OpenCloudOS-Kernel/drivers/net/ethernet/sfc/falcon_boards.c

778 lines
22 KiB
C

/****************************************************************************
* Driver for Solarflare Solarstorm network controllers and boards
* Copyright 2007-2010 Solarflare Communications Inc.
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License version 2 as published
* by the Free Software Foundation, incorporated herein by reference.
*/
#include <linux/rtnetlink.h>
#include "net_driver.h"
#include "phy.h"
#include "efx.h"
#include "nic.h"
#include "workarounds.h"
/* Macros for unpacking the board revision */
/* The revision info is in host byte order. */
#define FALCON_BOARD_TYPE(_rev) (_rev >> 8)
#define FALCON_BOARD_MAJOR(_rev) ((_rev >> 4) & 0xf)
#define FALCON_BOARD_MINOR(_rev) (_rev & 0xf)
/* Board types */
#define FALCON_BOARD_SFE4001 0x01
#define FALCON_BOARD_SFE4002 0x02
#define FALCON_BOARD_SFE4003 0x03
#define FALCON_BOARD_SFN4112F 0x52
/* Board temperature is about 15°C above ambient when air flow is
* limited. The maximum acceptable ambient temperature varies
* depending on the PHY specifications but the critical temperature
* above which we should shut down to avoid damage is 80°C. */
#define FALCON_BOARD_TEMP_BIAS 15
#define FALCON_BOARD_TEMP_CRIT (80 + FALCON_BOARD_TEMP_BIAS)
/* SFC4000 datasheet says: 'The maximum permitted junction temperature
* is 125°C; the thermal design of the environment for the SFC4000
* should aim to keep this well below 100°C.' */
#define FALCON_JUNC_TEMP_MIN 0
#define FALCON_JUNC_TEMP_MAX 90
#define FALCON_JUNC_TEMP_CRIT 125
/*****************************************************************************
* Support for LM87 sensor chip used on several boards
*/
#define LM87_REG_TEMP_HW_INT_LOCK 0x13
#define LM87_REG_TEMP_HW_EXT_LOCK 0x14
#define LM87_REG_TEMP_HW_INT 0x17
#define LM87_REG_TEMP_HW_EXT 0x18
#define LM87_REG_TEMP_EXT1 0x26
#define LM87_REG_TEMP_INT 0x27
#define LM87_REG_ALARMS1 0x41
#define LM87_REG_ALARMS2 0x42
#define LM87_IN_LIMITS(nr, _min, _max) \
0x2B + (nr) * 2, _max, 0x2C + (nr) * 2, _min
#define LM87_AIN_LIMITS(nr, _min, _max) \
0x3B + (nr), _max, 0x1A + (nr), _min
#define LM87_TEMP_INT_LIMITS(_min, _max) \
0x39, _max, 0x3A, _min
#define LM87_TEMP_EXT1_LIMITS(_min, _max) \
0x37, _max, 0x38, _min
#define LM87_ALARM_TEMP_INT 0x10
#define LM87_ALARM_TEMP_EXT1 0x20
#if defined(CONFIG_SENSORS_LM87) || defined(CONFIG_SENSORS_LM87_MODULE)
static int efx_poke_lm87(struct i2c_client *client, const u8 *reg_values)
{
while (*reg_values) {
u8 reg = *reg_values++;
u8 value = *reg_values++;
int rc = i2c_smbus_write_byte_data(client, reg, value);
if (rc)
return rc;
}
return 0;
}
static const u8 falcon_lm87_common_regs[] = {
LM87_REG_TEMP_HW_INT_LOCK, FALCON_BOARD_TEMP_CRIT,
LM87_REG_TEMP_HW_INT, FALCON_BOARD_TEMP_CRIT,
LM87_TEMP_EXT1_LIMITS(FALCON_JUNC_TEMP_MIN, FALCON_JUNC_TEMP_MAX),
LM87_REG_TEMP_HW_EXT_LOCK, FALCON_JUNC_TEMP_CRIT,
LM87_REG_TEMP_HW_EXT, FALCON_JUNC_TEMP_CRIT,
0
};
static int efx_init_lm87(struct efx_nic *efx, const struct i2c_board_info *info,
const u8 *reg_values)
{
struct falcon_board *board = falcon_board(efx);
struct i2c_client *client = i2c_new_device(&board->i2c_adap, info);
int rc;
if (!client)
return -EIO;
/* Read-to-clear alarm/interrupt status */
i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1);
i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2);
rc = efx_poke_lm87(client, reg_values);
if (rc)
goto err;
rc = efx_poke_lm87(client, falcon_lm87_common_regs);
if (rc)
goto err;
board->hwmon_client = client;
return 0;
err:
i2c_unregister_device(client);
return rc;
}
static void efx_fini_lm87(struct efx_nic *efx)
{
i2c_unregister_device(falcon_board(efx)->hwmon_client);
}
static int efx_check_lm87(struct efx_nic *efx, unsigned mask)
{
struct i2c_client *client = falcon_board(efx)->hwmon_client;
bool temp_crit, elec_fault, is_failure;
u16 alarms;
s32 reg;
/* If link is up then do not monitor temperature */
if (EFX_WORKAROUND_7884(efx) && efx->link_state.up)
return 0;
reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS1);
if (reg < 0)
return reg;
alarms = reg;
reg = i2c_smbus_read_byte_data(client, LM87_REG_ALARMS2);
if (reg < 0)
return reg;
alarms |= reg << 8;
alarms &= mask;
temp_crit = false;
if (alarms & LM87_ALARM_TEMP_INT) {
reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_INT);
if (reg < 0)
return reg;
if (reg > FALCON_BOARD_TEMP_CRIT)
temp_crit = true;
}
if (alarms & LM87_ALARM_TEMP_EXT1) {
reg = i2c_smbus_read_byte_data(client, LM87_REG_TEMP_EXT1);
if (reg < 0)
return reg;
if (reg > FALCON_JUNC_TEMP_CRIT)
temp_crit = true;
}
elec_fault = alarms & ~(LM87_ALARM_TEMP_INT | LM87_ALARM_TEMP_EXT1);
is_failure = temp_crit || elec_fault;
if (alarms)
netif_err(efx, hw, efx->net_dev,
"LM87 detected a hardware %s (status %02x:%02x)"
"%s%s%s%s\n",
is_failure ? "failure" : "problem",
alarms & 0xff, alarms >> 8,
(alarms & LM87_ALARM_TEMP_INT) ?
"; board is overheating" : "",
(alarms & LM87_ALARM_TEMP_EXT1) ?
"; controller is overheating" : "",
temp_crit ? "; reached critical temperature" : "",
elec_fault ? "; electrical fault" : "");
return is_failure ? -ERANGE : 0;
}
#else /* !CONFIG_SENSORS_LM87 */
static inline int
efx_init_lm87(struct efx_nic *efx, const struct i2c_board_info *info,
const u8 *reg_values)
{
return 0;
}
static inline void efx_fini_lm87(struct efx_nic *efx)
{
}
static inline int efx_check_lm87(struct efx_nic *efx, unsigned mask)
{
return 0;
}
#endif /* CONFIG_SENSORS_LM87 */
/*****************************************************************************
* Support for the SFE4001 NIC.
*
* The SFE4001 does not power-up fully at reset due to its high power
* consumption. We control its power via a PCA9539 I/O expander.
* It also has a MAX6647 temperature monitor which we expose to
* the lm90 driver.
*
* This also provides minimal support for reflashing the PHY, which is
* initiated by resetting it with the FLASH_CFG_1 pin pulled down.
* On SFE4001 rev A2 and later this is connected to the 3V3X output of
* the IO-expander.
* We represent reflash mode as PHY_MODE_SPECIAL and make it mutually
* exclusive with the network device being open.
*/
/**************************************************************************
* Support for I2C IO Expander device on SFE4001
*/
#define PCA9539 0x74
#define P0_IN 0x00
#define P0_OUT 0x02
#define P0_INVERT 0x04
#define P0_CONFIG 0x06
#define P0_EN_1V0X_LBN 0
#define P0_EN_1V0X_WIDTH 1
#define P0_EN_1V2_LBN 1
#define P0_EN_1V2_WIDTH 1
#define P0_EN_2V5_LBN 2
#define P0_EN_2V5_WIDTH 1
#define P0_EN_3V3X_LBN 3
#define P0_EN_3V3X_WIDTH 1
#define P0_EN_5V_LBN 4
#define P0_EN_5V_WIDTH 1
#define P0_SHORTEN_JTAG_LBN 5
#define P0_SHORTEN_JTAG_WIDTH 1
#define P0_X_TRST_LBN 6
#define P0_X_TRST_WIDTH 1
#define P0_DSP_RESET_LBN 7
#define P0_DSP_RESET_WIDTH 1
#define P1_IN 0x01
#define P1_OUT 0x03
#define P1_INVERT 0x05
#define P1_CONFIG 0x07
#define P1_AFE_PWD_LBN 0
#define P1_AFE_PWD_WIDTH 1
#define P1_DSP_PWD25_LBN 1
#define P1_DSP_PWD25_WIDTH 1
#define P1_RESERVED_LBN 2
#define P1_RESERVED_WIDTH 2
#define P1_SPARE_LBN 4
#define P1_SPARE_WIDTH 4
/* Temperature Sensor */
#define MAX664X_REG_RSL 0x02
#define MAX664X_REG_WLHO 0x0B
static void sfe4001_poweroff(struct efx_nic *efx)
{
struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client;
struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client;
/* Turn off all power rails and disable outputs */
i2c_smbus_write_byte_data(ioexp_client, P0_OUT, 0xff);
i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG, 0xff);
i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0xff);
/* Clear any over-temperature alert */
i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL);
}
static int sfe4001_poweron(struct efx_nic *efx)
{
struct i2c_client *ioexp_client = falcon_board(efx)->ioexp_client;
struct i2c_client *hwmon_client = falcon_board(efx)->hwmon_client;
unsigned int i, j;
int rc;
u8 out;
/* Clear any previous over-temperature alert */
rc = i2c_smbus_read_byte_data(hwmon_client, MAX664X_REG_RSL);
if (rc < 0)
return rc;
/* Enable port 0 and port 1 outputs on IO expander */
rc = i2c_smbus_write_byte_data(ioexp_client, P0_CONFIG, 0x00);
if (rc)
return rc;
rc = i2c_smbus_write_byte_data(ioexp_client, P1_CONFIG,
0xff & ~(1 << P1_SPARE_LBN));
if (rc)
goto fail_on;
/* If PHY power is on, turn it all off and wait 1 second to
* ensure a full reset.
*/
rc = i2c_smbus_read_byte_data(ioexp_client, P0_OUT);
if (rc < 0)
goto fail_on;
out = 0xff & ~((0 << P0_EN_1V2_LBN) | (0 << P0_EN_2V5_LBN) |
(0 << P0_EN_3V3X_LBN) | (0 << P0_EN_5V_LBN) |
(0 << P0_EN_1V0X_LBN));
if (rc != out) {
netif_info(efx, hw, efx->net_dev, "power-cycling PHY\n");
rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out);
if (rc)
goto fail_on;
schedule_timeout_uninterruptible(HZ);
}
for (i = 0; i < 20; ++i) {
/* Turn on 1.2V, 2.5V, 3.3V and 5V power rails */
out = 0xff & ~((1 << P0_EN_1V2_LBN) | (1 << P0_EN_2V5_LBN) |
(1 << P0_EN_3V3X_LBN) | (1 << P0_EN_5V_LBN) |
(1 << P0_X_TRST_LBN));
if (efx->phy_mode & PHY_MODE_SPECIAL)
out |= 1 << P0_EN_3V3X_LBN;
rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out);
if (rc)
goto fail_on;
msleep(10);
/* Turn on 1V power rail */
out &= ~(1 << P0_EN_1V0X_LBN);
rc = i2c_smbus_write_byte_data(ioexp_client, P0_OUT, out);
if (rc)
goto fail_on;
netif_info(efx, hw, efx->net_dev,
"waiting for DSP boot (attempt %d)...\n", i);
/* In flash config mode, DSP does not turn on AFE, so
* just wait 1 second.
*/
if (efx->phy_mode & PHY_MODE_SPECIAL) {
schedule_timeout_uninterruptible(HZ);
return 0;
}
for (j = 0; j < 10; ++j) {
msleep(100);
/* Check DSP has asserted AFE power line */
rc = i2c_smbus_read_byte_data(ioexp_client, P1_IN);
if (rc < 0)
goto fail_on;
if (rc & (1 << P1_AFE_PWD_LBN))
return 0;
}
}
netif_info(efx, hw, efx->net_dev, "timed out waiting for DSP boot\n");
rc = -ETIMEDOUT;
fail_on:
sfe4001_poweroff(efx);
return rc;
}
static ssize_t show_phy_flash_cfg(struct device *dev,
struct device_attribute *attr, char *buf)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
return sprintf(buf, "%d\n", !!(efx->phy_mode & PHY_MODE_SPECIAL));
}
static ssize_t set_phy_flash_cfg(struct device *dev,
struct device_attribute *attr,
const char *buf, size_t count)
{
struct efx_nic *efx = pci_get_drvdata(to_pci_dev(dev));
enum efx_phy_mode old_mode, new_mode;
int err;
rtnl_lock();
old_mode = efx->phy_mode;
if (count == 0 || *buf == '0')
new_mode = old_mode & ~PHY_MODE_SPECIAL;
else
new_mode = PHY_MODE_SPECIAL;
if (!((old_mode ^ new_mode) & PHY_MODE_SPECIAL)) {
err = 0;
} else if (efx->state != STATE_RUNNING || netif_running(efx->net_dev)) {
err = -EBUSY;
} else {
/* Reset the PHY, reconfigure the MAC and enable/disable
* MAC stats accordingly. */
efx->phy_mode = new_mode;
if (new_mode & PHY_MODE_SPECIAL)
falcon_stop_nic_stats(efx);
err = sfe4001_poweron(efx);
if (!err)
err = efx_reconfigure_port(efx);
if (!(new_mode & PHY_MODE_SPECIAL))
falcon_start_nic_stats(efx);
}
rtnl_unlock();
return err ? err : count;
}
static DEVICE_ATTR(phy_flash_cfg, 0644, show_phy_flash_cfg, set_phy_flash_cfg);
static void sfe4001_fini(struct efx_nic *efx)
{
struct falcon_board *board = falcon_board(efx);
netif_info(efx, drv, efx->net_dev, "%s\n", __func__);
device_remove_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg);
sfe4001_poweroff(efx);
i2c_unregister_device(board->ioexp_client);
i2c_unregister_device(board->hwmon_client);
}
static int sfe4001_check_hw(struct efx_nic *efx)
{
struct falcon_nic_data *nic_data = efx->nic_data;
s32 status;
/* If XAUI link is up then do not monitor */
if (EFX_WORKAROUND_7884(efx) && !nic_data->xmac_poll_required)
return 0;
/* Check the powered status of the PHY. Lack of power implies that
* the MAX6647 has shut down power to it, probably due to a temp.
* alarm. Reading the power status rather than the MAX6647 status
* directly because the later is read-to-clear and would thus
* start to power up the PHY again when polled, causing us to blip
* the power undesirably.
* We know we can read from the IO expander because we did
* it during power-on. Assume failure now is bad news. */
status = i2c_smbus_read_byte_data(falcon_board(efx)->ioexp_client, P1_IN);
if (status >= 0 &&
(status & ((1 << P1_AFE_PWD_LBN) | (1 << P1_DSP_PWD25_LBN))) != 0)
return 0;
/* Use board power control, not PHY power control */
sfe4001_poweroff(efx);
efx->phy_mode = PHY_MODE_OFF;
return (status < 0) ? -EIO : -ERANGE;
}
static const struct i2c_board_info sfe4001_hwmon_info = {
I2C_BOARD_INFO("max6647", 0x4e),
};
/* This board uses an I2C expander to provider power to the PHY, which needs to
* be turned on before the PHY can be used.
* Context: Process context, rtnl lock held
*/
static int sfe4001_init(struct efx_nic *efx)
{
struct falcon_board *board = falcon_board(efx);
int rc;
#if defined(CONFIG_SENSORS_LM90) || defined(CONFIG_SENSORS_LM90_MODULE)
board->hwmon_client =
i2c_new_device(&board->i2c_adap, &sfe4001_hwmon_info);
#else
board->hwmon_client =
i2c_new_dummy(&board->i2c_adap, sfe4001_hwmon_info.addr);
#endif
if (!board->hwmon_client)
return -EIO;
/* Raise board/PHY high limit from 85 to 90 degrees Celsius */
rc = i2c_smbus_write_byte_data(board->hwmon_client,
MAX664X_REG_WLHO, 90);
if (rc)
goto fail_hwmon;
board->ioexp_client = i2c_new_dummy(&board->i2c_adap, PCA9539);
if (!board->ioexp_client) {
rc = -EIO;
goto fail_hwmon;
}
if (efx->phy_mode & PHY_MODE_SPECIAL) {
/* PHY won't generate a 156.25 MHz clock and MAC stats fetch
* will fail. */
falcon_stop_nic_stats(efx);
}
rc = sfe4001_poweron(efx);
if (rc)
goto fail_ioexp;
rc = device_create_file(&efx->pci_dev->dev, &dev_attr_phy_flash_cfg);
if (rc)
goto fail_on;
netif_info(efx, hw, efx->net_dev, "PHY is powered on\n");
return 0;
fail_on:
sfe4001_poweroff(efx);
fail_ioexp:
i2c_unregister_device(board->ioexp_client);
fail_hwmon:
i2c_unregister_device(board->hwmon_client);
return rc;
}
/*****************************************************************************
* Support for the SFE4002
*
*/
static u8 sfe4002_lm87_channel = 0x03; /* use AIN not FAN inputs */
static const u8 sfe4002_lm87_regs[] = {
LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */
LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */
LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */
LM87_IN_LIMITS(3, 0xac, 0xd4), /* 5V: 5.0V +/- 10% */
LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */
LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */
LM87_AIN_LIMITS(0, 0x98, 0xbb), /* AIN1: 1.66V +/- 10% */
LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */
LM87_TEMP_INT_LIMITS(0, 80 + FALCON_BOARD_TEMP_BIAS),
LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX),
0
};
static const struct i2c_board_info sfe4002_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfe4002_lm87_channel,
};
/****************************************************************************/
/* LED allocations. Note that on rev A0 boards the schematic and the reality
* differ: red and green are swapped. Below is the fixed (A1) layout (there
* are only 3 A0 boards in existence, so no real reason to make this
* conditional).
*/
#define SFE4002_FAULT_LED (2) /* Red */
#define SFE4002_RX_LED (0) /* Green */
#define SFE4002_TX_LED (1) /* Amber */
static void sfe4002_init_phy(struct efx_nic *efx)
{
/* Set the TX and RX LEDs to reflect status and activity, and the
* fault LED off */
falcon_qt202x_set_led(efx, SFE4002_TX_LED,
QUAKE_LED_TXLINK | QUAKE_LED_LINK_ACTSTAT);
falcon_qt202x_set_led(efx, SFE4002_RX_LED,
QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACTSTAT);
falcon_qt202x_set_led(efx, SFE4002_FAULT_LED, QUAKE_LED_OFF);
}
static void sfe4002_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
falcon_qt202x_set_led(
efx, SFE4002_FAULT_LED,
(mode == EFX_LED_ON) ? QUAKE_LED_ON : QUAKE_LED_OFF);
}
static int sfe4002_check_hw(struct efx_nic *efx)
{
struct falcon_board *board = falcon_board(efx);
/* A0 board rev. 4002s report a temperature fault the whole time
* (bad sensor) so we mask it out. */
unsigned alarm_mask =
(board->major == 0 && board->minor == 0) ?
~LM87_ALARM_TEMP_EXT1 : ~0;
return efx_check_lm87(efx, alarm_mask);
}
static int sfe4002_init(struct efx_nic *efx)
{
return efx_init_lm87(efx, &sfe4002_hwmon_info, sfe4002_lm87_regs);
}
/*****************************************************************************
* Support for the SFN4112F
*
*/
static u8 sfn4112f_lm87_channel = 0x03; /* use AIN not FAN inputs */
static const u8 sfn4112f_lm87_regs[] = {
LM87_IN_LIMITS(0, 0x7c, 0x99), /* 2.5V: 1.8V +/- 10% */
LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */
LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */
LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */
LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */
LM87_AIN_LIMITS(1, 0x8a, 0xa9), /* AIN2: 1.5V +/- 10% */
LM87_TEMP_INT_LIMITS(0, 60 + FALCON_BOARD_TEMP_BIAS),
LM87_TEMP_EXT1_LIMITS(0, FALCON_JUNC_TEMP_MAX),
0
};
static const struct i2c_board_info sfn4112f_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfn4112f_lm87_channel,
};
#define SFN4112F_ACT_LED 0
#define SFN4112F_LINK_LED 1
static void sfn4112f_init_phy(struct efx_nic *efx)
{
falcon_qt202x_set_led(efx, SFN4112F_ACT_LED,
QUAKE_LED_RXLINK | QUAKE_LED_LINK_ACT);
falcon_qt202x_set_led(efx, SFN4112F_LINK_LED,
QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT);
}
static void sfn4112f_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
int reg;
switch (mode) {
case EFX_LED_OFF:
reg = QUAKE_LED_OFF;
break;
case EFX_LED_ON:
reg = QUAKE_LED_ON;
break;
default:
reg = QUAKE_LED_RXLINK | QUAKE_LED_LINK_STAT;
break;
}
falcon_qt202x_set_led(efx, SFN4112F_LINK_LED, reg);
}
static int sfn4112f_check_hw(struct efx_nic *efx)
{
/* Mask out unused sensors */
return efx_check_lm87(efx, ~0x48);
}
static int sfn4112f_init(struct efx_nic *efx)
{
return efx_init_lm87(efx, &sfn4112f_hwmon_info, sfn4112f_lm87_regs);
}
/*****************************************************************************
* Support for the SFE4003
*
*/
static u8 sfe4003_lm87_channel = 0x03; /* use AIN not FAN inputs */
static const u8 sfe4003_lm87_regs[] = {
LM87_IN_LIMITS(0, 0x67, 0x7f), /* 2.5V: 1.5V +/- 10% */
LM87_IN_LIMITS(1, 0x4c, 0x5e), /* Vccp1: 1.2V +/- 10% */
LM87_IN_LIMITS(2, 0xac, 0xd4), /* 3.3V: 3.3V +/- 10% */
LM87_IN_LIMITS(4, 0xac, 0xe0), /* 12V: 10.8-14V */
LM87_IN_LIMITS(5, 0x3f, 0x4f), /* Vccp2: 1.0V +/- 10% */
LM87_TEMP_INT_LIMITS(0, 70 + FALCON_BOARD_TEMP_BIAS),
0
};
static const struct i2c_board_info sfe4003_hwmon_info = {
I2C_BOARD_INFO("lm87", 0x2e),
.platform_data = &sfe4003_lm87_channel,
};
/* Board-specific LED info. */
#define SFE4003_RED_LED_GPIO 11
#define SFE4003_LED_ON 1
#define SFE4003_LED_OFF 0
static void sfe4003_set_id_led(struct efx_nic *efx, enum efx_led_mode mode)
{
struct falcon_board *board = falcon_board(efx);
/* The LEDs were not wired to GPIOs before A3 */
if (board->minor < 3 && board->major == 0)
return;
falcon_txc_set_gpio_val(
efx, SFE4003_RED_LED_GPIO,
(mode == EFX_LED_ON) ? SFE4003_LED_ON : SFE4003_LED_OFF);
}
static void sfe4003_init_phy(struct efx_nic *efx)
{
struct falcon_board *board = falcon_board(efx);
/* The LEDs were not wired to GPIOs before A3 */
if (board->minor < 3 && board->major == 0)
return;
falcon_txc_set_gpio_dir(efx, SFE4003_RED_LED_GPIO, TXC_GPIO_DIR_OUTPUT);
falcon_txc_set_gpio_val(efx, SFE4003_RED_LED_GPIO, SFE4003_LED_OFF);
}
static int sfe4003_check_hw(struct efx_nic *efx)
{
struct falcon_board *board = falcon_board(efx);
/* A0/A1/A2 board rev. 4003s report a temperature fault the whole time
* (bad sensor) so we mask it out. */
unsigned alarm_mask =
(board->major == 0 && board->minor <= 2) ?
~LM87_ALARM_TEMP_EXT1 : ~0;
return efx_check_lm87(efx, alarm_mask);
}
static int sfe4003_init(struct efx_nic *efx)
{
return efx_init_lm87(efx, &sfe4003_hwmon_info, sfe4003_lm87_regs);
}
static const struct falcon_board_type board_types[] = {
{
.id = FALCON_BOARD_SFE4001,
.ref_model = "SFE4001",
.gen_type = "10GBASE-T adapter",
.init = sfe4001_init,
.init_phy = efx_port_dummy_op_void,
.fini = sfe4001_fini,
.set_id_led = tenxpress_set_id_led,
.monitor = sfe4001_check_hw,
},
{
.id = FALCON_BOARD_SFE4002,
.ref_model = "SFE4002",
.gen_type = "XFP adapter",
.init = sfe4002_init,
.init_phy = sfe4002_init_phy,
.fini = efx_fini_lm87,
.set_id_led = sfe4002_set_id_led,
.monitor = sfe4002_check_hw,
},
{
.id = FALCON_BOARD_SFE4003,
.ref_model = "SFE4003",
.gen_type = "10GBASE-CX4 adapter",
.init = sfe4003_init,
.init_phy = sfe4003_init_phy,
.fini = efx_fini_lm87,
.set_id_led = sfe4003_set_id_led,
.monitor = sfe4003_check_hw,
},
{
.id = FALCON_BOARD_SFN4112F,
.ref_model = "SFN4112F",
.gen_type = "SFP+ adapter",
.init = sfn4112f_init,
.init_phy = sfn4112f_init_phy,
.fini = efx_fini_lm87,
.set_id_led = sfn4112f_set_id_led,
.monitor = sfn4112f_check_hw,
},
};
int falcon_probe_board(struct efx_nic *efx, u16 revision_info)
{
struct falcon_board *board = falcon_board(efx);
u8 type_id = FALCON_BOARD_TYPE(revision_info);
int i;
board->major = FALCON_BOARD_MAJOR(revision_info);
board->minor = FALCON_BOARD_MINOR(revision_info);
for (i = 0; i < ARRAY_SIZE(board_types); i++)
if (board_types[i].id == type_id)
board->type = &board_types[i];
if (board->type) {
netif_info(efx, probe, efx->net_dev, "board is %s rev %c%d\n",
(efx->pci_dev->subsystem_vendor ==
PCI_VENDOR_ID_SOLARFLARE)
? board->type->ref_model : board->type->gen_type,
'A' + board->major, board->minor);
return 0;
} else {
netif_err(efx, probe, efx->net_dev, "unknown board type %d\n",
type_id);
return -ENODEV;
}
}