s WRMSR failed (%u, 0x%x, 0x%llx)\n",
__func__, j, h.index, h.value);
goto vmabort;
}
}
}
return;
vmabort:
nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
}
/*
* Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
* and modify vmcs12 to make it see what it would expect to see there if
* L2 was its real guest. Must only be called when in L2 (is_guest_mode())
*/
void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
u32 exit_intr_info, unsigned long exit_qualification)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
/* trying to cancel vmlaunch/vmresume is a bug */
WARN_ON_ONCE(vmx->nested.nested_run_pending);
leave_guest_mode(vcpu);
if (nested_cpu_has_preemption_timer(vmcs12))
hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETTING)
vcpu->arch.tsc_offset -= vmcs12->tsc_offset;
if (likely(!vmx->fail)) {
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
if (exit_reason != -1)
prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
exit_qualification);
/*
* Must happen outside of sync_vmcs02_to_vmcs12() as it will
* also be used to capture vmcs12 cache as part of
* capturing nVMX state for snapshot (migration).
*
* Otherwise, this flush will dirty guest memory at a
* point it is already assumed by user-space to be
* immutable.
*/
nested_flush_cached_shadow_vmcs12(vcpu, vmcs12);
} else {
/*
* The only expected VM-instruction error is "VM entry with
* invalid control field(s)." Anything else indicates a
* problem with L0. And we should never get here with a
* VMFail of any type if early consistency checks are enabled.
*/
WARN_ON_ONCE(vmcs_read32(VM_INSTRUCTION_ERROR) !=
VMXERR_ENTRY_INVALID_CONTROL_FIELD);
WARN_ON_ONCE(nested_early_check);
}
vmx_switch_vmcs(vcpu, &vmx->vmcs01);
/* Update any VMCS fields that might have changed while L2 ran */
vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, vmx->msr_autoload.host.nr);
vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, vmx->msr_autoload.guest.nr);
vmcs_write64(TSC_OFFSET, vcpu->arch.tsc_offset);
if (vmx->nested.l1_tpr_threshold != -1)
vmcs_write32(TPR_THRESHOLD, vmx->nested.l1_tpr_threshold);
if (kvm_has_tsc_control)
decache_tsc_multiplier(vmx);
if (vmx->nested.change_vmcs01_virtual_apic_mode) {
vmx->nested.change_vmcs01_virtual_apic_mode = false;
vmx_set_virtual_apic_mode(vcpu);
}
/* Unpin physical memory we referred to in vmcs02 */
if (vmx->nested.apic_access_page) {
kvm_release_page_clean(vmx->nested.apic_access_page);
vmx->nested.apic_access_page = NULL;
}
kvm_vcpu_unmap(vcpu, &vmx->nested.virtual_apic_map, true);
kvm_vcpu_unmap(vcpu, &vmx->nested.pi_desc_map, true);
vmx->nested.pi_desc = NULL;
/*
* We are now running in L2, mmu_notifier will force to reload the
* page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
*/
kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
if ((exit_reason != -1) && (enable_shadow_vmcs || vmx->nested.hv_evmcs))
vmx->nested.need_vmcs12_to_shadow_sync = true;
/* in case we halted in L2 */
vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
if (likely(!vmx->fail)) {
if (exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT &&
nested_exit_intr_ack_set(vcpu)) {
int irq = kvm_cpu_get_interrupt(vcpu);
WARN_ON(irq < 0);
vmcs12->vm_exit_intr_info = irq |
INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
}
if (exit_reason != -1)
trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
vmcs12->exit_qualification,
vmcs12->idt_vectoring_info_field,
vmcs12->vm_exit_intr_info,
vmcs12->vm_exit_intr_error_code,
KVM_ISA_VMX);
load_vmcs12_host_state(vcpu, vmcs12);
return;
}
/*
* After an early L2 VM-entry failure, we're now back
* in L1 which thinks it just finished a VMLAUNCH or
* VMRESUME instruction, so we need to set the failure
* flag and the VM-instruction error field of the VMCS
* accordingly, and skip the emulated instruction.
*/
(void)nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
/*
* Restore L1's host state to KVM's software model. We're here
* because a consistency check was caught by hardware, which
* means some amount of guest state has been propagated to KVM's
* model and needs to be unwound to the host's state.
*/
nested_vmx_restore_host_state(vcpu);
vmx->fail = 0;
}
/*
* Decode the memory-address operand of a vmx instruction, as recorded on an
* exit caused by such an instruction (run by a guest hypervisor).
* On success, returns 0. When the operand is invalid, returns 1 and throws
* #UD, #GP, or #SS.
*/
int get_vmx_mem_address(struct kvm_vcpu *vcpu, unsigned long exit_qualification,
u32 vmx_instruction_info, bool wr, int len, gva_t *ret)
{
gva_t off;
bool exn;
struct kvm_segment s;
/*
* According to Vol. 3B, "Information for VM Exits Due to Instruction
* Execution", on an exit, vmx_instruction_info holds most of the
* addressing components of the operand. Only the displacement part
* is put in exit_qualification (see 3B, "Basic VM-Exit Information").
* For how an actual address is calculated from all these components,
* refer to Vol. 1, "Operand Addressing".
*/
int scaling = vmx_instruction_info & 3;
int addr_size = (vmx_instruction_info >> 7) & 7;
bool is_reg = vmx_instruction_info & (1u << 10);
int seg_reg = (vmx_instruction_info >> 15) & 7;
int index_reg = (vmx_instruction_info >> 18) & 0xf;
bool index_is_valid = !(vmx_instruction_info & (1u << 22));
int base_reg = (vmx_instruction_info >> 23) & 0xf;
bool base_is_valid = !(vmx_instruction_info & (1u << 27));
if (is_reg) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* Addr = segment_base + offset */
/* offset = base + [index * scale] + displacement */
off = exit_qualification; /* holds the displacement */
if (addr_size == 1)
off = (gva_t)sign_extend64(off, 31);
else if (addr_size == 0)
off = (gva_t)sign_extend64(off, 15);
if (base_is_valid)
off += kvm_register_read(vcpu, base_reg);
if (index_is_valid)
off += kvm_register_read(vcpu, index_reg) << scaling;
vmx_get_segment(vcpu, &s, seg_reg);
/*
* The effective address, i.e. @off, of a memory operand is truncated
* based on the address size of the instruction. Note that this is
* the *effective address*, i.e. the address prior to accounting for
* the segment's base.
*/
if (addr_size == 1) /* 32 bit */
off &= 0xffffffff;
else if (addr_size == 0) /* 16 bit */
off &= 0xffff;
/* Checks for #GP/#SS exceptions. */
exn = false;
if (is_long_mode(vcpu)) {
/*
* The virtual/linear address is never truncated in 64-bit
* mode, e.g. a 32-bit address size can yield a 64-bit virtual
* address when using FS/GS with a non-zero base.
*/
if (seg_reg == VCPU_SREG_FS || seg_reg == VCPU_SREG_GS)
*ret = s.base + off;
else
*ret = off;
/* Long mode: #GP(0)/#SS(0) if the memory address is in a
* non-canonical form. This is the only check on the memory
* destination for long mode!
*/
exn = is_noncanonical_address(*ret, vcpu);
} else {
/*
* When not in long mode, the virtual/linear address is
* unconditionally truncated to 32 bits regardless of the
* address size.
*/
*ret = (s.base + off) & 0xffffffff;
/* Protected mode: apply checks for segment validity in the
* following order:
* - segment type check (#GP(0) may be thrown)
* - usability check (#GP(0)/#SS(0))
* - limit check (#GP(0)/#SS(0))
*/
if (wr)
/* #GP(0) if the destination operand is located in a
* read-only data segment or any code segment.
*/
exn = ((s.type & 0xa) == 0 || (s.type & 8));
else
/* #GP(0) if the source operand is located in an
* execute-only code segment
*/
exn = ((s.type & 0xa) == 8);
if (exn) {
kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
return 1;
}
/* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
*/
exn = (s.unusable != 0);
/*
* Protected mode: #GP(0)/#SS(0) if the memory operand is
* outside the segment limit. All CPUs that support VMX ignore
* limit checks for flat segments, i.e. segments with base==0,
* limit==0xffffffff and of type expand-up data or code.
*/
if (!(s.base == 0 && s.limit == 0xffffffff &&
((s.type & 8) || !(s.type & 4))))
exn = exn || ((u64)off + len - 1 > s.limit);
}
if (exn) {
kvm_queue_exception_e(vcpu,
seg_reg == VCPU_SREG_SS ?
SS_VECTOR : GP_VECTOR,
0);
return 1;
}
return 0;
}
void nested_vmx_pmu_entry_exit_ctls_update(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx;
if (!nested_vmx_allowed(vcpu))
return;
vmx = to_vmx(vcpu);
if (kvm_x86_ops->pmu_ops->is_valid_msr(vcpu, MSR_CORE_PERF_GLOBAL_CTRL)) {
vmx->nested.msrs.entry_ctls_high |=
VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
vmx->nested.msrs.exit_ctls_high |=
VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL;
} else {
vmx->nested.msrs.entry_ctls_high &=
~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
vmx->nested.msrs.exit_ctls_high &=
~VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL;
}
}
static int nested_vmx_get_vmptr(struct kvm_vcpu *vcpu, gpa_t *vmpointer)
{
gva_t gva;
struct x86_exception e;
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmcs_read32(VMX_INSTRUCTION_INFO), false,
sizeof(*vmpointer), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, vmpointer, sizeof(*vmpointer), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
return 0;
}
/*
* Allocate a shadow VMCS and associate it with the currently loaded
* VMCS, unless such a shadow VMCS already exists. The newly allocated
* VMCS is also VMCLEARed, so that it is ready for use.
*/
static struct vmcs *alloc_shadow_vmcs(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct loaded_vmcs *loaded_vmcs = vmx->loaded_vmcs;
/*
* We should allocate a shadow vmcs for vmcs01 only when L1
* executes VMXON and free it when L1 executes VMXOFF.
* As it is invalid to execute VMXON twice, we shouldn't reach
* here when vmcs01 already have an allocated shadow vmcs.
*/
WARN_ON(loaded_vmcs == &vmx->vmcs01 && loaded_vmcs->shadow_vmcs);
if (!loaded_vmcs->shadow_vmcs) {
loaded_vmcs->shadow_vmcs = alloc_vmcs(true);
if (loaded_vmcs->shadow_vmcs)
vmcs_clear(loaded_vmcs->shadow_vmcs);
}
return loaded_vmcs->shadow_vmcs;
}
static int enter_vmx_operation(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
int r;
r = alloc_loaded_vmcs(&vmx->nested.vmcs02);
if (r < 0)
goto out_vmcs02;
vmx->nested.cached_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
if (!vmx->nested.cached_vmcs12)
goto out_cached_vmcs12;
vmx->nested.cached_shadow_vmcs12 = kzalloc(VMCS12_SIZE, GFP_KERNEL_ACCOUNT);
if (!vmx->nested.cached_shadow_vmcs12)
goto out_cached_shadow_vmcs12;
if (enable_shadow_vmcs && !alloc_shadow_vmcs(vcpu))
goto out_shadow_vmcs;
hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
HRTIMER_MODE_REL_PINNED);
vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
vmx->nested.vpid02 = allocate_vpid();
vmx->nested.vmcs02_initialized = false;
vmx->nested.vmxon = true;
if (vmx_pt_mode_is_host_guest()) {
vmx->pt_desc.guest.ctl = 0;
pt_update_intercept_for_msr(vmx);
}
return 0;
out_shadow_vmcs:
kfree(vmx->nested.cached_shadow_vmcs12);
out_cached_shadow_vmcs12:
kfree(vmx->nested.cached_vmcs12);
out_cached_vmcs12:
free_loaded_vmcs(&vmx->nested.vmcs02);
out_vmcs02:
return -ENOMEM;
}
/*
* Emulate the VMXON instruction.
* Currently, we just remember that VMX is active, and do not save or even
* inspect the argument to VMXON (the so-called "VMXON pointer") because we
* do not currently need to store anything in that guest-allocated memory
* region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
* argument is different from the VMXON pointer (which the spec says they do).
*/
static int handle_vmon(struct kvm_vcpu *vcpu)
{
int ret;
gpa_t vmptr;
uint32_t revision;
struct vcpu_vmx *vmx = to_vmx(vcpu);
const u64 VMXON_NEEDED_FEATURES = FEAT_CTL_LOCKED
| FEAT_CTL_VMX_ENABLED_OUTSIDE_SMX;
/*
* The Intel VMX Instruction Reference lists a bunch of bits that are
* prerequisite to running VMXON, most notably cr4.VMXE must be set to
* 1 (see vmx_set_cr4() for when we allow the guest to set this).
* Otherwise, we should fail with #UD. But most faulting conditions
* have already been checked by hardware, prior to the VM-exit for
* VMXON. We do test guest cr4.VMXE because processor CR4 always has
* that bit set to 1 in non-root mode.
*/
if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
/* CPL=0 must be checked manually. */
if (vmx_get_cpl(vcpu)) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (vmx->nested.vmxon)
return nested_vmx_failValid(vcpu,
VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
if ((vmx->msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
!= VMXON_NEEDED_FEATURES) {
kvm_inject_gp(vcpu, 0);
return 1;
}
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
/*
* SDM 3: 24.11.5
* The first 4 bytes of VMXON region contain the supported
* VMCS revision identifier
*
* Note - IA32_VMX_BASIC[48] will never be 1 for the nested case;
* which replaces physical address width with 32
*/
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failInvalid(vcpu);
if (kvm_read_guest(vcpu->kvm, vmptr, &revision, sizeof(revision)) ||
revision != VMCS12_REVISION)
return nested_vmx_failInvalid(vcpu);
vmx->nested.vmxon_ptr = vmptr;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
return nested_vmx_succeed(vcpu);
}
static inline void nested_release_vmcs12(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (vmx->nested.current_vmptr == -1ull)
return;
copy_vmcs02_to_vmcs12_rare(vcpu, get_vmcs12(vcpu));
if (enable_shadow_vmcs) {
/* copy to memory all shadowed fields in case
they were modified */
copy_shadow_to_vmcs12(vmx);
vmx_disable_shadow_vmcs(vmx);
}
vmx->nested.posted_intr_nv = -1;
/* Flush VMCS12 to guest memory */
kvm_vcpu_write_guest_page(vcpu,
vmx->nested.current_vmptr >> PAGE_SHIFT,
vmx->nested.cached_vmcs12, 0, VMCS12_SIZE);
kvm_mmu_free_roots(vcpu, &vcpu->arch.guest_mmu, KVM_MMU_ROOTS_ALL);
vmx->nested.current_vmptr = -1ull;
}
/* Emulate the VMXOFF instruction */
static int handle_vmoff(struct kvm_vcpu *vcpu)
{
if (!nested_vmx_check_permission(vcpu))
return 1;
free_nested(vcpu);
/* Process a latched INIT during time CPU was in VMX operation */
kvm_make_request(KVM_REQ_EVENT, vcpu);
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMCLEAR instruction */
static int handle_vmclear(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 zero = 0;
gpa_t vmptr;
u64 evmcs_gpa;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_INVALID_ADDRESS);
if (vmptr == vmx->nested.vmxon_ptr)
return nested_vmx_failValid(vcpu,
VMXERR_VMCLEAR_VMXON_POINTER);
/*
* When Enlightened VMEntry is enabled on the calling CPU we treat
* memory area pointer by vmptr as Enlightened VMCS (as there's no good
* way to distinguish it from VMCS12) and we must not corrupt it by
* writing to the non-existent 'launch_state' field. The area doesn't
* have to be the currently active EVMCS on the calling CPU and there's
* nothing KVM has to do to transition it from 'active' to 'non-active'
* state. It is possible that the area will stay mapped as
* vmx->nested.hv_evmcs but this shouldn't be a problem.
*/
if (likely(!vmx->nested.enlightened_vmcs_enabled ||
!nested_enlightened_vmentry(vcpu, &evmcs_gpa))) {
if (vmptr == vmx->nested.current_vmptr)
nested_release_vmcs12(vcpu);
kvm_vcpu_write_guest(vcpu,
vmptr + offsetof(struct vmcs12,
launch_state),
&zero, sizeof(zero));
}
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMLAUNCH instruction */
static int handle_vmlaunch(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, true);
}
/* Emulate the VMRESUME instruction */
static int handle_vmresume(struct kvm_vcpu *vcpu)
{
return nested_vmx_run(vcpu, false);
}
static int handle_vmread(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
: get_vmcs12(vcpu);
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct x86_exception e;
unsigned long field;
u64 value;
gva_t gva = 0;
short offset;
int len;
if (!nested_vmx_check_permission(vcpu))
return 1;
/*
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
* any VMREAD sets the ALU flags for VMfailInvalid.
*/
if (vmx->nested.current_vmptr == -1ull ||
(is_guest_mode(vcpu) &&
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
return nested_vmx_failInvalid(vcpu);
/* Decode instruction info and find the field to read */
field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
offset = vmcs_field_to_offset(field);
if (offset < 0)
return nested_vmx_failValid(vcpu,
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
if (!is_guest_mode(vcpu) && is_vmcs12_ext_field(field))
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
/* Read the field, zero-extended to a u64 value */
value = vmcs12_read_any(vmcs12, field, offset);
/*
* Now copy part of this value to register or memory, as requested.
* Note that the number of bits actually copied is 32 or 64 depending
* on the guest's mode (32 or 64 bit), not on the given field's length.
*/
if (instr_info & BIT(10)) {
kvm_register_writel(vcpu, (((instr_info) >> 3) & 0xf), value);
} else {
len = is_64_bit_mode(vcpu) ? 8 : 4;
if (get_vmx_mem_address(vcpu, exit_qualification,
instr_info, true, len, &gva))
return 1;
/* _system ok, nested_vmx_check_permission has verified cpl=0 */
if (kvm_write_guest_virt_system(vcpu, gva, &value, len, &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
}
return nested_vmx_succeed(vcpu);
}
static bool is_shadow_field_rw(unsigned long field)
{
switch (field) {
#define SHADOW_FIELD_RW(x, y) case x:
#include "vmcs_shadow_fields.h"
return true;
default:
break;
}
return false;
}
static bool is_shadow_field_ro(unsigned long field)
{
switch (field) {
#define SHADOW_FIELD_RO(x, y) case x:
#include "vmcs_shadow_fields.h"
return true;
default:
break;
}
return false;
}
static int handle_vmwrite(struct kvm_vcpu *vcpu)
{
struct vmcs12 *vmcs12 = is_guest_mode(vcpu) ? get_shadow_vmcs12(vcpu)
: get_vmcs12(vcpu);
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct x86_exception e;
unsigned long field;
short offset;
gva_t gva;
int len;
/*
* The value to write might be 32 or 64 bits, depending on L1's long
* mode, and eventually we need to write that into a field of several
* possible lengths. The code below first zero-extends the value to 64
* bit (value), and then copies only the appropriate number of
* bits into the vmcs12 field.
*/
u64 value = 0;
if (!nested_vmx_check_permission(vcpu))
return 1;
/*
* In VMX non-root operation, when the VMCS-link pointer is -1ull,
* any VMWRITE sets the ALU flags for VMfailInvalid.
*/
if (vmx->nested.current_vmptr == -1ull ||
(is_guest_mode(vcpu) &&
get_vmcs12(vcpu)->vmcs_link_pointer == -1ull))
return nested_vmx_failInvalid(vcpu);
if (instr_info & BIT(10))
value = kvm_register_readl(vcpu, (((instr_info) >> 3) & 0xf));
else {
len = is_64_bit_mode(vcpu) ? 8 : 4;
if (get_vmx_mem_address(vcpu, exit_qualification,
instr_info, false, len, &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &value, len, &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
}
field = kvm_register_readl(vcpu, (((instr_info) >> 28) & 0xf));
offset = vmcs_field_to_offset(field);
if (offset < 0)
return nested_vmx_failValid(vcpu,
VMXERR_UNSUPPORTED_VMCS_COMPONENT);
/*
* If the vCPU supports "VMWRITE to any supported field in the
* VMCS," then the "read-only" fields are actually read/write.
*/
if (vmcs_field_readonly(field) &&
!nested_cpu_has_vmwrite_any_field(vcpu))
return nested_vmx_failValid(vcpu,
VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
/*
* Ensure vmcs12 is up-to-date before any VMWRITE that dirties
* vmcs12, else we may crush a field or consume a stale value.
*/
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field))
copy_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
/*
* Some Intel CPUs intentionally drop the reserved bits of the AR byte
* fields on VMWRITE. Emulate this behavior to ensure consistent KVM
* behavior regardless of the underlying hardware, e.g. if an AR_BYTE
* field is intercepted for VMWRITE but not VMREAD (in L1), then VMREAD
* from L1 will return a different value than VMREAD from L2 (L1 sees
* the stripped down value, L2 sees the full value as stored by KVM).
*/
if (field >= GUEST_ES_AR_BYTES && field <= GUEST_TR_AR_BYTES)
value &= 0x1f0ff;
vmcs12_write_any(vmcs12, field, offset, value);
/*
* Do not track vmcs12 dirty-state if in guest-mode as we actually
* dirty shadow vmcs12 instead of vmcs12. Fields that can be updated
* by L1 without a vmexit are always updated in the vmcs02, i.e. don't
* "dirty" vmcs12, all others go down the prepare_vmcs02() slow path.
*/
if (!is_guest_mode(vcpu) && !is_shadow_field_rw(field)) {
/*
* L1 can read these fields without exiting, ensure the
* shadow VMCS is up-to-date.
*/
if (enable_shadow_vmcs && is_shadow_field_ro(field)) {
preempt_disable();
vmcs_load(vmx->vmcs01.shadow_vmcs);
__vmcs_writel(field, value);
vmcs_clear(vmx->vmcs01.shadow_vmcs);
vmcs_load(vmx->loaded_vmcs->vmcs);
preempt_enable();
}
vmx->nested.dirty_vmcs12 = true;
}
return nested_vmx_succeed(vcpu);
}
static void set_current_vmptr(struct vcpu_vmx *vmx, gpa_t vmptr)
{
vmx->nested.current_vmptr = vmptr;
if (enable_shadow_vmcs) {
secondary_exec_controls_setbit(vmx, SECONDARY_EXEC_SHADOW_VMCS);
vmcs_write64(VMCS_LINK_POINTER,
__pa(vmx->vmcs01.shadow_vmcs));
vmx->nested.need_vmcs12_to_shadow_sync = true;
}
vmx->nested.dirty_vmcs12 = true;
}
/* Emulate the VMPTRLD instruction */
static int handle_vmptrld(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
gpa_t vmptr;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (nested_vmx_get_vmptr(vcpu, &vmptr))
return 1;
if (!page_address_valid(vcpu, vmptr))
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INVALID_ADDRESS);
if (vmptr == vmx->nested.vmxon_ptr)
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_VMXON_POINTER);
/* Forbid normal VMPTRLD if Enlightened version was used */
if (vmx->nested.hv_evmcs)
return 1;
if (vmx->nested.current_vmptr != vmptr) {
struct kvm_host_map map;
struct vmcs12 *new_vmcs12;
if (kvm_vcpu_map(vcpu, gpa_to_gfn(vmptr), &map)) {
/*
* Reads from an unbacked page return all 1s,
* which means that the 32 bits located at the
* given physical address won't match the required
* VMCS12_REVISION identifier.
*/
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
new_vmcs12 = map.hva;
if (new_vmcs12->hdr.revision_id != VMCS12_REVISION ||
(new_vmcs12->hdr.shadow_vmcs &&
!nested_cpu_has_vmx_shadow_vmcs(vcpu))) {
kvm_vcpu_unmap(vcpu, &map, false);
return nested_vmx_failValid(vcpu,
VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
}
nested_release_vmcs12(vcpu);
/*
* Load VMCS12 from guest memory since it is not already
* cached.
*/
memcpy(vmx->nested.cached_vmcs12, new_vmcs12, VMCS12_SIZE);
kvm_vcpu_unmap(vcpu, &map, false);
set_current_vmptr(vmx, vmptr);
}
return nested_vmx_succeed(vcpu);
}
/* Emulate the VMPTRST instruction */
static int handle_vmptrst(struct kvm_vcpu *vcpu)
{
unsigned long exit_qual = vmcs_readl(EXIT_QUALIFICATION);
u32 instr_info = vmcs_read32(VMX_INSTRUCTION_INFO);
gpa_t current_vmptr = to_vmx(vcpu)->nested.current_vmptr;
struct x86_exception e;
gva_t gva;
if (!nested_vmx_check_permission(vcpu))
return 1;
if (unlikely(to_vmx(vcpu)->nested.hv_evmcs))
return 1;
if (get_vmx_mem_address(vcpu, exit_qual, instr_info,
true, sizeof(gpa_t), &gva))
return 1;
/* *_system ok, nested_vmx_check_permission has verified cpl=0 */
if (kvm_write_guest_virt_system(vcpu, gva, (void *)&current_vmptr,
sizeof(gpa_t), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
return nested_vmx_succeed(vcpu);
}
/* Emulate the INVEPT instruction */
static int handle_invept(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info, types;
unsigned long type;
gva_t gva;
struct x86_exception e;
struct {
u64 eptp, gpa;
} operand;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_EPT) ||
!(vmx->nested.msrs.ept_caps & VMX_EPT_INVEPT_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.msrs.ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
if (type >= 32 || !(types & (1 << type)))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
/* According to the Intel VMX instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, sizeof(operand), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
switch (type) {
case VMX_EPT_EXTENT_GLOBAL:
case VMX_EPT_EXTENT_CONTEXT:
/*
* TODO: Sync the necessary shadow EPT roots here, rather than
* at the next emulated VM-entry.
*/
break;
default:
BUG_ON(1);
break;
}
return nested_vmx_succeed(vcpu);
}
static int handle_invvpid(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
u32 vmx_instruction_info;
unsigned long type, types;
gva_t gva;
struct x86_exception e;
struct {
u64 vpid;
u64 gla;
} operand;
u16 vpid02;
if (!(vmx->nested.msrs.secondary_ctls_high &
SECONDARY_EXEC_ENABLE_VPID) ||
!(vmx->nested.msrs.vpid_caps & VMX_VPID_INVVPID_BIT)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
if (!nested_vmx_check_permission(vcpu))
return 1;
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
types = (vmx->nested.msrs.vpid_caps &
VMX_VPID_EXTENT_SUPPORTED_MASK) >> 8;
if (type >= 32 || !(types & (1 << type)))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
/* according to the intel vmx instruction reference, the memory
* operand is read even if it isn't needed (e.g., for type==global)
*/
if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
vmx_instruction_info, false, sizeof(operand), &gva))
return 1;
if (kvm_read_guest_virt(vcpu, gva, &operand, sizeof(operand), &e)) {
kvm_inject_page_fault(vcpu, &e);
return 1;
}
if (operand.vpid >> 16)
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
vpid02 = nested_get_vpid02(vcpu);
switch (type) {
case VMX_VPID_EXTENT_INDIVIDUAL_ADDR:
if (!operand.vpid ||
is_noncanonical_address(operand.gla, vcpu))
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
if (cpu_has_vmx_invvpid_individual_addr()) {
__invvpid(VMX_VPID_EXTENT_INDIVIDUAL_ADDR,
vpid02, operand.gla);
} else
__vmx_flush_tlb(vcpu, vpid02, false);
break;
case VMX_VPID_EXTENT_SINGLE_CONTEXT:
case VMX_VPID_EXTENT_SINGLE_NON_GLOBAL:
if (!operand.vpid)
return nested_vmx_failValid(vcpu,
VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
__vmx_flush_tlb(vcpu, vpid02, false);
break;
case VMX_VPID_EXTENT_ALL_CONTEXT:
__vmx_flush_tlb(vcpu, vpid02, false);
break;
default:
WARN_ON_ONCE(1);
return kvm_skip_emulated_instruction(vcpu);
}
return nested_vmx_succeed(vcpu);
}
static int nested_vmx_eptp_switching(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
u32 index = kvm_rcx_read(vcpu);
u64 new_eptp;
bool accessed_dirty;
struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
if (!nested_cpu_has_eptp_switching(vmcs12) ||
!nested_cpu_has_ept(vmcs12))
return 1;
if (index >= VMFUNC_EPTP_ENTRIES)
return 1;
if (kvm_vcpu_read_guest_page(vcpu, vmcs12->eptp_list_address >> PAGE_SHIFT,
&new_eptp, index * 8, 8))
return 1;
accessed_dirty = !!(new_eptp & VMX_EPTP_AD_ENABLE_BIT);
/*
* If the (L2) guest does a vmfunc to the currently
* active ept pointer, we don't have to do anything else
*/
if (vmcs12->ept_pointer != new_eptp) {
if (!nested_vmx_check_eptp(vcpu, new_eptp))
return 1;
kvm_mmu_unload(vcpu);
mmu->ept_ad = accessed_dirty;
mmu->mmu_role.base.ad_disabled = !accessed_dirty;
vmcs12->ept_pointer = new_eptp;
/*
* TODO: Check what's the correct approach in case
* mmu reload fails. Currently, we just let the next
* reload potentially fail
*/
kvm_mmu_reload(vcpu);
}
return 0;
}
static int handle_vmfunc(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12;
u32 function = kvm_rax_read(vcpu);
/*
* VMFUNC is only supported for nested guests, but we always enable the
* secondary control for simplicity; for non-nested mode, fake that we
* didn't by injecting #UD.
*/
if (!is_guest_mode(vcpu)) {
kvm_queue_exception(vcpu, UD_VECTOR);
return 1;
}
vmcs12 = get_vmcs12(vcpu);
if ((vmcs12->vm_function_control & (1 << function)) == 0)
goto fail;
switch (function) {
case 0:
if (nested_vmx_eptp_switching(vcpu, vmcs12))
goto fail;
break;
default:
goto fail;
}
return kvm_skip_emulated_instruction(vcpu);
fail:
nested_vmx_vmexit(vcpu, vmx->exit_reason,
vmcs_read32(VM_EXIT_INTR_INFO),
vmcs_readl(EXIT_QUALIFICATION));
return 1;
}
/*
* Return true if an IO instruction with the specified port and size should cause
* a VM-exit into L1.
*/
bool nested_vmx_check_io_bitmaps(struct kvm_vcpu *vcpu, unsigned int port,
int size)
{
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
gpa_t bitmap, last_bitmap;
u8 b;
last_bitmap = (gpa_t)-1;
b = -1;
while (size > 0) {
if (port < 0x8000)
bitmap = vmcs12->io_bitmap_a;
else if (port < 0x10000)
bitmap = vmcs12->io_bitmap_b;
else
return true;
bitmap += (port & 0x7fff) / 8;
if (last_bitmap != bitmap)
if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
return true;
if (b & (1 << (port & 7)))
return true;
port++;
size--;
last_bitmap = bitmap;
}
return false;
}
static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification;
unsigned short port;
int size;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
port = exit_qualification >> 16;
size = (exit_qualification & 7) + 1;
return nested_vmx_check_io_bitmaps(vcpu, port, size);
}
/*
* Return 1 if we should exit from L2 to L1 to handle an MSR access,
* rather than handle it ourselves in L0. I.e., check whether L1 expressed
* disinterest in the current event (read or write a specific MSR) by using an
* MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
*/
static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, u32 exit_reason)
{
u32 msr_index = kvm_rcx_read(vcpu);
gpa_t bitmap;
if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
return true;
/*
* The MSR_BITMAP page is divided into four 1024-byte bitmaps,
* for the four combinations of read/write and low/high MSR numbers.
* First we need to figure out which of the four to use:
*/
bitmap = vmcs12->msr_bitmap;
if (exit_reason == EXIT_REASON_MSR_WRITE)
bitmap += 2048;
if (msr_index >= 0xc0000000) {
msr_index -= 0xc0000000;
bitmap += 1024;
}
/* Then read the msr_index'th bit from this bitmap: */
if (msr_index < 1024*8) {
unsigned char b;
if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
return true;
return 1 & (b >> (msr_index & 7));
} else
return true; /* let L1 handle the wrong parameter */
}
/*
* Return 1 if we should exit from L2 to L1 to handle a CR access exit,
* rather than handle it ourselves in L0. I.e., check if L1 wanted to
* intercept (via guest_host_mask etc.) the current event.
*/
static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12)
{
unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
int cr = exit_qualification & 15;
int reg;
unsigned long val;
switch ((exit_qualification >> 4) & 3) {
case 0: /* mov to cr */
reg = (exit_qualification >> 8) & 15;
val = kvm_register_readl(vcpu, reg);
switch (cr) {
case 0:
if (vmcs12->cr0_guest_host_mask &
(val ^ vmcs12->cr0_read_shadow))
return true;
break;
case 3:
if ((vmcs12->cr3_target_count >= 1 &&
vmcs12->cr3_target_value0 == val) ||
(vmcs12->cr3_target_count >= 2 &&
vmcs12->cr3_target_value1 == val) ||
(vmcs12->cr3_target_count >= 3 &&
vmcs12->cr3_target_value2 == val) ||
(vmcs12->cr3_target_count >= 4 &&
vmcs12->cr3_target_value3 == val))
return false;
if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
return true;
break;
case 4:
if (vmcs12->cr4_guest_host_mask &
(vmcs12->cr4_read_shadow ^ val))
return true;
break;
case 8:
if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
return true;
break;
}
break;
case 2: /* clts */
if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
(vmcs12->cr0_read_shadow & X86_CR0_TS))
return true;
break;
case 1: /* mov from cr */
switch (cr) {
case 3:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR3_STORE_EXITING)
return true;
break;
case 8:
if (vmcs12->cpu_based_vm_exec_control &
CPU_BASED_CR8_STORE_EXITING)
return true;
break;
}
break;
case 3: /* lmsw */
/*
* lmsw can change bits 1..3 of cr0, and only set bit 0 of
* cr0. Other attempted changes are ignored, with no exit.
*/
val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
if (vmcs12->cr0_guest_host_mask & 0xe &
(val ^ vmcs12->cr0_read_shadow))
return true;
if ((vmcs12->cr0_guest_host_mask & 0x1) &&
!(vmcs12->cr0_read_shadow & 0x1) &&
(val & 0x1))
return true;
break;
}
return false;
}
static bool nested_vmx_exit_handled_vmcs_access(struct kvm_vcpu *vcpu,
struct vmcs12 *vmcs12, gpa_t bitmap)
{
u32 vmx_instruction_info;
unsigned long field;
u8 b;
if (!nested_cpu_has_shadow_vmcs(vmcs12))
return true;
/* Decode instruction info and find the field to access */
vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
field = kvm_register_read(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
/* Out-of-range fields always cause a VM exit from L2 to L1 */
if (field >> 15)
return true;
if (kvm_vcpu_read_guest(vcpu, bitmap + field/8, &b, 1))
return true;
return 1 & (b >> (field & 7));
}
/*
* Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
* should handle it ourselves in L0 (and then continue L2). Only call this
* when in is_guest_mode (L2).
*/
bool nested_vmx_exit_reflected(struct kvm_vcpu *vcpu, u32 exit_reason)
{
u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
WARN_ON_ONCE(vmx->nested.nested_run_pending);
if (unlikely(vmx->fail)) {
trace_kvm_nested_vmenter_failed(
"hardware VM-instruction error: ",
vmcs_read32(VM_INSTRUCTION_ERROR));
return true;
}
trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
vmcs_readl(EXIT_QUALIFICATION),
vmx->idt_vectoring_info,
intr_info,
vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
KVM_ISA_VMX);
switch (exit_reason) {
case EXIT_REASON_EXCEPTION_NMI:
if (is_nmi(intr_info))
return false;
else if (is_page_fault(intr_info))
return !vmx->vcpu.arch.apf.host_apf_reason && enable_ept;
else if (is_debug(intr_info) &&
vcpu->guest_debug &
(KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
return false;
else if (is_breakpoint(intr_info) &&
vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
return false;
return vmcs12->exception_bitmap &
(1u << (intr_info & INTR_INFO_VECTOR_MASK));
case EXIT_REASON_EXTERNAL_INTERRUPT:
return false;
case EXIT_REASON_TRIPLE_FAULT:
return true;
case EXIT_REASON_INTERRUPT_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_INTR_WINDOW_EXITING);
case EXIT_REASON_NMI_WINDOW:
return nested_cpu_has(vmcs12, CPU_BASED_NMI_WINDOW_EXITING);
case EXIT_REASON_TASK_SWITCH:
return true;
case EXIT_REASON_CPUID:
return true;
case EXIT_REASON_HLT:
return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
case EXIT_REASON_INVD:
return true;
case EXIT_REASON_INVLPG:
return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_RDPMC:
return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
case EXIT_REASON_RDRAND:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDRAND_EXITING);
case EXIT_REASON_RDSEED:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_RDSEED_EXITING);
case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
case EXIT_REASON_VMREAD:
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
vmcs12->vmread_bitmap);
case EXIT_REASON_VMWRITE:
return nested_vmx_exit_handled_vmcs_access(vcpu, vmcs12,
vmcs12->vmwrite_bitmap);
case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST: case EXIT_REASON_VMRESUME:
case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
/*
* VMX instructions trap unconditionally. This allows L1 to
* emulate them for its L2 guest, i.e., allows 3-level nesting!
*/
return true;
case EXIT_REASON_CR_ACCESS:
return nested_vmx_exit_handled_cr(vcpu, vmcs12);
case EXIT_REASON_DR_ACCESS:
return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
case EXIT_REASON_IO_INSTRUCTION:
return nested_vmx_exit_handled_io(vcpu, vmcs12);
case EXIT_REASON_GDTR_IDTR: case EXIT_REASON_LDTR_TR:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_DESC);
case EXIT_REASON_MSR_READ:
case EXIT_REASON_MSR_WRITE:
return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
case EXIT_REASON_INVALID_STATE:
return true;
case EXIT_REASON_MWAIT_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
case EXIT_REASON_MONITOR_TRAP_FLAG:
return nested_cpu_has_mtf(vmcs12);
case EXIT_REASON_MONITOR_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
case EXIT_REASON_PAUSE_INSTRUCTION:
return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
nested_cpu_has2(vmcs12,
SECONDARY_EXEC_PAUSE_LOOP_EXITING);
case EXIT_REASON_MCE_DURING_VMENTRY:
return false;
case EXIT_REASON_TPR_BELOW_THRESHOLD:
return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
case EXIT_REASON_APIC_ACCESS:
case EXIT_REASON_APIC_WRITE:
case EXIT_REASON_EOI_INDUCED:
/*
* The controls for "virtualize APIC accesses," "APIC-
* register virtualization," and "virtual-interrupt
* delivery" only come from vmcs12.
*/
return true;
case EXIT_REASON_EPT_VIOLATION:
/*
* L0 always deals with the EPT violation. If nested EPT is
* used, and the nested mmu code discovers that the address is
* missing in the guest EPT table (EPT12), the EPT violation
* will be injected with nested_ept_inject_page_fault()
*/
return false;
case EXIT_REASON_EPT_MISCONFIG:
/*
* L2 never uses directly L1's EPT, but rather L0's own EPT
* table (shadow on EPT) or a merged EPT table that L0 built
* (EPT on EPT). So any problems with the structure of the
* table is L0's fault.
*/
return false;
case EXIT_REASON_INVPCID:
return
nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_INVPCID) &&
nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
case EXIT_REASON_WBINVD:
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
case EXIT_REASON_XSETBV:
return true;
case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
/*
* This should never happen, since it is not possible to
* set XSS to a non-zero value---neither in L1 nor in L2.
* If if it were, XSS would have to be checked against
* the XSS exit bitmap in vmcs12.
*/
return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
case EXIT_REASON_PREEMPTION_TIMER:
return false;
case EXIT_REASON_PML_FULL:
/* We emulate PML support to L1. */
return false;
case EXIT_REASON_VMFUNC:
/* VM functions are emulated through L2->L0 vmexits. */
return false;
case EXIT_REASON_ENCLS:
/* SGX is never exposed to L1 */
return false;
case EXIT_REASON_UMWAIT:
case EXIT_REASON_TPAUSE:
return nested_cpu_has2(vmcs12,
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE);
default:
return true;
}
}
static int vmx_get_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
u32 user_data_size)
{
struct vcpu_vmx *vmx;
struct vmcs12 *vmcs12;
struct kvm_nested_state kvm_state = {
.flags = 0,
.format = KVM_STATE_NESTED_FORMAT_VMX,
.size = sizeof(kvm_state),
.hdr.vmx.vmxon_pa = -1ull,
.hdr.vmx.vmcs12_pa = -1ull,
};
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
&user_kvm_nested_state->data.vmx[0];
if (!vcpu)
return kvm_state.size + sizeof(*user_vmx_nested_state);
vmx = to_vmx(vcpu);
vmcs12 = get_vmcs12(vcpu);
if (nested_vmx_allowed(vcpu) &&
(vmx->nested.vmxon || vmx->nested.smm.vmxon)) {
kvm_state.hdr.vmx.vmxon_pa = vmx->nested.vmxon_ptr;
kvm_state.hdr.vmx.vmcs12_pa = vmx->nested.current_vmptr;
if (vmx_has_valid_vmcs12(vcpu)) {
kvm_state.size += sizeof(user_vmx_nested_state->vmcs12);
if (vmx->nested.hv_evmcs)
kvm_state.flags |= KVM_STATE_NESTED_EVMCS;
if (is_guest_mode(vcpu) &&
nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull)
kvm_state.size += sizeof(user_vmx_nested_state->shadow_vmcs12);
}
if (vmx->nested.smm.vmxon)
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_VMXON;
if (vmx->nested.smm.guest_mode)
kvm_state.hdr.vmx.smm.flags |= KVM_STATE_NESTED_SMM_GUEST_MODE;
if (is_guest_mode(vcpu)) {
kvm_state.flags |= KVM_STATE_NESTED_GUEST_MODE;
if (vmx->nested.nested_run_pending)
kvm_state.flags |= KVM_STATE_NESTED_RUN_PENDING;
if (vmx->nested.mtf_pending)
kvm_state.flags |= KVM_STATE_NESTED_MTF_PENDING;
}
}
if (user_data_size < kvm_state.size)
goto out;
if (copy_to_user(user_kvm_nested_state, &kvm_state, sizeof(kvm_state)))
return -EFAULT;
if (!vmx_has_valid_vmcs12(vcpu))
goto out;
/*
* When running L2, the authoritative vmcs12 state is in the
* vmcs02. When running L1, the authoritative vmcs12 state is
* in the shadow or enlightened vmcs linked to vmcs01, unless
* need_vmcs12_to_shadow_sync is set, in which case, the authoritative
* vmcs12 state is in the vmcs12 already.
*/
if (is_guest_mode(vcpu)) {
sync_vmcs02_to_vmcs12(vcpu, vmcs12);
sync_vmcs02_to_vmcs12_rare(vcpu, vmcs12);
} else if (!vmx->nested.need_vmcs12_to_shadow_sync) {
if (vmx->nested.hv_evmcs)
copy_enlightened_to_vmcs12(vmx);
else if (enable_shadow_vmcs)
copy_shadow_to_vmcs12(vmx);
}
BUILD_BUG_ON(sizeof(user_vmx_nested_state->vmcs12) < VMCS12_SIZE);
BUILD_BUG_ON(sizeof(user_vmx_nested_state->shadow_vmcs12) < VMCS12_SIZE);
/*
* Copy over the full allocated size of vmcs12 rather than just the size
* of the struct.
*/
if (copy_to_user(user_vmx_nested_state->vmcs12, vmcs12, VMCS12_SIZE))
return -EFAULT;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull) {
if (copy_to_user(user_vmx_nested_state->shadow_vmcs12,
get_shadow_vmcs12(vcpu), VMCS12_SIZE))
return -EFAULT;
}
out:
return kvm_state.size;
}
/*
* Forcibly leave nested mode in order to be able to reset the VCPU later on.
*/
void vmx_leave_nested(struct kvm_vcpu *vcpu)
{
if (is_guest_mode(vcpu)) {
to_vmx(vcpu)->nested.nested_run_pending = 0;
nested_vmx_vmexit(vcpu, -1, 0, 0);
}
free_nested(vcpu);
}
static int vmx_set_nested_state(struct kvm_vcpu *vcpu,
struct kvm_nested_state __user *user_kvm_nested_state,
struct kvm_nested_state *kvm_state)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
struct vmcs12 *vmcs12;
u32 exit_qual;
struct kvm_vmx_nested_state_data __user *user_vmx_nested_state =
&user_kvm_nested_state->data.vmx[0];
int ret;
if (kvm_state->format != KVM_STATE_NESTED_FORMAT_VMX)
return -EINVAL;
if (kvm_state->hdr.vmx.vmxon_pa == -1ull) {
if (kvm_state->hdr.vmx.smm.flags)
return -EINVAL;
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull)
return -EINVAL;
/*
* KVM_STATE_NESTED_EVMCS used to signal that KVM should
* enable eVMCS capability on vCPU. However, since then
* code was changed such that flag signals vmcs12 should
* be copied into eVMCS in guest memory.
*
* To preserve backwards compatability, allow user
* to set this flag even when there is no VMXON region.
*/
if (kvm_state->flags & ~KVM_STATE_NESTED_EVMCS)
return -EINVAL;
} else {
if (!nested_vmx_allowed(vcpu))
return -EINVAL;
if (!page_address_valid(vcpu, kvm_state->hdr.vmx.vmxon_pa))
return -EINVAL;
}
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
return -EINVAL;
if (kvm_state->hdr.vmx.smm.flags &
~(KVM_STATE_NESTED_SMM_GUEST_MODE | KVM_STATE_NESTED_SMM_VMXON))
return -EINVAL;
/*
* SMM temporarily disables VMX, so we cannot be in guest mode,
* nor can VMLAUNCH/VMRESUME be pending. Outside SMM, SMM flags
* must be zero.
*/
if (is_smm(vcpu) ?
(kvm_state->flags &
(KVM_STATE_NESTED_GUEST_MODE | KVM_STATE_NESTED_RUN_PENDING))
: kvm_state->hdr.vmx.smm.flags)
return -EINVAL;
if ((kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE) &&
!(kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON))
return -EINVAL;
if ((kvm_state->flags & KVM_STATE_NESTED_EVMCS) &&
(!nested_vmx_allowed(vcpu) || !vmx->nested.enlightened_vmcs_enabled))
return -EINVAL;
vmx_leave_nested(vcpu);
if (kvm_state->hdr.vmx.vmxon_pa == -1ull)
return 0;
vmx->nested.vmxon_ptr = kvm_state->hdr.vmx.vmxon_pa;
ret = enter_vmx_operation(vcpu);
if (ret)
return ret;
/* Empty 'VMXON' state is permitted */
if (kvm_state->size < sizeof(*kvm_state) + sizeof(*vmcs12))
return 0;
if (kvm_state->hdr.vmx.vmcs12_pa != -1ull) {
if (kvm_state->hdr.vmx.vmcs12_pa == kvm_state->hdr.vmx.vmxon_pa ||
!page_address_valid(vcpu, kvm_state->hdr.vmx.vmcs12_pa))
return -EINVAL;
set_current_vmptr(vmx, kvm_state->hdr.vmx.vmcs12_pa);
} else if (kvm_state->flags & KVM_STATE_NESTED_EVMCS) {
/*
* nested_vmx_handle_enlightened_vmptrld() cannot be called
* directly from here as HV_X64_MSR_VP_ASSIST_PAGE may not be
* restored yet. EVMCS will be mapped from
* nested_get_vmcs12_pages().
*/
kvm_make_request(KVM_REQ_GET_VMCS12_PAGES, vcpu);
} else {
return -EINVAL;
}
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_VMXON) {
vmx->nested.smm.vmxon = true;
vmx->nested.vmxon = false;
if (kvm_state->hdr.vmx.smm.flags & KVM_STATE_NESTED_SMM_GUEST_MODE)
vmx->nested.smm.guest_mode = true;
}
vmcs12 = get_vmcs12(vcpu);
if (copy_from_user(vmcs12, user_vmx_nested_state->vmcs12, sizeof(*vmcs12)))
return -EFAULT;
if (vmcs12->hdr.revision_id != VMCS12_REVISION)
return -EINVAL;
if (!(kvm_state->flags & KVM_STATE_NESTED_GUEST_MODE))
return 0;
vmx->nested.nested_run_pending =
!!(kvm_state->flags & KVM_STATE_NESTED_RUN_PENDING);
vmx->nested.mtf_pending =
!!(kvm_state->flags & KVM_STATE_NESTED_MTF_PENDING);
ret = -EINVAL;
if (nested_cpu_has_shadow_vmcs(vmcs12) &&
vmcs12->vmcs_link_pointer != -1ull) {
struct vmcs12 *shadow_vmcs12 = get_shadow_vmcs12(vcpu);
if (kvm_state->size <
sizeof(*kvm_state) +
sizeof(user_vmx_nested_state->vmcs12) + sizeof(*shadow_vmcs12))
goto error_guest_mode;
if (copy_from_user(shadow_vmcs12,
user_vmx_nested_state->shadow_vmcs12,
sizeof(*shadow_vmcs12))) {
ret = -EFAULT;
goto error_guest_mode;
}
if (shadow_vmcs12->hdr.revision_id != VMCS12_REVISION ||
!shadow_vmcs12->hdr.shadow_vmcs)
goto error_guest_mode;
}
if (nested_vmx_check_controls(vcpu, vmcs12) ||
nested_vmx_check_host_state(vcpu, vmcs12) ||
nested_vmx_check_guest_state(vcpu, vmcs12, &exit_qual))
goto error_guest_mode;
vmx->nested.dirty_vmcs12 = true;
ret = nested_vmx_enter_non_root_mode(vcpu, false);
if (ret)
goto error_guest_mode;
return 0;
error_guest_mode:
vmx->nested.nested_run_pending = 0;
return ret;
}
void nested_vmx_set_vmcs_shadowing_bitmap(void)
{
if (enable_shadow_vmcs) {
vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
}
}
/*
* nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
* returned for the various VMX controls MSRs when nested VMX is enabled.
* The same values should also be used to verify that vmcs12 control fields are
* valid during nested entry from L1 to L2.
* Each of these control msrs has a low and high 32-bit half: A low bit is on
* if the corresponding bit in the (32-bit) control field *must* be on, and a
* bit in the high half is on if the corresponding bit in the control field
* may be on. See also vmx_control_verify().
*/
void nested_vmx_setup_ctls_msrs(struct nested_vmx_msrs *msrs, u32 ept_caps)
{
/*
* Note that as a general rule, the high half of the MSRs (bits in
* the control fields which may be 1) should be initialized by the
* intersection of the underlying hardware's MSR (i.e., features which
* can be supported) and the list of features we want to expose -
* because they are known to be properly supported in our code.
* Also, usually, the low half of the MSRs (bits which must be 1) can
* be set to 0, meaning that L1 may turn off any of these bits. The
* reason is that if one of these bits is necessary, it will appear
* in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
* fields of vmcs01 and vmcs02, will turn these bits off - and
* nested_vmx_exit_reflected() will not pass related exits to L1.
* These rules have exceptions below.
*/
/* pin-based controls */
rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
msrs->pinbased_ctls_low,
msrs->pinbased_ctls_high);
msrs->pinbased_ctls_low |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->pinbased_ctls_high &=
PIN_BASED_EXT_INTR_MASK |
PIN_BASED_NMI_EXITING |
PIN_BASED_VIRTUAL_NMIS |
(enable_apicv ? PIN_BASED_POSTED_INTR : 0);
msrs->pinbased_ctls_high |=
PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
PIN_BASED_VMX_PREEMPTION_TIMER;
/* exit controls */
rdmsr(MSR_IA32_VMX_EXIT_CTLS,
msrs->exit_ctls_low,
msrs->exit_ctls_high);
msrs->exit_ctls_low =
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->exit_ctls_high &=
#ifdef CONFIG_X86_64
VM_EXIT_HOST_ADDR_SPACE_SIZE |
#endif
VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
msrs->exit_ctls_high |=
VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
/* We support free control of debug control saving. */
msrs->exit_ctls_low &= ~VM_EXIT_SAVE_DEBUG_CONTROLS;
/* entry controls */
rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
msrs->entry_ctls_low,
msrs->entry_ctls_high);
msrs->entry_ctls_low =
VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->entry_ctls_high &=
#ifdef CONFIG_X86_64
VM_ENTRY_IA32E_MODE |
#endif
VM_ENTRY_LOAD_IA32_PAT;
msrs->entry_ctls_high |=
(VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
/* We support free control of debug control loading. */
msrs->entry_ctls_low &= ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
/* cpu-based controls */
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
msrs->procbased_ctls_low,
msrs->procbased_ctls_high);
msrs->procbased_ctls_low =
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
msrs->procbased_ctls_high &=
CPU_BASED_INTR_WINDOW_EXITING |
CPU_BASED_NMI_WINDOW_EXITING | CPU_BASED_USE_TSC_OFFSETTING |
CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
CPU_BASED_CR3_STORE_EXITING |
#ifdef CONFIG_X86_64
CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
#endif
CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
/*
* We can allow some features even when not supported by the
* hardware. For example, L1 can specify an MSR bitmap - and we
* can use it to avoid exits to L1 - even when L0 runs L2
* without MSR bitmaps.
*/
msrs->procbased_ctls_high |=
CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
CPU_BASED_USE_MSR_BITMAPS;
/* We support free control of CR3 access interception. */
msrs->procbased_ctls_low &=
~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
/*
* secondary cpu-based controls. Do not include those that
* depend on CPUID bits, they are added later by vmx_cpuid_update.
*/
if (msrs->procbased_ctls_high & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS)
rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
msrs->secondary_ctls_low,
msrs->secondary_ctls_high);
msrs->secondary_ctls_low = 0;
msrs->secondary_ctls_high &=
SECONDARY_EXEC_DESC |
SECONDARY_EXEC_RDTSCP |
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
SECONDARY_EXEC_WBINVD_EXITING |
SECONDARY_EXEC_APIC_REGISTER_VIRT |
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
SECONDARY_EXEC_RDRAND_EXITING |
SECONDARY_EXEC_ENABLE_INVPCID |
SECONDARY_EXEC_RDSEED_EXITING |
SECONDARY_EXEC_XSAVES;
/*
* We can emulate "VMCS shadowing," even if the hardware
* doesn't support it.
*/
msrs->secondary_ctls_high |=
SECONDARY_EXEC_SHADOW_VMCS;
if (enable_ept) {
/* nested EPT: emulate EPT also to L1 */
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_EPT;
msrs->ept_caps =
VMX_EPT_PAGE_WALK_4_BIT |
VMX_EPT_PAGE_WALK_5_BIT |
VMX_EPTP_WB_BIT |
VMX_EPT_INVEPT_BIT |
VMX_EPT_EXECUTE_ONLY_BIT;
msrs->ept_caps &= ept_caps;
msrs->ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT |
VMX_EPT_EXTENT_CONTEXT_BIT | VMX_EPT_2MB_PAGE_BIT |
VMX_EPT_1GB_PAGE_BIT;
if (enable_ept_ad_bits) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_PML;
msrs->ept_caps |= VMX_EPT_AD_BIT;
}
}
if (cpu_has_vmx_vmfunc()) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_VMFUNC;
/*
* Advertise EPTP switching unconditionally
* since we emulate it
*/
if (enable_ept)
msrs->vmfunc_controls =
VMX_VMFUNC_EPTP_SWITCHING;
}
/*
* Old versions of KVM use the single-context version without
* checking for support, so declare that it is supported even
* though it is treated as global context. The alternative is
* not failing the single-context invvpid, and it is worse.
*/
if (enable_vpid) {
msrs->secondary_ctls_high |=
SECONDARY_EXEC_ENABLE_VPID;
msrs->vpid_caps = VMX_VPID_INVVPID_BIT |
VMX_VPID_EXTENT_SUPPORTED_MASK;
}
if (enable_unrestricted_guest)
msrs->secondary_ctls_high |=
SECONDARY_EXEC_UNRESTRICTED_GUEST;
if (flexpriority_enabled)
msrs->secondary_ctls_high |=
SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
/* miscellaneous data */
rdmsr(MSR_IA32_VMX_MISC,
msrs->misc_low,
msrs->misc_high);
msrs->misc_low &= VMX_MISC_SAVE_EFER_LMA;
msrs->misc_low |=
MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS |
VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
VMX_MISC_ACTIVITY_HLT;
msrs->misc_high = 0;
/*
* This MSR reports some information about VMX support. We
* should return information about the VMX we emulate for the
* guest, and the VMCS structure we give it - not about the
* VMX support of the underlying hardware.
*/
msrs->basic =
VMCS12_REVISION |
VMX_BASIC_TRUE_CTLS |
((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
(VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
if (cpu_has_vmx_basic_inout())
msrs->basic |= VMX_BASIC_INOUT;
/*
* These MSRs specify bits which the guest must keep fixed on
* while L1 is in VMXON mode (in L1's root mode, or running an L2).
* We picked the standard core2 setting.
*/
#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
msrs->cr0_fixed0 = VMXON_CR0_ALWAYSON;
msrs->cr4_fixed0 = VMXON_CR4_ALWAYSON;
/* These MSRs specify bits which the guest must keep fixed off. */
rdmsrl(MSR_IA32_VMX_CR0_FIXED1, msrs->cr0_fixed1);
rdmsrl(MSR_IA32_VMX_CR4_FIXED1, msrs->cr4_fixed1);
/* highest index: VMX_PREEMPTION_TIMER_VALUE */
msrs->vmcs_enum = VMCS12_MAX_FIELD_INDEX << 1;
}
void nested_vmx_hardware_unsetup(void)
{
int i;
if (enable_shadow_vmcs) {
for (i = 0; i < VMX_BITMAP_NR; i++)
free_page((unsigned long)vmx_bitmap[i]);
}
}
__init int nested_vmx_hardware_setup(int (*exit_handlers[])(struct kvm_vcpu *))
{
int i;
if (!cpu_has_vmx_shadow_vmcs())
enable_shadow_vmcs = 0;
if (enable_shadow_vmcs) {
for (i = 0; i < VMX_BITMAP_NR; i++) {
/*
* The vmx_bitmap is not tied to a VM and so should
* not be charged to a memcg.
*/
vmx_bitmap[i] = (unsigned long *)
__get_free_page(GFP_KERNEL);
if (!vmx_bitmap[i]) {
nested_vmx_hardware_unsetup();
return -ENOMEM;
}
}
init_vmcs_shadow_fields();
}
exit_handlers[EXIT_REASON_VMCLEAR] = handle_vmclear;
exit_handlers[EXIT_REASON_VMLAUNCH] = handle_vmlaunch;
exit_handlers[EXIT_REASON_VMPTRLD] = handle_vmptrld;
exit_handlers[EXIT_REASON_VMPTRST] = handle_vmptrst;
exit_handlers[EXIT_REASON_VMREAD] = handle_vmread;
exit_handlers[EXIT_REASON_VMRESUME] = handle_vmresume;
exit_handlers[EXIT_REASON_VMWRITE] = handle_vmwrite;
exit_handlers[EXIT_REASON_VMOFF] = handle_vmoff;
exit_handlers[EXIT_REASON_VMON] = handle_vmon;
exit_handlers[EXIT_REASON_INVEPT] = handle_invept;
exit_handlers[EXIT_REASON_INVVPID] = handle_invvpid;
exit_handlers[EXIT_REASON_VMFUNC] = handle_vmfunc;
kvm_x86_ops->check_nested_events = vmx_check_nested_events;
kvm_x86_ops->get_nested_state = vmx_get_nested_state;
kvm_x86_ops->set_nested_state = vmx_set_nested_state;
kvm_x86_ops->get_vmcs12_pages = nested_get_vmcs12_pages;
kvm_x86_ops->nested_enable_evmcs = nested_enable_evmcs;
kvm_x86_ops->nested_get_evmcs_version = nested_get_evmcs_version;
return 0;
}