1704 lines
43 KiB
C
1704 lines
43 KiB
C
/*
|
|
* Copyright(c) 2015-2017 Intel Corporation.
|
|
*
|
|
* This file is provided under a dual BSD/GPLv2 license. When using or
|
|
* redistributing this file, you may do so under either license.
|
|
*
|
|
* GPL LICENSE SUMMARY
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of version 2 of the GNU General Public License as
|
|
* published by the Free Software Foundation.
|
|
*
|
|
* This program is distributed in the hope that it will be useful, but
|
|
* WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
|
|
* General Public License for more details.
|
|
*
|
|
* BSD LICENSE
|
|
*
|
|
* Redistribution and use in source and binary forms, with or without
|
|
* modification, are permitted provided that the following conditions
|
|
* are met:
|
|
*
|
|
* - Redistributions of source code must retain the above copyright
|
|
* notice, this list of conditions and the following disclaimer.
|
|
* - Redistributions in binary form must reproduce the above copyright
|
|
* notice, this list of conditions and the following disclaimer in
|
|
* the documentation and/or other materials provided with the
|
|
* distribution.
|
|
* - Neither the name of Intel Corporation nor the names of its
|
|
* contributors may be used to endorse or promote products derived
|
|
* from this software without specific prior written permission.
|
|
*
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
|
* OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
|
*
|
|
*/
|
|
#include <linux/poll.h>
|
|
#include <linux/cdev.h>
|
|
#include <linux/vmalloc.h>
|
|
#include <linux/io.h>
|
|
#include <linux/sched/mm.h>
|
|
#include <linux/bitmap.h>
|
|
|
|
#include <rdma/ib.h>
|
|
|
|
#include "hfi.h"
|
|
#include "pio.h"
|
|
#include "device.h"
|
|
#include "common.h"
|
|
#include "trace.h"
|
|
#include "mmu_rb.h"
|
|
#include "user_sdma.h"
|
|
#include "user_exp_rcv.h"
|
|
#include "aspm.h"
|
|
|
|
#undef pr_fmt
|
|
#define pr_fmt(fmt) DRIVER_NAME ": " fmt
|
|
|
|
#define SEND_CTXT_HALT_TIMEOUT 1000 /* msecs */
|
|
|
|
/*
|
|
* File operation functions
|
|
*/
|
|
static int hfi1_file_open(struct inode *inode, struct file *fp);
|
|
static int hfi1_file_close(struct inode *inode, struct file *fp);
|
|
static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from);
|
|
static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt);
|
|
static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma);
|
|
|
|
static u64 kvirt_to_phys(void *addr);
|
|
static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len);
|
|
static void init_subctxts(struct hfi1_ctxtdata *uctxt,
|
|
const struct hfi1_user_info *uinfo);
|
|
static int init_user_ctxt(struct hfi1_filedata *fd,
|
|
struct hfi1_ctxtdata *uctxt);
|
|
static void user_init(struct hfi1_ctxtdata *uctxt);
|
|
static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
|
|
static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len);
|
|
static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len);
|
|
static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len);
|
|
static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len);
|
|
static int setup_base_ctxt(struct hfi1_filedata *fd,
|
|
struct hfi1_ctxtdata *uctxt);
|
|
static int setup_subctxt(struct hfi1_ctxtdata *uctxt);
|
|
|
|
static int find_sub_ctxt(struct hfi1_filedata *fd,
|
|
const struct hfi1_user_info *uinfo);
|
|
static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
|
|
struct hfi1_user_info *uinfo,
|
|
struct hfi1_ctxtdata **cd);
|
|
static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt);
|
|
static __poll_t poll_urgent(struct file *fp, struct poll_table_struct *pt);
|
|
static __poll_t poll_next(struct file *fp, struct poll_table_struct *pt);
|
|
static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
|
|
unsigned long arg);
|
|
static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg);
|
|
static int ctxt_reset(struct hfi1_ctxtdata *uctxt);
|
|
static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
|
|
unsigned long arg);
|
|
static vm_fault_t vma_fault(struct vm_fault *vmf);
|
|
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
|
|
unsigned long arg);
|
|
|
|
static const struct file_operations hfi1_file_ops = {
|
|
.owner = THIS_MODULE,
|
|
.write_iter = hfi1_write_iter,
|
|
.open = hfi1_file_open,
|
|
.release = hfi1_file_close,
|
|
.unlocked_ioctl = hfi1_file_ioctl,
|
|
.poll = hfi1_poll,
|
|
.mmap = hfi1_file_mmap,
|
|
.llseek = noop_llseek,
|
|
};
|
|
|
|
static const struct vm_operations_struct vm_ops = {
|
|
.fault = vma_fault,
|
|
};
|
|
|
|
/*
|
|
* Types of memories mapped into user processes' space
|
|
*/
|
|
enum mmap_types {
|
|
PIO_BUFS = 1,
|
|
PIO_BUFS_SOP,
|
|
PIO_CRED,
|
|
RCV_HDRQ,
|
|
RCV_EGRBUF,
|
|
UREGS,
|
|
EVENTS,
|
|
STATUS,
|
|
RTAIL,
|
|
SUBCTXT_UREGS,
|
|
SUBCTXT_RCV_HDRQ,
|
|
SUBCTXT_EGRBUF,
|
|
SDMA_COMP
|
|
};
|
|
|
|
/*
|
|
* Masks and offsets defining the mmap tokens
|
|
*/
|
|
#define HFI1_MMAP_OFFSET_MASK 0xfffULL
|
|
#define HFI1_MMAP_OFFSET_SHIFT 0
|
|
#define HFI1_MMAP_SUBCTXT_MASK 0xfULL
|
|
#define HFI1_MMAP_SUBCTXT_SHIFT 12
|
|
#define HFI1_MMAP_CTXT_MASK 0xffULL
|
|
#define HFI1_MMAP_CTXT_SHIFT 16
|
|
#define HFI1_MMAP_TYPE_MASK 0xfULL
|
|
#define HFI1_MMAP_TYPE_SHIFT 24
|
|
#define HFI1_MMAP_MAGIC_MASK 0xffffffffULL
|
|
#define HFI1_MMAP_MAGIC_SHIFT 32
|
|
|
|
#define HFI1_MMAP_MAGIC 0xdabbad00
|
|
|
|
#define HFI1_MMAP_TOKEN_SET(field, val) \
|
|
(((val) & HFI1_MMAP_##field##_MASK) << HFI1_MMAP_##field##_SHIFT)
|
|
#define HFI1_MMAP_TOKEN_GET(field, token) \
|
|
(((token) >> HFI1_MMAP_##field##_SHIFT) & HFI1_MMAP_##field##_MASK)
|
|
#define HFI1_MMAP_TOKEN(type, ctxt, subctxt, addr) \
|
|
(HFI1_MMAP_TOKEN_SET(MAGIC, HFI1_MMAP_MAGIC) | \
|
|
HFI1_MMAP_TOKEN_SET(TYPE, type) | \
|
|
HFI1_MMAP_TOKEN_SET(CTXT, ctxt) | \
|
|
HFI1_MMAP_TOKEN_SET(SUBCTXT, subctxt) | \
|
|
HFI1_MMAP_TOKEN_SET(OFFSET, (offset_in_page(addr))))
|
|
|
|
#define dbg(fmt, ...) \
|
|
pr_info(fmt, ##__VA_ARGS__)
|
|
|
|
static inline int is_valid_mmap(u64 token)
|
|
{
|
|
return (HFI1_MMAP_TOKEN_GET(MAGIC, token) == HFI1_MMAP_MAGIC);
|
|
}
|
|
|
|
static int hfi1_file_open(struct inode *inode, struct file *fp)
|
|
{
|
|
struct hfi1_filedata *fd;
|
|
struct hfi1_devdata *dd = container_of(inode->i_cdev,
|
|
struct hfi1_devdata,
|
|
user_cdev);
|
|
|
|
if (!((dd->flags & HFI1_PRESENT) && dd->kregbase1))
|
|
return -EINVAL;
|
|
|
|
if (!atomic_inc_not_zero(&dd->user_refcount))
|
|
return -ENXIO;
|
|
|
|
/* The real work is performed later in assign_ctxt() */
|
|
|
|
fd = kzalloc(sizeof(*fd), GFP_KERNEL);
|
|
|
|
if (fd) {
|
|
fd->rec_cpu_num = -1; /* no cpu affinity by default */
|
|
fd->mm = current->mm;
|
|
mmgrab(fd->mm);
|
|
fd->dd = dd;
|
|
kobject_get(&fd->dd->kobj);
|
|
fp->private_data = fd;
|
|
} else {
|
|
fp->private_data = NULL;
|
|
|
|
if (atomic_dec_and_test(&dd->user_refcount))
|
|
complete(&dd->user_comp);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static long hfi1_file_ioctl(struct file *fp, unsigned int cmd,
|
|
unsigned long arg)
|
|
{
|
|
struct hfi1_filedata *fd = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
int ret = 0;
|
|
int uval = 0;
|
|
|
|
hfi1_cdbg(IOCTL, "IOCTL recv: 0x%x", cmd);
|
|
if (cmd != HFI1_IOCTL_ASSIGN_CTXT &&
|
|
cmd != HFI1_IOCTL_GET_VERS &&
|
|
!uctxt)
|
|
return -EINVAL;
|
|
|
|
switch (cmd) {
|
|
case HFI1_IOCTL_ASSIGN_CTXT:
|
|
ret = assign_ctxt(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_CTXT_INFO:
|
|
ret = get_ctxt_info(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_USER_INFO:
|
|
ret = get_base_info(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_CREDIT_UPD:
|
|
if (uctxt)
|
|
sc_return_credits(uctxt->sc);
|
|
break;
|
|
|
|
case HFI1_IOCTL_TID_UPDATE:
|
|
ret = user_exp_rcv_setup(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_TID_FREE:
|
|
ret = user_exp_rcv_clear(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_TID_INVAL_READ:
|
|
ret = user_exp_rcv_invalid(fd, arg, _IOC_SIZE(cmd));
|
|
break;
|
|
|
|
case HFI1_IOCTL_RECV_CTRL:
|
|
ret = manage_rcvq(uctxt, fd->subctxt, arg);
|
|
break;
|
|
|
|
case HFI1_IOCTL_POLL_TYPE:
|
|
if (get_user(uval, (int __user *)arg))
|
|
return -EFAULT;
|
|
uctxt->poll_type = (typeof(uctxt->poll_type))uval;
|
|
break;
|
|
|
|
case HFI1_IOCTL_ACK_EVENT:
|
|
ret = user_event_ack(uctxt, fd->subctxt, arg);
|
|
break;
|
|
|
|
case HFI1_IOCTL_SET_PKEY:
|
|
ret = set_ctxt_pkey(uctxt, arg);
|
|
break;
|
|
|
|
case HFI1_IOCTL_CTXT_RESET:
|
|
ret = ctxt_reset(uctxt);
|
|
break;
|
|
|
|
case HFI1_IOCTL_GET_VERS:
|
|
uval = HFI1_USER_SWVERSION;
|
|
if (put_user(uval, (int __user *)arg))
|
|
return -EFAULT;
|
|
break;
|
|
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static ssize_t hfi1_write_iter(struct kiocb *kiocb, struct iov_iter *from)
|
|
{
|
|
struct hfi1_filedata *fd = kiocb->ki_filp->private_data;
|
|
struct hfi1_user_sdma_pkt_q *pq = fd->pq;
|
|
struct hfi1_user_sdma_comp_q *cq = fd->cq;
|
|
int done = 0, reqs = 0;
|
|
unsigned long dim = from->nr_segs;
|
|
|
|
if (!cq || !pq)
|
|
return -EIO;
|
|
|
|
if (!iter_is_iovec(from) || !dim)
|
|
return -EINVAL;
|
|
|
|
trace_hfi1_sdma_request(fd->dd, fd->uctxt->ctxt, fd->subctxt, dim);
|
|
|
|
if (atomic_read(&pq->n_reqs) == pq->n_max_reqs)
|
|
return -ENOSPC;
|
|
|
|
while (dim) {
|
|
int ret;
|
|
unsigned long count = 0;
|
|
|
|
ret = hfi1_user_sdma_process_request(
|
|
fd, (struct iovec *)(from->iov + done),
|
|
dim, &count);
|
|
if (ret) {
|
|
reqs = ret;
|
|
break;
|
|
}
|
|
dim -= count;
|
|
done += count;
|
|
reqs++;
|
|
}
|
|
|
|
return reqs;
|
|
}
|
|
|
|
static int hfi1_file_mmap(struct file *fp, struct vm_area_struct *vma)
|
|
{
|
|
struct hfi1_filedata *fd = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_devdata *dd;
|
|
unsigned long flags;
|
|
u64 token = vma->vm_pgoff << PAGE_SHIFT,
|
|
memaddr = 0;
|
|
void *memvirt = NULL;
|
|
u8 subctxt, mapio = 0, vmf = 0, type;
|
|
ssize_t memlen = 0;
|
|
int ret = 0;
|
|
u16 ctxt;
|
|
|
|
if (!is_valid_mmap(token) || !uctxt ||
|
|
!(vma->vm_flags & VM_SHARED)) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
dd = uctxt->dd;
|
|
ctxt = HFI1_MMAP_TOKEN_GET(CTXT, token);
|
|
subctxt = HFI1_MMAP_TOKEN_GET(SUBCTXT, token);
|
|
type = HFI1_MMAP_TOKEN_GET(TYPE, token);
|
|
if (ctxt != uctxt->ctxt || subctxt != fd->subctxt) {
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
flags = vma->vm_flags;
|
|
|
|
switch (type) {
|
|
case PIO_BUFS:
|
|
case PIO_BUFS_SOP:
|
|
memaddr = ((dd->physaddr + TXE_PIO_SEND) +
|
|
/* chip pio base */
|
|
(uctxt->sc->hw_context * BIT(16))) +
|
|
/* 64K PIO space / ctxt */
|
|
(type == PIO_BUFS_SOP ?
|
|
(TXE_PIO_SIZE / 2) : 0); /* sop? */
|
|
/*
|
|
* Map only the amount allocated to the context, not the
|
|
* entire available context's PIO space.
|
|
*/
|
|
memlen = PAGE_ALIGN(uctxt->sc->credits * PIO_BLOCK_SIZE);
|
|
flags &= ~VM_MAYREAD;
|
|
flags |= VM_DONTCOPY | VM_DONTEXPAND;
|
|
vma->vm_page_prot = pgprot_writecombine(vma->vm_page_prot);
|
|
mapio = 1;
|
|
break;
|
|
case PIO_CRED:
|
|
if (flags & VM_WRITE) {
|
|
ret = -EPERM;
|
|
goto done;
|
|
}
|
|
/*
|
|
* The credit return location for this context could be on the
|
|
* second or third page allocated for credit returns (if number
|
|
* of enabled contexts > 64 and 128 respectively).
|
|
*/
|
|
memvirt = dd->cr_base[uctxt->numa_id].va;
|
|
memaddr = virt_to_phys(memvirt) +
|
|
(((u64)uctxt->sc->hw_free -
|
|
(u64)dd->cr_base[uctxt->numa_id].va) & PAGE_MASK);
|
|
memlen = PAGE_SIZE;
|
|
flags &= ~VM_MAYWRITE;
|
|
flags |= VM_DONTCOPY | VM_DONTEXPAND;
|
|
/*
|
|
* The driver has already allocated memory for credit
|
|
* returns and programmed it into the chip. Has that
|
|
* memory been flagged as non-cached?
|
|
*/
|
|
/* vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot); */
|
|
mapio = 1;
|
|
break;
|
|
case RCV_HDRQ:
|
|
memlen = uctxt->rcvhdrq_size;
|
|
memvirt = uctxt->rcvhdrq;
|
|
break;
|
|
case RCV_EGRBUF: {
|
|
unsigned long addr;
|
|
int i;
|
|
/*
|
|
* The RcvEgr buffer need to be handled differently
|
|
* as multiple non-contiguous pages need to be mapped
|
|
* into the user process.
|
|
*/
|
|
memlen = uctxt->egrbufs.size;
|
|
if ((vma->vm_end - vma->vm_start) != memlen) {
|
|
dd_dev_err(dd, "Eager buffer map size invalid (%lu != %lu)\n",
|
|
(vma->vm_end - vma->vm_start), memlen);
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
if (vma->vm_flags & VM_WRITE) {
|
|
ret = -EPERM;
|
|
goto done;
|
|
}
|
|
vma->vm_flags &= ~VM_MAYWRITE;
|
|
addr = vma->vm_start;
|
|
for (i = 0 ; i < uctxt->egrbufs.numbufs; i++) {
|
|
memlen = uctxt->egrbufs.buffers[i].len;
|
|
memvirt = uctxt->egrbufs.buffers[i].addr;
|
|
ret = remap_pfn_range(
|
|
vma, addr,
|
|
/*
|
|
* virt_to_pfn() does the same, but
|
|
* it's not available on x86_64
|
|
* when CONFIG_MMU is enabled.
|
|
*/
|
|
PFN_DOWN(__pa(memvirt)),
|
|
memlen,
|
|
vma->vm_page_prot);
|
|
if (ret < 0)
|
|
goto done;
|
|
addr += memlen;
|
|
}
|
|
ret = 0;
|
|
goto done;
|
|
}
|
|
case UREGS:
|
|
/*
|
|
* Map only the page that contains this context's user
|
|
* registers.
|
|
*/
|
|
memaddr = (unsigned long)
|
|
(dd->physaddr + RXE_PER_CONTEXT_USER)
|
|
+ (uctxt->ctxt * RXE_PER_CONTEXT_SIZE);
|
|
/*
|
|
* TidFlow table is on the same page as the rest of the
|
|
* user registers.
|
|
*/
|
|
memlen = PAGE_SIZE;
|
|
flags |= VM_DONTCOPY | VM_DONTEXPAND;
|
|
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
|
|
mapio = 1;
|
|
break;
|
|
case EVENTS:
|
|
/*
|
|
* Use the page where this context's flags are. User level
|
|
* knows where it's own bitmap is within the page.
|
|
*/
|
|
memaddr = (unsigned long)
|
|
(dd->events + uctxt_offset(uctxt)) & PAGE_MASK;
|
|
memlen = PAGE_SIZE;
|
|
/*
|
|
* v3.7 removes VM_RESERVED but the effect is kept by
|
|
* using VM_IO.
|
|
*/
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
vmf = 1;
|
|
break;
|
|
case STATUS:
|
|
if (flags & (unsigned long)(VM_WRITE | VM_EXEC)) {
|
|
ret = -EPERM;
|
|
goto done;
|
|
}
|
|
memaddr = kvirt_to_phys((void *)dd->status);
|
|
memlen = PAGE_SIZE;
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
break;
|
|
case RTAIL:
|
|
if (!HFI1_CAP_IS_USET(DMA_RTAIL)) {
|
|
/*
|
|
* If the memory allocation failed, the context alloc
|
|
* also would have failed, so we would never get here
|
|
*/
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
if ((flags & VM_WRITE) || !uctxt->rcvhdrtail_kvaddr) {
|
|
ret = -EPERM;
|
|
goto done;
|
|
}
|
|
memlen = PAGE_SIZE;
|
|
memvirt = (void *)uctxt->rcvhdrtail_kvaddr;
|
|
flags &= ~VM_MAYWRITE;
|
|
break;
|
|
case SUBCTXT_UREGS:
|
|
memaddr = (u64)uctxt->subctxt_uregbase;
|
|
memlen = PAGE_SIZE;
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
vmf = 1;
|
|
break;
|
|
case SUBCTXT_RCV_HDRQ:
|
|
memaddr = (u64)uctxt->subctxt_rcvhdr_base;
|
|
memlen = uctxt->rcvhdrq_size * uctxt->subctxt_cnt;
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
vmf = 1;
|
|
break;
|
|
case SUBCTXT_EGRBUF:
|
|
memaddr = (u64)uctxt->subctxt_rcvegrbuf;
|
|
memlen = uctxt->egrbufs.size * uctxt->subctxt_cnt;
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
flags &= ~VM_MAYWRITE;
|
|
vmf = 1;
|
|
break;
|
|
case SDMA_COMP: {
|
|
struct hfi1_user_sdma_comp_q *cq = fd->cq;
|
|
|
|
if (!cq) {
|
|
ret = -EFAULT;
|
|
goto done;
|
|
}
|
|
memaddr = (u64)cq->comps;
|
|
memlen = PAGE_ALIGN(sizeof(*cq->comps) * cq->nentries);
|
|
flags |= VM_IO | VM_DONTEXPAND;
|
|
vmf = 1;
|
|
break;
|
|
}
|
|
default:
|
|
ret = -EINVAL;
|
|
break;
|
|
}
|
|
|
|
if ((vma->vm_end - vma->vm_start) != memlen) {
|
|
hfi1_cdbg(PROC, "%u:%u Memory size mismatch %lu:%lu",
|
|
uctxt->ctxt, fd->subctxt,
|
|
(vma->vm_end - vma->vm_start), memlen);
|
|
ret = -EINVAL;
|
|
goto done;
|
|
}
|
|
|
|
vma->vm_flags = flags;
|
|
hfi1_cdbg(PROC,
|
|
"%u:%u type:%u io/vf:%d/%d, addr:0x%llx, len:%lu(%lu), flags:0x%lx\n",
|
|
ctxt, subctxt, type, mapio, vmf, memaddr, memlen,
|
|
vma->vm_end - vma->vm_start, vma->vm_flags);
|
|
if (vmf) {
|
|
vma->vm_pgoff = PFN_DOWN(memaddr);
|
|
vma->vm_ops = &vm_ops;
|
|
ret = 0;
|
|
} else if (mapio) {
|
|
ret = io_remap_pfn_range(vma, vma->vm_start,
|
|
PFN_DOWN(memaddr),
|
|
memlen,
|
|
vma->vm_page_prot);
|
|
} else if (memvirt) {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
PFN_DOWN(__pa(memvirt)),
|
|
memlen,
|
|
vma->vm_page_prot);
|
|
} else {
|
|
ret = remap_pfn_range(vma, vma->vm_start,
|
|
PFN_DOWN(memaddr),
|
|
memlen,
|
|
vma->vm_page_prot);
|
|
}
|
|
done:
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Local (non-chip) user memory is not mapped right away but as it is
|
|
* accessed by the user-level code.
|
|
*/
|
|
static vm_fault_t vma_fault(struct vm_fault *vmf)
|
|
{
|
|
struct page *page;
|
|
|
|
page = vmalloc_to_page((void *)(vmf->pgoff << PAGE_SHIFT));
|
|
if (!page)
|
|
return VM_FAULT_SIGBUS;
|
|
|
|
get_page(page);
|
|
vmf->page = page;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static __poll_t hfi1_poll(struct file *fp, struct poll_table_struct *pt)
|
|
{
|
|
struct hfi1_ctxtdata *uctxt;
|
|
__poll_t pollflag;
|
|
|
|
uctxt = ((struct hfi1_filedata *)fp->private_data)->uctxt;
|
|
if (!uctxt)
|
|
pollflag = EPOLLERR;
|
|
else if (uctxt->poll_type == HFI1_POLL_TYPE_URGENT)
|
|
pollflag = poll_urgent(fp, pt);
|
|
else if (uctxt->poll_type == HFI1_POLL_TYPE_ANYRCV)
|
|
pollflag = poll_next(fp, pt);
|
|
else /* invalid */
|
|
pollflag = EPOLLERR;
|
|
|
|
return pollflag;
|
|
}
|
|
|
|
static int hfi1_file_close(struct inode *inode, struct file *fp)
|
|
{
|
|
struct hfi1_filedata *fdata = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fdata->uctxt;
|
|
struct hfi1_devdata *dd = container_of(inode->i_cdev,
|
|
struct hfi1_devdata,
|
|
user_cdev);
|
|
unsigned long flags, *ev;
|
|
|
|
fp->private_data = NULL;
|
|
|
|
if (!uctxt)
|
|
goto done;
|
|
|
|
hfi1_cdbg(PROC, "closing ctxt %u:%u", uctxt->ctxt, fdata->subctxt);
|
|
|
|
flush_wc();
|
|
/* drain user sdma queue */
|
|
hfi1_user_sdma_free_queues(fdata, uctxt);
|
|
|
|
/* release the cpu */
|
|
hfi1_put_proc_affinity(fdata->rec_cpu_num);
|
|
|
|
/* clean up rcv side */
|
|
hfi1_user_exp_rcv_free(fdata);
|
|
|
|
/*
|
|
* fdata->uctxt is used in the above cleanup. It is not ready to be
|
|
* removed until here.
|
|
*/
|
|
fdata->uctxt = NULL;
|
|
hfi1_rcd_put(uctxt);
|
|
|
|
/*
|
|
* Clear any left over, unhandled events so the next process that
|
|
* gets this context doesn't get confused.
|
|
*/
|
|
ev = dd->events + uctxt_offset(uctxt) + fdata->subctxt;
|
|
*ev = 0;
|
|
|
|
spin_lock_irqsave(&dd->uctxt_lock, flags);
|
|
__clear_bit(fdata->subctxt, uctxt->in_use_ctxts);
|
|
if (!bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
goto done;
|
|
}
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
|
|
/*
|
|
* Disable receive context and interrupt available, reset all
|
|
* RcvCtxtCtrl bits to default values.
|
|
*/
|
|
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_DIS |
|
|
HFI1_RCVCTRL_TIDFLOW_DIS |
|
|
HFI1_RCVCTRL_INTRAVAIL_DIS |
|
|
HFI1_RCVCTRL_TAILUPD_DIS |
|
|
HFI1_RCVCTRL_ONE_PKT_EGR_DIS |
|
|
HFI1_RCVCTRL_NO_RHQ_DROP_DIS |
|
|
HFI1_RCVCTRL_NO_EGR_DROP_DIS, uctxt);
|
|
/* Clear the context's J_KEY */
|
|
hfi1_clear_ctxt_jkey(dd, uctxt);
|
|
/*
|
|
* If a send context is allocated, reset context integrity
|
|
* checks to default and disable the send context.
|
|
*/
|
|
if (uctxt->sc) {
|
|
sc_disable(uctxt->sc);
|
|
set_pio_integrity(uctxt->sc);
|
|
}
|
|
|
|
hfi1_free_ctxt_rcv_groups(uctxt);
|
|
hfi1_clear_ctxt_pkey(dd, uctxt);
|
|
|
|
uctxt->event_flags = 0;
|
|
|
|
deallocate_ctxt(uctxt);
|
|
done:
|
|
mmdrop(fdata->mm);
|
|
kobject_put(&dd->kobj);
|
|
|
|
if (atomic_dec_and_test(&dd->user_refcount))
|
|
complete(&dd->user_comp);
|
|
|
|
kfree(fdata);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Convert kernel *virtual* addresses to physical addresses.
|
|
* This is used to vmalloc'ed addresses.
|
|
*/
|
|
static u64 kvirt_to_phys(void *addr)
|
|
{
|
|
struct page *page;
|
|
u64 paddr = 0;
|
|
|
|
page = vmalloc_to_page(addr);
|
|
if (page)
|
|
paddr = page_to_pfn(page) << PAGE_SHIFT;
|
|
|
|
return paddr;
|
|
}
|
|
|
|
/**
|
|
* complete_subctxt
|
|
* @fd: valid filedata pointer
|
|
*
|
|
* Sub-context info can only be set up after the base context
|
|
* has been completed. This is indicated by the clearing of the
|
|
* HFI1_CTXT_BASE_UINIT bit.
|
|
*
|
|
* Wait for the bit to be cleared, and then complete the subcontext
|
|
* initialization.
|
|
*
|
|
*/
|
|
static int complete_subctxt(struct hfi1_filedata *fd)
|
|
{
|
|
int ret;
|
|
unsigned long flags;
|
|
|
|
/*
|
|
* sub-context info can only be set up after the base context
|
|
* has been completed.
|
|
*/
|
|
ret = wait_event_interruptible(
|
|
fd->uctxt->wait,
|
|
!test_bit(HFI1_CTXT_BASE_UNINIT, &fd->uctxt->event_flags));
|
|
|
|
if (test_bit(HFI1_CTXT_BASE_FAILED, &fd->uctxt->event_flags))
|
|
ret = -ENOMEM;
|
|
|
|
/* Finish the sub-context init */
|
|
if (!ret) {
|
|
fd->rec_cpu_num = hfi1_get_proc_affinity(fd->uctxt->numa_id);
|
|
ret = init_user_ctxt(fd, fd->uctxt);
|
|
}
|
|
|
|
if (ret) {
|
|
spin_lock_irqsave(&fd->dd->uctxt_lock, flags);
|
|
__clear_bit(fd->subctxt, fd->uctxt->in_use_ctxts);
|
|
spin_unlock_irqrestore(&fd->dd->uctxt_lock, flags);
|
|
hfi1_rcd_put(fd->uctxt);
|
|
fd->uctxt = NULL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int assign_ctxt(struct hfi1_filedata *fd, unsigned long arg, u32 len)
|
|
{
|
|
int ret;
|
|
unsigned int swmajor;
|
|
struct hfi1_ctxtdata *uctxt = NULL;
|
|
struct hfi1_user_info uinfo;
|
|
|
|
if (fd->uctxt)
|
|
return -EINVAL;
|
|
|
|
if (sizeof(uinfo) != len)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&uinfo, (void __user *)arg, sizeof(uinfo)))
|
|
return -EFAULT;
|
|
|
|
swmajor = uinfo.userversion >> 16;
|
|
if (swmajor != HFI1_USER_SWMAJOR)
|
|
return -ENODEV;
|
|
|
|
if (uinfo.subctxt_cnt > HFI1_MAX_SHARED_CTXTS)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Acquire the mutex to protect against multiple creations of what
|
|
* could be a shared base context.
|
|
*/
|
|
mutex_lock(&hfi1_mutex);
|
|
/*
|
|
* Get a sub context if available (fd->uctxt will be set).
|
|
* ret < 0 error, 0 no context, 1 sub-context found
|
|
*/
|
|
ret = find_sub_ctxt(fd, &uinfo);
|
|
|
|
/*
|
|
* Allocate a base context if context sharing is not required or a
|
|
* sub context wasn't found.
|
|
*/
|
|
if (!ret)
|
|
ret = allocate_ctxt(fd, fd->dd, &uinfo, &uctxt);
|
|
|
|
mutex_unlock(&hfi1_mutex);
|
|
|
|
/* Depending on the context type, finish the appropriate init */
|
|
switch (ret) {
|
|
case 0:
|
|
ret = setup_base_ctxt(fd, uctxt);
|
|
if (ret)
|
|
deallocate_ctxt(uctxt);
|
|
break;
|
|
case 1:
|
|
ret = complete_subctxt(fd);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* match_ctxt
|
|
* @fd: valid filedata pointer
|
|
* @uinfo: user info to compare base context with
|
|
* @uctxt: context to compare uinfo to.
|
|
*
|
|
* Compare the given context with the given information to see if it
|
|
* can be used for a sub context.
|
|
*/
|
|
static int match_ctxt(struct hfi1_filedata *fd,
|
|
const struct hfi1_user_info *uinfo,
|
|
struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
struct hfi1_devdata *dd = fd->dd;
|
|
unsigned long flags;
|
|
u16 subctxt;
|
|
|
|
/* Skip dynamically allocated kernel contexts */
|
|
if (uctxt->sc && (uctxt->sc->type == SC_KERNEL))
|
|
return 0;
|
|
|
|
/* Skip ctxt if it doesn't match the requested one */
|
|
if (memcmp(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid)) ||
|
|
uctxt->jkey != generate_jkey(current_uid()) ||
|
|
uctxt->subctxt_id != uinfo->subctxt_id ||
|
|
uctxt->subctxt_cnt != uinfo->subctxt_cnt)
|
|
return 0;
|
|
|
|
/* Verify the sharing process matches the base */
|
|
if (uctxt->userversion != uinfo->userversion)
|
|
return -EINVAL;
|
|
|
|
/* Find an unused sub context */
|
|
spin_lock_irqsave(&dd->uctxt_lock, flags);
|
|
if (bitmap_empty(uctxt->in_use_ctxts, HFI1_MAX_SHARED_CTXTS)) {
|
|
/* context is being closed, do not use */
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
return 0;
|
|
}
|
|
|
|
subctxt = find_first_zero_bit(uctxt->in_use_ctxts,
|
|
HFI1_MAX_SHARED_CTXTS);
|
|
if (subctxt >= uctxt->subctxt_cnt) {
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
return -EBUSY;
|
|
}
|
|
|
|
fd->subctxt = subctxt;
|
|
__set_bit(fd->subctxt, uctxt->in_use_ctxts);
|
|
spin_unlock_irqrestore(&dd->uctxt_lock, flags);
|
|
|
|
fd->uctxt = uctxt;
|
|
hfi1_rcd_get(uctxt);
|
|
|
|
return 1;
|
|
}
|
|
|
|
/**
|
|
* find_sub_ctxt
|
|
* @fd: valid filedata pointer
|
|
* @uinfo: matching info to use to find a possible context to share.
|
|
*
|
|
* The hfi1_mutex must be held when this function is called. It is
|
|
* necessary to ensure serialized creation of shared contexts.
|
|
*
|
|
* Return:
|
|
* 0 No sub-context found
|
|
* 1 Subcontext found and allocated
|
|
* errno EINVAL (incorrect parameters)
|
|
* EBUSY (all sub contexts in use)
|
|
*/
|
|
static int find_sub_ctxt(struct hfi1_filedata *fd,
|
|
const struct hfi1_user_info *uinfo)
|
|
{
|
|
struct hfi1_ctxtdata *uctxt;
|
|
struct hfi1_devdata *dd = fd->dd;
|
|
u16 i;
|
|
int ret;
|
|
|
|
if (!uinfo->subctxt_cnt)
|
|
return 0;
|
|
|
|
for (i = dd->first_dyn_alloc_ctxt; i < dd->num_rcv_contexts; i++) {
|
|
uctxt = hfi1_rcd_get_by_index(dd, i);
|
|
if (uctxt) {
|
|
ret = match_ctxt(fd, uinfo, uctxt);
|
|
hfi1_rcd_put(uctxt);
|
|
/* value of != 0 will return */
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int allocate_ctxt(struct hfi1_filedata *fd, struct hfi1_devdata *dd,
|
|
struct hfi1_user_info *uinfo,
|
|
struct hfi1_ctxtdata **rcd)
|
|
{
|
|
struct hfi1_ctxtdata *uctxt;
|
|
int ret, numa;
|
|
|
|
if (dd->flags & HFI1_FROZEN) {
|
|
/*
|
|
* Pick an error that is unique from all other errors
|
|
* that are returned so the user process knows that
|
|
* it tried to allocate while the SPC was frozen. It
|
|
* it should be able to retry with success in a short
|
|
* while.
|
|
*/
|
|
return -EIO;
|
|
}
|
|
|
|
if (!dd->freectxts)
|
|
return -EBUSY;
|
|
|
|
/*
|
|
* If we don't have a NUMA node requested, preference is towards
|
|
* device NUMA node.
|
|
*/
|
|
fd->rec_cpu_num = hfi1_get_proc_affinity(dd->node);
|
|
if (fd->rec_cpu_num != -1)
|
|
numa = cpu_to_node(fd->rec_cpu_num);
|
|
else
|
|
numa = numa_node_id();
|
|
ret = hfi1_create_ctxtdata(dd->pport, numa, &uctxt);
|
|
if (ret < 0) {
|
|
dd_dev_err(dd, "user ctxtdata allocation failed\n");
|
|
return ret;
|
|
}
|
|
hfi1_cdbg(PROC, "[%u:%u] pid %u assigned to CPU %d (NUMA %u)",
|
|
uctxt->ctxt, fd->subctxt, current->pid, fd->rec_cpu_num,
|
|
uctxt->numa_id);
|
|
|
|
/*
|
|
* Allocate and enable a PIO send context.
|
|
*/
|
|
uctxt->sc = sc_alloc(dd, SC_USER, uctxt->rcvhdrqentsize, dd->node);
|
|
if (!uctxt->sc) {
|
|
ret = -ENOMEM;
|
|
goto ctxdata_free;
|
|
}
|
|
hfi1_cdbg(PROC, "allocated send context %u(%u)\n", uctxt->sc->sw_index,
|
|
uctxt->sc->hw_context);
|
|
ret = sc_enable(uctxt->sc);
|
|
if (ret)
|
|
goto ctxdata_free;
|
|
|
|
/*
|
|
* Setup sub context information if the user-level has requested
|
|
* sub contexts.
|
|
* This has to be done here so the rest of the sub-contexts find the
|
|
* proper base context.
|
|
*/
|
|
if (uinfo->subctxt_cnt)
|
|
init_subctxts(uctxt, uinfo);
|
|
uctxt->userversion = uinfo->userversion;
|
|
uctxt->flags = hfi1_cap_mask; /* save current flag state */
|
|
init_waitqueue_head(&uctxt->wait);
|
|
strlcpy(uctxt->comm, current->comm, sizeof(uctxt->comm));
|
|
memcpy(uctxt->uuid, uinfo->uuid, sizeof(uctxt->uuid));
|
|
uctxt->jkey = generate_jkey(current_uid());
|
|
hfi1_stats.sps_ctxts++;
|
|
/*
|
|
* Disable ASPM when there are open user/PSM contexts to avoid
|
|
* issues with ASPM L1 exit latency
|
|
*/
|
|
if (dd->freectxts-- == dd->num_user_contexts)
|
|
aspm_disable_all(dd);
|
|
|
|
*rcd = uctxt;
|
|
|
|
return 0;
|
|
|
|
ctxdata_free:
|
|
hfi1_free_ctxt(uctxt);
|
|
return ret;
|
|
}
|
|
|
|
static void deallocate_ctxt(struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
mutex_lock(&hfi1_mutex);
|
|
hfi1_stats.sps_ctxts--;
|
|
if (++uctxt->dd->freectxts == uctxt->dd->num_user_contexts)
|
|
aspm_enable_all(uctxt->dd);
|
|
mutex_unlock(&hfi1_mutex);
|
|
|
|
hfi1_free_ctxt(uctxt);
|
|
}
|
|
|
|
static void init_subctxts(struct hfi1_ctxtdata *uctxt,
|
|
const struct hfi1_user_info *uinfo)
|
|
{
|
|
uctxt->subctxt_cnt = uinfo->subctxt_cnt;
|
|
uctxt->subctxt_id = uinfo->subctxt_id;
|
|
set_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
|
|
}
|
|
|
|
static int setup_subctxt(struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
int ret = 0;
|
|
u16 num_subctxts = uctxt->subctxt_cnt;
|
|
|
|
uctxt->subctxt_uregbase = vmalloc_user(PAGE_SIZE);
|
|
if (!uctxt->subctxt_uregbase)
|
|
return -ENOMEM;
|
|
|
|
/* We can take the size of the RcvHdr Queue from the master */
|
|
uctxt->subctxt_rcvhdr_base = vmalloc_user(uctxt->rcvhdrq_size *
|
|
num_subctxts);
|
|
if (!uctxt->subctxt_rcvhdr_base) {
|
|
ret = -ENOMEM;
|
|
goto bail_ureg;
|
|
}
|
|
|
|
uctxt->subctxt_rcvegrbuf = vmalloc_user(uctxt->egrbufs.size *
|
|
num_subctxts);
|
|
if (!uctxt->subctxt_rcvegrbuf) {
|
|
ret = -ENOMEM;
|
|
goto bail_rhdr;
|
|
}
|
|
|
|
return 0;
|
|
|
|
bail_rhdr:
|
|
vfree(uctxt->subctxt_rcvhdr_base);
|
|
uctxt->subctxt_rcvhdr_base = NULL;
|
|
bail_ureg:
|
|
vfree(uctxt->subctxt_uregbase);
|
|
uctxt->subctxt_uregbase = NULL;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void user_init(struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
unsigned int rcvctrl_ops = 0;
|
|
|
|
/* initialize poll variables... */
|
|
uctxt->urgent = 0;
|
|
uctxt->urgent_poll = 0;
|
|
|
|
/*
|
|
* Now enable the ctxt for receive.
|
|
* For chips that are set to DMA the tail register to memory
|
|
* when they change (and when the update bit transitions from
|
|
* 0 to 1. So for those chips, we turn it off and then back on.
|
|
* This will (very briefly) affect any other open ctxts, but the
|
|
* duration is very short, and therefore isn't an issue. We
|
|
* explicitly set the in-memory tail copy to 0 beforehand, so we
|
|
* don't have to wait to be sure the DMA update has happened
|
|
* (chip resets head/tail to 0 on transition to enable).
|
|
*/
|
|
if (uctxt->rcvhdrtail_kvaddr)
|
|
clear_rcvhdrtail(uctxt);
|
|
|
|
/* Setup J_KEY before enabling the context */
|
|
hfi1_set_ctxt_jkey(uctxt->dd, uctxt, uctxt->jkey);
|
|
|
|
rcvctrl_ops = HFI1_RCVCTRL_CTXT_ENB;
|
|
if (HFI1_CAP_UGET_MASK(uctxt->flags, HDRSUPP))
|
|
rcvctrl_ops |= HFI1_RCVCTRL_TIDFLOW_ENB;
|
|
/*
|
|
* Ignore the bit in the flags for now until proper
|
|
* support for multiple packet per rcv array entry is
|
|
* added.
|
|
*/
|
|
if (!HFI1_CAP_UGET_MASK(uctxt->flags, MULTI_PKT_EGR))
|
|
rcvctrl_ops |= HFI1_RCVCTRL_ONE_PKT_EGR_ENB;
|
|
if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_EGR_FULL))
|
|
rcvctrl_ops |= HFI1_RCVCTRL_NO_EGR_DROP_ENB;
|
|
if (HFI1_CAP_UGET_MASK(uctxt->flags, NODROP_RHQ_FULL))
|
|
rcvctrl_ops |= HFI1_RCVCTRL_NO_RHQ_DROP_ENB;
|
|
/*
|
|
* The RcvCtxtCtrl.TailUpd bit has to be explicitly written.
|
|
* We can't rely on the correct value to be set from prior
|
|
* uses of the chip or ctxt. Therefore, add the rcvctrl op
|
|
* for both cases.
|
|
*/
|
|
if (HFI1_CAP_UGET_MASK(uctxt->flags, DMA_RTAIL))
|
|
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_ENB;
|
|
else
|
|
rcvctrl_ops |= HFI1_RCVCTRL_TAILUPD_DIS;
|
|
hfi1_rcvctrl(uctxt->dd, rcvctrl_ops, uctxt);
|
|
}
|
|
|
|
static int get_ctxt_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
|
|
{
|
|
struct hfi1_ctxt_info cinfo;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
|
|
if (sizeof(cinfo) != len)
|
|
return -EINVAL;
|
|
|
|
memset(&cinfo, 0, sizeof(cinfo));
|
|
cinfo.runtime_flags = (((uctxt->flags >> HFI1_CAP_MISC_SHIFT) &
|
|
HFI1_CAP_MISC_MASK) << HFI1_CAP_USER_SHIFT) |
|
|
HFI1_CAP_UGET_MASK(uctxt->flags, MASK) |
|
|
HFI1_CAP_KGET_MASK(uctxt->flags, K2U);
|
|
/* adjust flag if this fd is not able to cache */
|
|
if (!fd->handler)
|
|
cinfo.runtime_flags |= HFI1_CAP_TID_UNMAP; /* no caching */
|
|
|
|
cinfo.num_active = hfi1_count_active_units();
|
|
cinfo.unit = uctxt->dd->unit;
|
|
cinfo.ctxt = uctxt->ctxt;
|
|
cinfo.subctxt = fd->subctxt;
|
|
cinfo.rcvtids = roundup(uctxt->egrbufs.alloced,
|
|
uctxt->dd->rcv_entries.group_size) +
|
|
uctxt->expected_count;
|
|
cinfo.credits = uctxt->sc->credits;
|
|
cinfo.numa_node = uctxt->numa_id;
|
|
cinfo.rec_cpu = fd->rec_cpu_num;
|
|
cinfo.send_ctxt = uctxt->sc->hw_context;
|
|
|
|
cinfo.egrtids = uctxt->egrbufs.alloced;
|
|
cinfo.rcvhdrq_cnt = uctxt->rcvhdrq_cnt;
|
|
cinfo.rcvhdrq_entsize = uctxt->rcvhdrqentsize << 2;
|
|
cinfo.sdma_ring_size = fd->cq->nentries;
|
|
cinfo.rcvegr_size = uctxt->egrbufs.rcvtid_size;
|
|
|
|
trace_hfi1_ctxt_info(uctxt->dd, uctxt->ctxt, fd->subctxt, &cinfo);
|
|
if (copy_to_user((void __user *)arg, &cinfo, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int init_user_ctxt(struct hfi1_filedata *fd,
|
|
struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
int ret;
|
|
|
|
ret = hfi1_user_sdma_alloc_queues(uctxt, fd);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = hfi1_user_exp_rcv_init(fd, uctxt);
|
|
if (ret)
|
|
hfi1_user_sdma_free_queues(fd, uctxt);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int setup_base_ctxt(struct hfi1_filedata *fd,
|
|
struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
int ret = 0;
|
|
|
|
hfi1_init_ctxt(uctxt->sc);
|
|
|
|
/* Now allocate the RcvHdr queue and eager buffers. */
|
|
ret = hfi1_create_rcvhdrq(dd, uctxt);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = hfi1_setup_eagerbufs(uctxt);
|
|
if (ret)
|
|
goto done;
|
|
|
|
/* If sub-contexts are enabled, do the appropriate setup */
|
|
if (uctxt->subctxt_cnt)
|
|
ret = setup_subctxt(uctxt);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = hfi1_alloc_ctxt_rcv_groups(uctxt);
|
|
if (ret)
|
|
goto done;
|
|
|
|
ret = init_user_ctxt(fd, uctxt);
|
|
if (ret)
|
|
goto done;
|
|
|
|
user_init(uctxt);
|
|
|
|
/* Now that the context is set up, the fd can get a reference. */
|
|
fd->uctxt = uctxt;
|
|
hfi1_rcd_get(uctxt);
|
|
|
|
done:
|
|
if (uctxt->subctxt_cnt) {
|
|
/*
|
|
* On error, set the failed bit so sub-contexts will clean up
|
|
* correctly.
|
|
*/
|
|
if (ret)
|
|
set_bit(HFI1_CTXT_BASE_FAILED, &uctxt->event_flags);
|
|
|
|
/*
|
|
* Base context is done (successfully or not), notify anybody
|
|
* using a sub-context that is waiting for this completion.
|
|
*/
|
|
clear_bit(HFI1_CTXT_BASE_UNINIT, &uctxt->event_flags);
|
|
wake_up(&uctxt->wait);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int get_base_info(struct hfi1_filedata *fd, unsigned long arg, u32 len)
|
|
{
|
|
struct hfi1_base_info binfo;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
unsigned offset;
|
|
|
|
trace_hfi1_uctxtdata(uctxt->dd, uctxt, fd->subctxt);
|
|
|
|
if (sizeof(binfo) != len)
|
|
return -EINVAL;
|
|
|
|
memset(&binfo, 0, sizeof(binfo));
|
|
binfo.hw_version = dd->revision;
|
|
binfo.sw_version = HFI1_KERN_SWVERSION;
|
|
binfo.bthqp = kdeth_qp;
|
|
binfo.jkey = uctxt->jkey;
|
|
/*
|
|
* If more than 64 contexts are enabled the allocated credit
|
|
* return will span two or three contiguous pages. Since we only
|
|
* map the page containing the context's credit return address,
|
|
* we need to calculate the offset in the proper page.
|
|
*/
|
|
offset = ((u64)uctxt->sc->hw_free -
|
|
(u64)dd->cr_base[uctxt->numa_id].va) % PAGE_SIZE;
|
|
binfo.sc_credits_addr = HFI1_MMAP_TOKEN(PIO_CRED, uctxt->ctxt,
|
|
fd->subctxt, offset);
|
|
binfo.pio_bufbase = HFI1_MMAP_TOKEN(PIO_BUFS, uctxt->ctxt,
|
|
fd->subctxt,
|
|
uctxt->sc->base_addr);
|
|
binfo.pio_bufbase_sop = HFI1_MMAP_TOKEN(PIO_BUFS_SOP,
|
|
uctxt->ctxt,
|
|
fd->subctxt,
|
|
uctxt->sc->base_addr);
|
|
binfo.rcvhdr_bufbase = HFI1_MMAP_TOKEN(RCV_HDRQ, uctxt->ctxt,
|
|
fd->subctxt,
|
|
uctxt->rcvhdrq);
|
|
binfo.rcvegr_bufbase = HFI1_MMAP_TOKEN(RCV_EGRBUF, uctxt->ctxt,
|
|
fd->subctxt,
|
|
uctxt->egrbufs.rcvtids[0].dma);
|
|
binfo.sdma_comp_bufbase = HFI1_MMAP_TOKEN(SDMA_COMP, uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
/*
|
|
* user regs are at
|
|
* (RXE_PER_CONTEXT_USER + (ctxt * RXE_PER_CONTEXT_SIZE))
|
|
*/
|
|
binfo.user_regbase = HFI1_MMAP_TOKEN(UREGS, uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
offset = offset_in_page((uctxt_offset(uctxt) + fd->subctxt) *
|
|
sizeof(*dd->events));
|
|
binfo.events_bufbase = HFI1_MMAP_TOKEN(EVENTS, uctxt->ctxt,
|
|
fd->subctxt,
|
|
offset);
|
|
binfo.status_bufbase = HFI1_MMAP_TOKEN(STATUS, uctxt->ctxt,
|
|
fd->subctxt,
|
|
dd->status);
|
|
if (HFI1_CAP_IS_USET(DMA_RTAIL))
|
|
binfo.rcvhdrtail_base = HFI1_MMAP_TOKEN(RTAIL, uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
if (uctxt->subctxt_cnt) {
|
|
binfo.subctxt_uregbase = HFI1_MMAP_TOKEN(SUBCTXT_UREGS,
|
|
uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
binfo.subctxt_rcvhdrbuf = HFI1_MMAP_TOKEN(SUBCTXT_RCV_HDRQ,
|
|
uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
binfo.subctxt_rcvegrbuf = HFI1_MMAP_TOKEN(SUBCTXT_EGRBUF,
|
|
uctxt->ctxt,
|
|
fd->subctxt, 0);
|
|
}
|
|
|
|
if (copy_to_user((void __user *)arg, &binfo, len))
|
|
return -EFAULT;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* user_exp_rcv_setup - Set up the given tid rcv list
|
|
* @fd: file data of the current driver instance
|
|
* @arg: ioctl argumnent for user space information
|
|
* @len: length of data structure associated with ioctl command
|
|
*
|
|
* Wrapper to validate ioctl information before doing _rcv_setup.
|
|
*
|
|
*/
|
|
static int user_exp_rcv_setup(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len)
|
|
{
|
|
int ret;
|
|
unsigned long addr;
|
|
struct hfi1_tid_info tinfo;
|
|
|
|
if (sizeof(tinfo) != len)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
|
|
return -EFAULT;
|
|
|
|
ret = hfi1_user_exp_rcv_setup(fd, &tinfo);
|
|
if (!ret) {
|
|
/*
|
|
* Copy the number of tidlist entries we used
|
|
* and the length of the buffer we registered.
|
|
*/
|
|
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
|
|
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
|
|
sizeof(tinfo.tidcnt)))
|
|
return -EFAULT;
|
|
|
|
addr = arg + offsetof(struct hfi1_tid_info, length);
|
|
if (copy_to_user((void __user *)addr, &tinfo.length,
|
|
sizeof(tinfo.length)))
|
|
ret = -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* user_exp_rcv_clear - Clear the given tid rcv list
|
|
* @fd: file data of the current driver instance
|
|
* @arg: ioctl argumnent for user space information
|
|
* @len: length of data structure associated with ioctl command
|
|
*
|
|
* The hfi1_user_exp_rcv_clear() can be called from the error path. Because
|
|
* of this, we need to use this wrapper to copy the user space information
|
|
* before doing the clear.
|
|
*/
|
|
static int user_exp_rcv_clear(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len)
|
|
{
|
|
int ret;
|
|
unsigned long addr;
|
|
struct hfi1_tid_info tinfo;
|
|
|
|
if (sizeof(tinfo) != len)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
|
|
return -EFAULT;
|
|
|
|
ret = hfi1_user_exp_rcv_clear(fd, &tinfo);
|
|
if (!ret) {
|
|
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
|
|
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
|
|
sizeof(tinfo.tidcnt)))
|
|
return -EFAULT;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* user_exp_rcv_invalid - Invalidate the given tid rcv list
|
|
* @fd: file data of the current driver instance
|
|
* @arg: ioctl argumnent for user space information
|
|
* @len: length of data structure associated with ioctl command
|
|
*
|
|
* Wrapper to validate ioctl information before doing _rcv_invalid.
|
|
*
|
|
*/
|
|
static int user_exp_rcv_invalid(struct hfi1_filedata *fd, unsigned long arg,
|
|
u32 len)
|
|
{
|
|
int ret;
|
|
unsigned long addr;
|
|
struct hfi1_tid_info tinfo;
|
|
|
|
if (sizeof(tinfo) != len)
|
|
return -EINVAL;
|
|
|
|
if (!fd->invalid_tids)
|
|
return -EINVAL;
|
|
|
|
if (copy_from_user(&tinfo, (void __user *)arg, (sizeof(tinfo))))
|
|
return -EFAULT;
|
|
|
|
ret = hfi1_user_exp_rcv_invalid(fd, &tinfo);
|
|
if (ret)
|
|
return ret;
|
|
|
|
addr = arg + offsetof(struct hfi1_tid_info, tidcnt);
|
|
if (copy_to_user((void __user *)addr, &tinfo.tidcnt,
|
|
sizeof(tinfo.tidcnt)))
|
|
ret = -EFAULT;
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __poll_t poll_urgent(struct file *fp,
|
|
struct poll_table_struct *pt)
|
|
{
|
|
struct hfi1_filedata *fd = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
__poll_t pollflag;
|
|
|
|
poll_wait(fp, &uctxt->wait, pt);
|
|
|
|
spin_lock_irq(&dd->uctxt_lock);
|
|
if (uctxt->urgent != uctxt->urgent_poll) {
|
|
pollflag = EPOLLIN | EPOLLRDNORM;
|
|
uctxt->urgent_poll = uctxt->urgent;
|
|
} else {
|
|
pollflag = 0;
|
|
set_bit(HFI1_CTXT_WAITING_URG, &uctxt->event_flags);
|
|
}
|
|
spin_unlock_irq(&dd->uctxt_lock);
|
|
|
|
return pollflag;
|
|
}
|
|
|
|
static __poll_t poll_next(struct file *fp,
|
|
struct poll_table_struct *pt)
|
|
{
|
|
struct hfi1_filedata *fd = fp->private_data;
|
|
struct hfi1_ctxtdata *uctxt = fd->uctxt;
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
__poll_t pollflag;
|
|
|
|
poll_wait(fp, &uctxt->wait, pt);
|
|
|
|
spin_lock_irq(&dd->uctxt_lock);
|
|
if (hdrqempty(uctxt)) {
|
|
set_bit(HFI1_CTXT_WAITING_RCV, &uctxt->event_flags);
|
|
hfi1_rcvctrl(dd, HFI1_RCVCTRL_INTRAVAIL_ENB, uctxt);
|
|
pollflag = 0;
|
|
} else {
|
|
pollflag = EPOLLIN | EPOLLRDNORM;
|
|
}
|
|
spin_unlock_irq(&dd->uctxt_lock);
|
|
|
|
return pollflag;
|
|
}
|
|
|
|
/*
|
|
* Find all user contexts in use, and set the specified bit in their
|
|
* event mask.
|
|
* See also find_ctxt() for a similar use, that is specific to send buffers.
|
|
*/
|
|
int hfi1_set_uevent_bits(struct hfi1_pportdata *ppd, const int evtbit)
|
|
{
|
|
struct hfi1_ctxtdata *uctxt;
|
|
struct hfi1_devdata *dd = ppd->dd;
|
|
u16 ctxt;
|
|
|
|
if (!dd->events)
|
|
return -EINVAL;
|
|
|
|
for (ctxt = dd->first_dyn_alloc_ctxt; ctxt < dd->num_rcv_contexts;
|
|
ctxt++) {
|
|
uctxt = hfi1_rcd_get_by_index(dd, ctxt);
|
|
if (uctxt) {
|
|
unsigned long *evs;
|
|
int i;
|
|
/*
|
|
* subctxt_cnt is 0 if not shared, so do base
|
|
* separately, first, then remaining subctxt, if any
|
|
*/
|
|
evs = dd->events + uctxt_offset(uctxt);
|
|
set_bit(evtbit, evs);
|
|
for (i = 1; i < uctxt->subctxt_cnt; i++)
|
|
set_bit(evtbit, evs + i);
|
|
hfi1_rcd_put(uctxt);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* manage_rcvq - manage a context's receive queue
|
|
* @uctxt: the context
|
|
* @subctxt: the sub-context
|
|
* @start_stop: action to carry out
|
|
*
|
|
* start_stop == 0 disables receive on the context, for use in queue
|
|
* overflow conditions. start_stop==1 re-enables, to be used to
|
|
* re-init the software copy of the head register
|
|
*/
|
|
static int manage_rcvq(struct hfi1_ctxtdata *uctxt, u16 subctxt,
|
|
unsigned long arg)
|
|
{
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
unsigned int rcvctrl_op;
|
|
int start_stop;
|
|
|
|
if (subctxt)
|
|
return 0;
|
|
|
|
if (get_user(start_stop, (int __user *)arg))
|
|
return -EFAULT;
|
|
|
|
/* atomically clear receive enable ctxt. */
|
|
if (start_stop) {
|
|
/*
|
|
* On enable, force in-memory copy of the tail register to
|
|
* 0, so that protocol code doesn't have to worry about
|
|
* whether or not the chip has yet updated the in-memory
|
|
* copy or not on return from the system call. The chip
|
|
* always resets it's tail register back to 0 on a
|
|
* transition from disabled to enabled.
|
|
*/
|
|
if (uctxt->rcvhdrtail_kvaddr)
|
|
clear_rcvhdrtail(uctxt);
|
|
rcvctrl_op = HFI1_RCVCTRL_CTXT_ENB;
|
|
} else {
|
|
rcvctrl_op = HFI1_RCVCTRL_CTXT_DIS;
|
|
}
|
|
hfi1_rcvctrl(dd, rcvctrl_op, uctxt);
|
|
/* always; new head should be equal to new tail; see above */
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* clear the event notifier events for this context.
|
|
* User process then performs actions appropriate to bit having been
|
|
* set, if desired, and checks again in future.
|
|
*/
|
|
static int user_event_ack(struct hfi1_ctxtdata *uctxt, u16 subctxt,
|
|
unsigned long arg)
|
|
{
|
|
int i;
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
unsigned long *evs;
|
|
unsigned long events;
|
|
|
|
if (!dd->events)
|
|
return 0;
|
|
|
|
if (get_user(events, (unsigned long __user *)arg))
|
|
return -EFAULT;
|
|
|
|
evs = dd->events + uctxt_offset(uctxt) + subctxt;
|
|
|
|
for (i = 0; i <= _HFI1_MAX_EVENT_BIT; i++) {
|
|
if (!test_bit(i, &events))
|
|
continue;
|
|
clear_bit(i, evs);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static int set_ctxt_pkey(struct hfi1_ctxtdata *uctxt, unsigned long arg)
|
|
{
|
|
int i;
|
|
struct hfi1_pportdata *ppd = uctxt->ppd;
|
|
struct hfi1_devdata *dd = uctxt->dd;
|
|
u16 pkey;
|
|
|
|
if (!HFI1_CAP_IS_USET(PKEY_CHECK))
|
|
return -EPERM;
|
|
|
|
if (get_user(pkey, (u16 __user *)arg))
|
|
return -EFAULT;
|
|
|
|
if (pkey == LIM_MGMT_P_KEY || pkey == FULL_MGMT_P_KEY)
|
|
return -EINVAL;
|
|
|
|
for (i = 0; i < ARRAY_SIZE(ppd->pkeys); i++)
|
|
if (pkey == ppd->pkeys[i])
|
|
return hfi1_set_ctxt_pkey(dd, uctxt, pkey);
|
|
|
|
return -ENOENT;
|
|
}
|
|
|
|
/**
|
|
* ctxt_reset - Reset the user context
|
|
* @uctxt: valid user context
|
|
*/
|
|
static int ctxt_reset(struct hfi1_ctxtdata *uctxt)
|
|
{
|
|
struct send_context *sc;
|
|
struct hfi1_devdata *dd;
|
|
int ret = 0;
|
|
|
|
if (!uctxt || !uctxt->dd || !uctxt->sc)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* There is no protection here. User level has to guarantee that
|
|
* no one will be writing to the send context while it is being
|
|
* re-initialized. If user level breaks that guarantee, it will
|
|
* break it's own context and no one else's.
|
|
*/
|
|
dd = uctxt->dd;
|
|
sc = uctxt->sc;
|
|
|
|
/*
|
|
* Wait until the interrupt handler has marked the context as
|
|
* halted or frozen. Report error if we time out.
|
|
*/
|
|
wait_event_interruptible_timeout(
|
|
sc->halt_wait, (sc->flags & SCF_HALTED),
|
|
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
|
|
if (!(sc->flags & SCF_HALTED))
|
|
return -ENOLCK;
|
|
|
|
/*
|
|
* If the send context was halted due to a Freeze, wait until the
|
|
* device has been "unfrozen" before resetting the context.
|
|
*/
|
|
if (sc->flags & SCF_FROZEN) {
|
|
wait_event_interruptible_timeout(
|
|
dd->event_queue,
|
|
!(READ_ONCE(dd->flags) & HFI1_FROZEN),
|
|
msecs_to_jiffies(SEND_CTXT_HALT_TIMEOUT));
|
|
if (dd->flags & HFI1_FROZEN)
|
|
return -ENOLCK;
|
|
|
|
if (dd->flags & HFI1_FORCED_FREEZE)
|
|
/*
|
|
* Don't allow context reset if we are into
|
|
* forced freeze
|
|
*/
|
|
return -ENODEV;
|
|
|
|
sc_disable(sc);
|
|
ret = sc_enable(sc);
|
|
hfi1_rcvctrl(dd, HFI1_RCVCTRL_CTXT_ENB, uctxt);
|
|
} else {
|
|
ret = sc_restart(sc);
|
|
}
|
|
if (!ret)
|
|
sc_return_credits(sc);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void user_remove(struct hfi1_devdata *dd)
|
|
{
|
|
|
|
hfi1_cdev_cleanup(&dd->user_cdev, &dd->user_device);
|
|
}
|
|
|
|
static int user_add(struct hfi1_devdata *dd)
|
|
{
|
|
char name[10];
|
|
int ret;
|
|
|
|
snprintf(name, sizeof(name), "%s_%d", class_name(), dd->unit);
|
|
ret = hfi1_cdev_init(dd->unit, name, &hfi1_file_ops,
|
|
&dd->user_cdev, &dd->user_device,
|
|
true, &dd->kobj);
|
|
if (ret)
|
|
user_remove(dd);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Create per-unit files in /dev
|
|
*/
|
|
int hfi1_device_create(struct hfi1_devdata *dd)
|
|
{
|
|
return user_add(dd);
|
|
}
|
|
|
|
/*
|
|
* Remove per-unit files in /dev
|
|
* void, core kernel returns no errors for this stuff
|
|
*/
|
|
void hfi1_device_remove(struct hfi1_devdata *dd)
|
|
{
|
|
user_remove(dd);
|
|
}
|