170 lines
5.3 KiB
C
170 lines
5.3 KiB
C
/*
|
|
* lppaca.h
|
|
* Copyright (C) 2001 Mike Corrigan IBM Corporation
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
#ifndef _ASM_POWERPC_LPPACA_H
|
|
#define _ASM_POWERPC_LPPACA_H
|
|
#ifdef __KERNEL__
|
|
|
|
/*
|
|
* These definitions relate to hypervisors that only exist when using
|
|
* a server type processor
|
|
*/
|
|
#ifdef CONFIG_PPC_BOOK3S
|
|
|
|
/*
|
|
* This control block contains the data that is shared between the
|
|
* hypervisor and the OS.
|
|
*/
|
|
#include <linux/cache.h>
|
|
#include <linux/threads.h>
|
|
#include <asm/types.h>
|
|
#include <asm/mmu.h>
|
|
#include <asm/firmware.h>
|
|
|
|
/*
|
|
* The lppaca is the "virtual processor area" registered with the hypervisor,
|
|
* H_REGISTER_VPA etc.
|
|
*
|
|
* According to PAPR, the structure is 640 bytes long, must be L1 cache line
|
|
* aligned, and must not cross a 4kB boundary. Its size field must be at
|
|
* least 640 bytes (but may be more).
|
|
*
|
|
* Pre-v4.14 KVM hypervisors reject the VPA if its size field is smaller than
|
|
* 1kB, so we dynamically allocate 1kB and advertise size as 1kB, but keep
|
|
* this structure as the canonical 640 byte size.
|
|
*/
|
|
struct lppaca {
|
|
/* cacheline 1 contains read-only data */
|
|
|
|
__be32 desc; /* Eye catcher 0xD397D781 */
|
|
__be16 size; /* Size of this struct */
|
|
u8 reserved1[3];
|
|
u8 __old_status; /* Old status, including shared proc */
|
|
u8 reserved3[14];
|
|
volatile __be32 dyn_hw_node_id; /* Dynamic hardware node id */
|
|
volatile __be32 dyn_hw_proc_id; /* Dynamic hardware proc id */
|
|
u8 reserved4[56];
|
|
volatile u8 vphn_assoc_counts[8]; /* Virtual processor home node */
|
|
/* associativity change counters */
|
|
u8 reserved5[32];
|
|
|
|
/* cacheline 2 contains local read-write data */
|
|
|
|
u8 reserved6[48];
|
|
u8 cede_latency_hint;
|
|
u8 ebb_regs_in_use;
|
|
u8 reserved7[6];
|
|
u8 dtl_enable_mask; /* Dispatch Trace Log mask */
|
|
u8 donate_dedicated_cpu; /* Donate dedicated CPU cycles */
|
|
u8 fpregs_in_use;
|
|
u8 pmcregs_in_use;
|
|
u8 reserved8[28];
|
|
__be64 wait_state_cycles; /* Wait cycles for this proc */
|
|
u8 reserved9[28];
|
|
__be16 slb_count; /* # of SLBs to maintain */
|
|
u8 idle; /* Indicate OS is idle */
|
|
u8 vmxregs_in_use;
|
|
|
|
/* cacheline 3 is shared with other processors */
|
|
|
|
/*
|
|
* This is the yield_count. An "odd" value (low bit on) means that
|
|
* the processor is yielded (either because of an OS yield or a
|
|
* hypervisor preempt). An even value implies that the processor is
|
|
* currently executing.
|
|
* NOTE: Even dedicated processor partitions can yield so this
|
|
* field cannot be used to determine if we are shared or dedicated.
|
|
*/
|
|
volatile __be32 yield_count;
|
|
volatile __be32 dispersion_count; /* dispatch changed physical cpu */
|
|
volatile __be64 cmo_faults; /* CMO page fault count */
|
|
volatile __be64 cmo_fault_time; /* CMO page fault time */
|
|
u8 reserved10[104];
|
|
|
|
/* cacheline 4-5 */
|
|
|
|
__be32 page_ins; /* CMO Hint - # page ins by OS */
|
|
u8 reserved11[148];
|
|
volatile __be64 dtl_idx; /* Dispatch Trace Log head index */
|
|
u8 reserved12[96];
|
|
} ____cacheline_aligned;
|
|
|
|
#define lppaca_of(cpu) (*paca_ptrs[cpu]->lppaca_ptr)
|
|
|
|
/*
|
|
* We are using a non architected field to determine if a partition is
|
|
* shared or dedicated. This currently works on both KVM and PHYP, but
|
|
* we will have to transition to something better.
|
|
*/
|
|
#define LPPACA_OLD_SHARED_PROC 2
|
|
|
|
static inline bool lppaca_shared_proc(struct lppaca *l)
|
|
{
|
|
if (!firmware_has_feature(FW_FEATURE_SPLPAR))
|
|
return false;
|
|
return !!(l->__old_status & LPPACA_OLD_SHARED_PROC);
|
|
}
|
|
|
|
/*
|
|
* SLB shadow buffer structure as defined in the PAPR. The save_area
|
|
* contains adjacent ESID and VSID pairs for each shadowed SLB. The
|
|
* ESID is stored in the lower 64bits, then the VSID.
|
|
*/
|
|
struct slb_shadow {
|
|
__be32 persistent; /* Number of persistent SLBs */
|
|
__be32 buffer_length; /* Total shadow buffer length */
|
|
__be64 reserved;
|
|
struct {
|
|
__be64 esid;
|
|
__be64 vsid;
|
|
} save_area[SLB_NUM_BOLTED];
|
|
} ____cacheline_aligned;
|
|
|
|
/*
|
|
* Layout of entries in the hypervisor's dispatch trace log buffer.
|
|
*/
|
|
struct dtl_entry {
|
|
u8 dispatch_reason;
|
|
u8 preempt_reason;
|
|
__be16 processor_id;
|
|
__be32 enqueue_to_dispatch_time;
|
|
__be32 ready_to_enqueue_time;
|
|
__be32 waiting_to_ready_time;
|
|
__be64 timebase;
|
|
__be64 fault_addr;
|
|
__be64 srr0;
|
|
__be64 srr1;
|
|
};
|
|
|
|
#define DISPATCH_LOG_BYTES 4096 /* bytes per cpu */
|
|
#define N_DISPATCH_LOG (DISPATCH_LOG_BYTES / sizeof(struct dtl_entry))
|
|
|
|
extern struct kmem_cache *dtl_cache;
|
|
|
|
/*
|
|
* When CONFIG_VIRT_CPU_ACCOUNTING_NATIVE = y, the cpu accounting code controls
|
|
* reading from the dispatch trace log. If other code wants to consume
|
|
* DTL entries, it can set this pointer to a function that will get
|
|
* called once for each DTL entry that gets processed.
|
|
*/
|
|
extern void (*dtl_consumer)(struct dtl_entry *entry, u64 index);
|
|
|
|
#endif /* CONFIG_PPC_BOOK3S */
|
|
#endif /* __KERNEL__ */
|
|
#endif /* _ASM_POWERPC_LPPACA_H */
|