OpenCloudOS-Kernel/arch/arm/mm/cache-l2x0.c

1700 lines
46 KiB
C

/*
* arch/arm/mm/cache-l2x0.c - L210/L220/L310 cache controller support
*
* Copyright (C) 2007 ARM Limited
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
#include <linux/cpu.h>
#include <linux/err.h>
#include <linux/init.h>
#include <linux/smp.h>
#include <linux/spinlock.h>
#include <linux/log2.h>
#include <linux/io.h>
#include <linux/of.h>
#include <linux/of_address.h>
#include <asm/cacheflush.h>
#include <asm/cp15.h>
#include <asm/cputype.h>
#include <asm/hardware/cache-l2x0.h>
#include "cache-tauros3.h"
#include "cache-aurora-l2.h"
struct l2c_init_data {
const char *type;
unsigned way_size_0;
unsigned num_lock;
void (*of_parse)(const struct device_node *, u32 *, u32 *);
void (*enable)(void __iomem *, u32, unsigned);
void (*fixup)(void __iomem *, u32, struct outer_cache_fns *);
void (*save)(void __iomem *);
void (*configure)(void __iomem *);
struct outer_cache_fns outer_cache;
};
#define CACHE_LINE_SIZE 32
static void __iomem *l2x0_base;
static const struct l2c_init_data *l2x0_data;
static DEFINE_RAW_SPINLOCK(l2x0_lock);
static u32 l2x0_way_mask; /* Bitmask of active ways */
static u32 l2x0_size;
static unsigned long sync_reg_offset = L2X0_CACHE_SYNC;
struct l2x0_regs l2x0_saved_regs;
/*
* Common code for all cache controllers.
*/
static inline void l2c_wait_mask(void __iomem *reg, unsigned long mask)
{
/* wait for cache operation by line or way to complete */
while (readl_relaxed(reg) & mask)
cpu_relax();
}
/*
* By default, we write directly to secure registers. Platforms must
* override this if they are running non-secure.
*/
static void l2c_write_sec(unsigned long val, void __iomem *base, unsigned reg)
{
if (val == readl_relaxed(base + reg))
return;
if (outer_cache.write_sec)
outer_cache.write_sec(val, reg);
else
writel_relaxed(val, base + reg);
}
/*
* This should only be called when we have a requirement that the
* register be written due to a work-around, as platforms running
* in non-secure mode may not be able to access this register.
*/
static inline void l2c_set_debug(void __iomem *base, unsigned long val)
{
l2c_write_sec(val, base, L2X0_DEBUG_CTRL);
}
static void __l2c_op_way(void __iomem *reg)
{
writel_relaxed(l2x0_way_mask, reg);
l2c_wait_mask(reg, l2x0_way_mask);
}
static inline void l2c_unlock(void __iomem *base, unsigned num)
{
unsigned i;
for (i = 0; i < num; i++) {
writel_relaxed(0, base + L2X0_LOCKDOWN_WAY_D_BASE +
i * L2X0_LOCKDOWN_STRIDE);
writel_relaxed(0, base + L2X0_LOCKDOWN_WAY_I_BASE +
i * L2X0_LOCKDOWN_STRIDE);
}
}
static void l2c_configure(void __iomem *base)
{
if (outer_cache.configure) {
outer_cache.configure(&l2x0_saved_regs);
return;
}
if (l2x0_data->configure)
l2x0_data->configure(base);
l2c_write_sec(l2x0_saved_regs.aux_ctrl, base, L2X0_AUX_CTRL);
}
/*
* Enable the L2 cache controller. This function must only be
* called when the cache controller is known to be disabled.
*/
static void l2c_enable(void __iomem *base, u32 aux, unsigned num_lock)
{
unsigned long flags;
/* Do not touch the controller if already enabled. */
if (readl_relaxed(base + L2X0_CTRL) & L2X0_CTRL_EN)
return;
l2x0_saved_regs.aux_ctrl = aux;
l2c_configure(base);
l2c_unlock(base, num_lock);
local_irq_save(flags);
__l2c_op_way(base + L2X0_INV_WAY);
writel_relaxed(0, base + sync_reg_offset);
l2c_wait_mask(base + sync_reg_offset, 1);
local_irq_restore(flags);
l2c_write_sec(L2X0_CTRL_EN, base, L2X0_CTRL);
}
static void l2c_disable(void)
{
void __iomem *base = l2x0_base;
outer_cache.flush_all();
l2c_write_sec(0, base, L2X0_CTRL);
dsb(st);
}
static void l2c_save(void __iomem *base)
{
l2x0_saved_regs.aux_ctrl = readl_relaxed(l2x0_base + L2X0_AUX_CTRL);
}
static void l2c_resume(void)
{
l2c_enable(l2x0_base, l2x0_saved_regs.aux_ctrl, l2x0_data->num_lock);
}
/*
* L2C-210 specific code.
*
* The L2C-2x0 PA, set/way and sync operations are atomic, but we must
* ensure that no background operation is running. The way operations
* are all background tasks.
*
* While a background operation is in progress, any new operation is
* ignored (unspecified whether this causes an error.) Thankfully, not
* used on SMP.
*
* Never has a different sync register other than L2X0_CACHE_SYNC, but
* we use sync_reg_offset here so we can share some of this with L2C-310.
*/
static void __l2c210_cache_sync(void __iomem *base)
{
writel_relaxed(0, base + sync_reg_offset);
}
static void __l2c210_op_pa_range(void __iomem *reg, unsigned long start,
unsigned long end)
{
while (start < end) {
writel_relaxed(start, reg);
start += CACHE_LINE_SIZE;
}
}
static void l2c210_inv_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
if (start & (CACHE_LINE_SIZE - 1)) {
start &= ~(CACHE_LINE_SIZE - 1);
writel_relaxed(start, base + L2X0_CLEAN_INV_LINE_PA);
start += CACHE_LINE_SIZE;
}
if (end & (CACHE_LINE_SIZE - 1)) {
end &= ~(CACHE_LINE_SIZE - 1);
writel_relaxed(end, base + L2X0_CLEAN_INV_LINE_PA);
}
__l2c210_op_pa_range(base + L2X0_INV_LINE_PA, start, end);
__l2c210_cache_sync(base);
}
static void l2c210_clean_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
start &= ~(CACHE_LINE_SIZE - 1);
__l2c210_op_pa_range(base + L2X0_CLEAN_LINE_PA, start, end);
__l2c210_cache_sync(base);
}
static void l2c210_flush_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
start &= ~(CACHE_LINE_SIZE - 1);
__l2c210_op_pa_range(base + L2X0_CLEAN_INV_LINE_PA, start, end);
__l2c210_cache_sync(base);
}
static void l2c210_flush_all(void)
{
void __iomem *base = l2x0_base;
BUG_ON(!irqs_disabled());
__l2c_op_way(base + L2X0_CLEAN_INV_WAY);
__l2c210_cache_sync(base);
}
static void l2c210_sync(void)
{
__l2c210_cache_sync(l2x0_base);
}
static const struct l2c_init_data l2c210_data __initconst = {
.type = "L2C-210",
.way_size_0 = SZ_8K,
.num_lock = 1,
.enable = l2c_enable,
.save = l2c_save,
.outer_cache = {
.inv_range = l2c210_inv_range,
.clean_range = l2c210_clean_range,
.flush_range = l2c210_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c_disable,
.sync = l2c210_sync,
.resume = l2c_resume,
},
};
/*
* L2C-220 specific code.
*
* All operations are background operations: they have to be waited for.
* Conflicting requests generate a slave error (which will cause an
* imprecise abort.) Never uses sync_reg_offset, so we hard-code the
* sync register here.
*
* However, we can re-use the l2c210_resume call.
*/
static inline void __l2c220_cache_sync(void __iomem *base)
{
writel_relaxed(0, base + L2X0_CACHE_SYNC);
l2c_wait_mask(base + L2X0_CACHE_SYNC, 1);
}
static void l2c220_op_way(void __iomem *base, unsigned reg)
{
unsigned long flags;
raw_spin_lock_irqsave(&l2x0_lock, flags);
__l2c_op_way(base + reg);
__l2c220_cache_sync(base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static unsigned long l2c220_op_pa_range(void __iomem *reg, unsigned long start,
unsigned long end, unsigned long flags)
{
raw_spinlock_t *lock = &l2x0_lock;
while (start < end) {
unsigned long blk_end = start + min(end - start, 4096UL);
while (start < blk_end) {
l2c_wait_mask(reg, 1);
writel_relaxed(start, reg);
start += CACHE_LINE_SIZE;
}
if (blk_end < end) {
raw_spin_unlock_irqrestore(lock, flags);
raw_spin_lock_irqsave(lock, flags);
}
}
return flags;
}
static void l2c220_inv_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
unsigned long flags;
raw_spin_lock_irqsave(&l2x0_lock, flags);
if ((start | end) & (CACHE_LINE_SIZE - 1)) {
if (start & (CACHE_LINE_SIZE - 1)) {
start &= ~(CACHE_LINE_SIZE - 1);
writel_relaxed(start, base + L2X0_CLEAN_INV_LINE_PA);
start += CACHE_LINE_SIZE;
}
if (end & (CACHE_LINE_SIZE - 1)) {
end &= ~(CACHE_LINE_SIZE - 1);
l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1);
writel_relaxed(end, base + L2X0_CLEAN_INV_LINE_PA);
}
}
flags = l2c220_op_pa_range(base + L2X0_INV_LINE_PA,
start, end, flags);
l2c_wait_mask(base + L2X0_INV_LINE_PA, 1);
__l2c220_cache_sync(base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void l2c220_clean_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
unsigned long flags;
start &= ~(CACHE_LINE_SIZE - 1);
if ((end - start) >= l2x0_size) {
l2c220_op_way(base, L2X0_CLEAN_WAY);
return;
}
raw_spin_lock_irqsave(&l2x0_lock, flags);
flags = l2c220_op_pa_range(base + L2X0_CLEAN_LINE_PA,
start, end, flags);
l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1);
__l2c220_cache_sync(base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void l2c220_flush_range(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
unsigned long flags;
start &= ~(CACHE_LINE_SIZE - 1);
if ((end - start) >= l2x0_size) {
l2c220_op_way(base, L2X0_CLEAN_INV_WAY);
return;
}
raw_spin_lock_irqsave(&l2x0_lock, flags);
flags = l2c220_op_pa_range(base + L2X0_CLEAN_INV_LINE_PA,
start, end, flags);
l2c_wait_mask(base + L2X0_CLEAN_INV_LINE_PA, 1);
__l2c220_cache_sync(base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void l2c220_flush_all(void)
{
l2c220_op_way(l2x0_base, L2X0_CLEAN_INV_WAY);
}
static void l2c220_sync(void)
{
unsigned long flags;
raw_spin_lock_irqsave(&l2x0_lock, flags);
__l2c220_cache_sync(l2x0_base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void l2c220_enable(void __iomem *base, u32 aux, unsigned num_lock)
{
/*
* Always enable non-secure access to the lockdown registers -
* we write to them as part of the L2C enable sequence so they
* need to be accessible.
*/
aux |= L220_AUX_CTRL_NS_LOCKDOWN;
l2c_enable(base, aux, num_lock);
}
static const struct l2c_init_data l2c220_data = {
.type = "L2C-220",
.way_size_0 = SZ_8K,
.num_lock = 1,
.enable = l2c220_enable,
.save = l2c_save,
.outer_cache = {
.inv_range = l2c220_inv_range,
.clean_range = l2c220_clean_range,
.flush_range = l2c220_flush_range,
.flush_all = l2c220_flush_all,
.disable = l2c_disable,
.sync = l2c220_sync,
.resume = l2c_resume,
},
};
/*
* L2C-310 specific code.
*
* Very similar to L2C-210, the PA, set/way and sync operations are atomic,
* and the way operations are all background tasks. However, issuing an
* operation while a background operation is in progress results in a
* SLVERR response. We can reuse:
*
* __l2c210_cache_sync (using sync_reg_offset)
* l2c210_sync
* l2c210_inv_range (if 588369 is not applicable)
* l2c210_clean_range
* l2c210_flush_range (if 588369 is not applicable)
* l2c210_flush_all (if 727915 is not applicable)
*
* Errata:
* 588369: PL310 R0P0->R1P0, fixed R2P0.
* Affects: all clean+invalidate operations
* clean and invalidate skips the invalidate step, so we need to issue
* separate operations. We also require the above debug workaround
* enclosing this code fragment on affected parts. On unaffected parts,
* we must not use this workaround without the debug register writes
* to avoid exposing a problem similar to 727915.
*
* 727915: PL310 R2P0->R3P0, fixed R3P1.
* Affects: clean+invalidate by way
* clean and invalidate by way runs in the background, and a store can
* hit the line between the clean operation and invalidate operation,
* resulting in the store being lost.
*
* 752271: PL310 R3P0->R3P1-50REL0, fixed R3P2.
* Affects: 8x64-bit (double fill) line fetches
* double fill line fetches can fail to cause dirty data to be evicted
* from the cache before the new data overwrites the second line.
*
* 753970: PL310 R3P0, fixed R3P1.
* Affects: sync
* prevents merging writes after the sync operation, until another L2C
* operation is performed (or a number of other conditions.)
*
* 769419: PL310 R0P0->R3P1, fixed R3P2.
* Affects: store buffer
* store buffer is not automatically drained.
*/
static void l2c310_inv_range_erratum(unsigned long start, unsigned long end)
{
void __iomem *base = l2x0_base;
if ((start | end) & (CACHE_LINE_SIZE - 1)) {
unsigned long flags;
/* Erratum 588369 for both clean+invalidate operations */
raw_spin_lock_irqsave(&l2x0_lock, flags);
l2c_set_debug(base, 0x03);
if (start & (CACHE_LINE_SIZE - 1)) {
start &= ~(CACHE_LINE_SIZE - 1);
writel_relaxed(start, base + L2X0_CLEAN_LINE_PA);
writel_relaxed(start, base + L2X0_INV_LINE_PA);
start += CACHE_LINE_SIZE;
}
if (end & (CACHE_LINE_SIZE - 1)) {
end &= ~(CACHE_LINE_SIZE - 1);
writel_relaxed(end, base + L2X0_CLEAN_LINE_PA);
writel_relaxed(end, base + L2X0_INV_LINE_PA);
}
l2c_set_debug(base, 0x00);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
__l2c210_op_pa_range(base + L2X0_INV_LINE_PA, start, end);
__l2c210_cache_sync(base);
}
static void l2c310_flush_range_erratum(unsigned long start, unsigned long end)
{
raw_spinlock_t *lock = &l2x0_lock;
unsigned long flags;
void __iomem *base = l2x0_base;
raw_spin_lock_irqsave(lock, flags);
while (start < end) {
unsigned long blk_end = start + min(end - start, 4096UL);
l2c_set_debug(base, 0x03);
while (start < blk_end) {
writel_relaxed(start, base + L2X0_CLEAN_LINE_PA);
writel_relaxed(start, base + L2X0_INV_LINE_PA);
start += CACHE_LINE_SIZE;
}
l2c_set_debug(base, 0x00);
if (blk_end < end) {
raw_spin_unlock_irqrestore(lock, flags);
raw_spin_lock_irqsave(lock, flags);
}
}
raw_spin_unlock_irqrestore(lock, flags);
__l2c210_cache_sync(base);
}
static void l2c310_flush_all_erratum(void)
{
void __iomem *base = l2x0_base;
unsigned long flags;
raw_spin_lock_irqsave(&l2x0_lock, flags);
l2c_set_debug(base, 0x03);
__l2c_op_way(base + L2X0_CLEAN_INV_WAY);
l2c_set_debug(base, 0x00);
__l2c210_cache_sync(base);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void __init l2c310_save(void __iomem *base)
{
unsigned revision;
l2c_save(base);
l2x0_saved_regs.tag_latency = readl_relaxed(base +
L310_TAG_LATENCY_CTRL);
l2x0_saved_regs.data_latency = readl_relaxed(base +
L310_DATA_LATENCY_CTRL);
l2x0_saved_regs.filter_end = readl_relaxed(base +
L310_ADDR_FILTER_END);
l2x0_saved_regs.filter_start = readl_relaxed(base +
L310_ADDR_FILTER_START);
revision = readl_relaxed(base + L2X0_CACHE_ID) &
L2X0_CACHE_ID_RTL_MASK;
/* From r2p0, there is Prefetch offset/control register */
if (revision >= L310_CACHE_ID_RTL_R2P0)
l2x0_saved_regs.prefetch_ctrl = readl_relaxed(base +
L310_PREFETCH_CTRL);
/* From r3p0, there is Power control register */
if (revision >= L310_CACHE_ID_RTL_R3P0)
l2x0_saved_regs.pwr_ctrl = readl_relaxed(base +
L310_POWER_CTRL);
}
static void l2c310_configure(void __iomem *base)
{
unsigned revision;
/* restore pl310 setup */
l2c_write_sec(l2x0_saved_regs.tag_latency, base,
L310_TAG_LATENCY_CTRL);
l2c_write_sec(l2x0_saved_regs.data_latency, base,
L310_DATA_LATENCY_CTRL);
l2c_write_sec(l2x0_saved_regs.filter_end, base,
L310_ADDR_FILTER_END);
l2c_write_sec(l2x0_saved_regs.filter_start, base,
L310_ADDR_FILTER_START);
revision = readl_relaxed(base + L2X0_CACHE_ID) &
L2X0_CACHE_ID_RTL_MASK;
if (revision >= L310_CACHE_ID_RTL_R2P0)
l2c_write_sec(l2x0_saved_regs.prefetch_ctrl, base,
L310_PREFETCH_CTRL);
if (revision >= L310_CACHE_ID_RTL_R3P0)
l2c_write_sec(l2x0_saved_regs.pwr_ctrl, base,
L310_POWER_CTRL);
}
static int l2c310_cpu_enable_flz(struct notifier_block *nb, unsigned long act, void *data)
{
switch (act & ~CPU_TASKS_FROZEN) {
case CPU_STARTING:
set_auxcr(get_auxcr() | BIT(3) | BIT(2) | BIT(1));
break;
case CPU_DYING:
set_auxcr(get_auxcr() & ~(BIT(3) | BIT(2) | BIT(1)));
break;
}
return NOTIFY_OK;
}
static void __init l2c310_enable(void __iomem *base, u32 aux, unsigned num_lock)
{
unsigned rev = readl_relaxed(base + L2X0_CACHE_ID) & L2X0_CACHE_ID_RTL_MASK;
bool cortex_a9 = read_cpuid_part() == ARM_CPU_PART_CORTEX_A9;
if (rev >= L310_CACHE_ID_RTL_R2P0) {
if (cortex_a9) {
aux |= L310_AUX_CTRL_EARLY_BRESP;
pr_info("L2C-310 enabling early BRESP for Cortex-A9\n");
} else if (aux & L310_AUX_CTRL_EARLY_BRESP) {
pr_warn("L2C-310 early BRESP only supported with Cortex-A9\n");
aux &= ~L310_AUX_CTRL_EARLY_BRESP;
}
}
if (cortex_a9) {
u32 aux_cur = readl_relaxed(base + L2X0_AUX_CTRL);
u32 acr = get_auxcr();
pr_debug("Cortex-A9 ACR=0x%08x\n", acr);
if (acr & BIT(3) && !(aux_cur & L310_AUX_CTRL_FULL_LINE_ZERO))
pr_err("L2C-310: full line of zeros enabled in Cortex-A9 but not L2C-310 - invalid\n");
if (aux & L310_AUX_CTRL_FULL_LINE_ZERO && !(acr & BIT(3)))
pr_err("L2C-310: enabling full line of zeros but not enabled in Cortex-A9\n");
if (!(aux & L310_AUX_CTRL_FULL_LINE_ZERO) && !outer_cache.write_sec) {
aux |= L310_AUX_CTRL_FULL_LINE_ZERO;
pr_info("L2C-310 full line of zeros enabled for Cortex-A9\n");
}
} else if (aux & (L310_AUX_CTRL_FULL_LINE_ZERO | L310_AUX_CTRL_EARLY_BRESP)) {
pr_err("L2C-310: disabling Cortex-A9 specific feature bits\n");
aux &= ~(L310_AUX_CTRL_FULL_LINE_ZERO | L310_AUX_CTRL_EARLY_BRESP);
}
/* r3p0 or later has power control register */
if (rev >= L310_CACHE_ID_RTL_R3P0)
l2x0_saved_regs.pwr_ctrl = L310_DYNAMIC_CLK_GATING_EN |
L310_STNDBY_MODE_EN;
/*
* Always enable non-secure access to the lockdown registers -
* we write to them as part of the L2C enable sequence so they
* need to be accessible.
*/
aux |= L310_AUX_CTRL_NS_LOCKDOWN;
l2c_enable(base, aux, num_lock);
/* Read back resulting AUX_CTRL value as it could have been altered. */
aux = readl_relaxed(base + L2X0_AUX_CTRL);
if (aux & (L310_AUX_CTRL_DATA_PREFETCH | L310_AUX_CTRL_INSTR_PREFETCH)) {
u32 prefetch = readl_relaxed(base + L310_PREFETCH_CTRL);
pr_info("L2C-310 %s%s prefetch enabled, offset %u lines\n",
aux & L310_AUX_CTRL_INSTR_PREFETCH ? "I" : "",
aux & L310_AUX_CTRL_DATA_PREFETCH ? "D" : "",
1 + (prefetch & L310_PREFETCH_CTRL_OFFSET_MASK));
}
/* r3p0 or later has power control register */
if (rev >= L310_CACHE_ID_RTL_R3P0) {
u32 power_ctrl;
power_ctrl = readl_relaxed(base + L310_POWER_CTRL);
pr_info("L2C-310 dynamic clock gating %sabled, standby mode %sabled\n",
power_ctrl & L310_DYNAMIC_CLK_GATING_EN ? "en" : "dis",
power_ctrl & L310_STNDBY_MODE_EN ? "en" : "dis");
}
if (aux & L310_AUX_CTRL_FULL_LINE_ZERO) {
set_auxcr(get_auxcr() | BIT(3) | BIT(2) | BIT(1));
cpu_notifier(l2c310_cpu_enable_flz, 0);
}
}
static void __init l2c310_fixup(void __iomem *base, u32 cache_id,
struct outer_cache_fns *fns)
{
unsigned revision = cache_id & L2X0_CACHE_ID_RTL_MASK;
const char *errata[8];
unsigned n = 0;
if (IS_ENABLED(CONFIG_PL310_ERRATA_588369) &&
revision < L310_CACHE_ID_RTL_R2P0 &&
/* For bcm compatibility */
fns->inv_range == l2c210_inv_range) {
fns->inv_range = l2c310_inv_range_erratum;
fns->flush_range = l2c310_flush_range_erratum;
errata[n++] = "588369";
}
if (IS_ENABLED(CONFIG_PL310_ERRATA_727915) &&
revision >= L310_CACHE_ID_RTL_R2P0 &&
revision < L310_CACHE_ID_RTL_R3P1) {
fns->flush_all = l2c310_flush_all_erratum;
errata[n++] = "727915";
}
if (revision >= L310_CACHE_ID_RTL_R3P0 &&
revision < L310_CACHE_ID_RTL_R3P2) {
u32 val = l2x0_saved_regs.prefetch_ctrl;
/* I don't think bit23 is required here... but iMX6 does so */
if (val & (BIT(30) | BIT(23))) {
val &= ~(BIT(30) | BIT(23));
l2x0_saved_regs.prefetch_ctrl = val;
errata[n++] = "752271";
}
}
if (IS_ENABLED(CONFIG_PL310_ERRATA_753970) &&
revision == L310_CACHE_ID_RTL_R3P0) {
sync_reg_offset = L2X0_DUMMY_REG;
errata[n++] = "753970";
}
if (IS_ENABLED(CONFIG_PL310_ERRATA_769419))
errata[n++] = "769419";
if (n) {
unsigned i;
pr_info("L2C-310 errat%s", n > 1 ? "a" : "um");
for (i = 0; i < n; i++)
pr_cont(" %s", errata[i]);
pr_cont(" enabled\n");
}
}
static void l2c310_disable(void)
{
/*
* If full-line-of-zeros is enabled, we must first disable it in the
* Cortex-A9 auxiliary control register before disabling the L2 cache.
*/
if (l2x0_saved_regs.aux_ctrl & L310_AUX_CTRL_FULL_LINE_ZERO)
set_auxcr(get_auxcr() & ~(BIT(3) | BIT(2) | BIT(1)));
l2c_disable();
}
static void l2c310_resume(void)
{
l2c_resume();
/* Re-enable full-line-of-zeros for Cortex-A9 */
if (l2x0_saved_regs.aux_ctrl & L310_AUX_CTRL_FULL_LINE_ZERO)
set_auxcr(get_auxcr() | BIT(3) | BIT(2) | BIT(1));
}
static const struct l2c_init_data l2c310_init_fns __initconst = {
.type = "L2C-310",
.way_size_0 = SZ_8K,
.num_lock = 8,
.enable = l2c310_enable,
.fixup = l2c310_fixup,
.save = l2c310_save,
.configure = l2c310_configure,
.outer_cache = {
.inv_range = l2c210_inv_range,
.clean_range = l2c210_clean_range,
.flush_range = l2c210_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c310_disable,
.sync = l2c210_sync,
.resume = l2c310_resume,
},
};
static int __init __l2c_init(const struct l2c_init_data *data,
u32 aux_val, u32 aux_mask, u32 cache_id)
{
struct outer_cache_fns fns;
unsigned way_size_bits, ways;
u32 aux, old_aux;
/*
* Save the pointer globally so that callbacks which do not receive
* context from callers can access the structure.
*/
l2x0_data = kmemdup(data, sizeof(*data), GFP_KERNEL);
if (!l2x0_data)
return -ENOMEM;
/*
* Sanity check the aux values. aux_mask is the bits we preserve
* from reading the hardware register, and aux_val is the bits we
* set.
*/
if (aux_val & aux_mask)
pr_alert("L2C: platform provided aux values permit register corruption.\n");
old_aux = aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL);
aux &= aux_mask;
aux |= aux_val;
if (old_aux != aux)
pr_warn("L2C: DT/platform modifies aux control register: 0x%08x -> 0x%08x\n",
old_aux, aux);
/* Determine the number of ways */
switch (cache_id & L2X0_CACHE_ID_PART_MASK) {
case L2X0_CACHE_ID_PART_L310:
if ((aux_val | ~aux_mask) & (L2C_AUX_CTRL_WAY_SIZE_MASK | L310_AUX_CTRL_ASSOCIATIVITY_16))
pr_warn("L2C: DT/platform tries to modify or specify cache size\n");
if (aux & (1 << 16))
ways = 16;
else
ways = 8;
break;
case L2X0_CACHE_ID_PART_L210:
case L2X0_CACHE_ID_PART_L220:
ways = (aux >> 13) & 0xf;
break;
case AURORA_CACHE_ID:
ways = (aux >> 13) & 0xf;
ways = 2 << ((ways + 1) >> 2);
break;
default:
/* Assume unknown chips have 8 ways */
ways = 8;
break;
}
l2x0_way_mask = (1 << ways) - 1;
/*
* way_size_0 is the size that a way_size value of zero would be
* given the calculation: way_size = way_size_0 << way_size_bits.
* So, if way_size_bits=0 is reserved, but way_size_bits=1 is 16k,
* then way_size_0 would be 8k.
*
* L2 cache size = number of ways * way size.
*/
way_size_bits = (aux & L2C_AUX_CTRL_WAY_SIZE_MASK) >>
L2C_AUX_CTRL_WAY_SIZE_SHIFT;
l2x0_size = ways * (data->way_size_0 << way_size_bits);
fns = data->outer_cache;
fns.write_sec = outer_cache.write_sec;
fns.configure = outer_cache.configure;
if (data->fixup)
data->fixup(l2x0_base, cache_id, &fns);
/*
* Check if l2x0 controller is already enabled. If we are booting
* in non-secure mode accessing the below registers will fault.
*/
if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN))
data->enable(l2x0_base, aux, data->num_lock);
outer_cache = fns;
/*
* It is strange to save the register state before initialisation,
* but hey, this is what the DT implementations decided to do.
*/
if (data->save)
data->save(l2x0_base);
/* Re-read it in case some bits are reserved. */
aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL);
pr_info("%s cache controller enabled, %d ways, %d kB\n",
data->type, ways, l2x0_size >> 10);
pr_info("%s: CACHE_ID 0x%08x, AUX_CTRL 0x%08x\n",
data->type, cache_id, aux);
return 0;
}
void __init l2x0_init(void __iomem *base, u32 aux_val, u32 aux_mask)
{
const struct l2c_init_data *data;
u32 cache_id;
l2x0_base = base;
cache_id = readl_relaxed(base + L2X0_CACHE_ID);
switch (cache_id & L2X0_CACHE_ID_PART_MASK) {
default:
case L2X0_CACHE_ID_PART_L210:
data = &l2c210_data;
break;
case L2X0_CACHE_ID_PART_L220:
data = &l2c220_data;
break;
case L2X0_CACHE_ID_PART_L310:
data = &l2c310_init_fns;
break;
}
/* Read back current (default) hardware configuration */
if (data->save)
data->save(l2x0_base);
__l2c_init(data, aux_val, aux_mask, cache_id);
}
#ifdef CONFIG_OF
static int l2_wt_override;
/* Aurora don't have the cache ID register available, so we have to
* pass it though the device tree */
static u32 cache_id_part_number_from_dt;
/**
* l2x0_cache_size_of_parse() - read cache size parameters from DT
* @np: the device tree node for the l2 cache
* @aux_val: pointer to machine-supplied auxilary register value, to
* be augmented by the call (bits to be set to 1)
* @aux_mask: pointer to machine-supplied auxilary register mask, to
* be augmented by the call (bits to be set to 0)
* @associativity: variable to return the calculated associativity in
* @max_way_size: the maximum size in bytes for the cache ways
*/
static int __init l2x0_cache_size_of_parse(const struct device_node *np,
u32 *aux_val, u32 *aux_mask,
u32 *associativity,
u32 max_way_size)
{
u32 mask = 0, val = 0;
u32 cache_size = 0, sets = 0;
u32 way_size_bits = 1;
u32 way_size = 0;
u32 block_size = 0;
u32 line_size = 0;
of_property_read_u32(np, "cache-size", &cache_size);
of_property_read_u32(np, "cache-sets", &sets);
of_property_read_u32(np, "cache-block-size", &block_size);
of_property_read_u32(np, "cache-line-size", &line_size);
if (!cache_size || !sets)
return -ENODEV;
/* All these l2 caches have the same line = block size actually */
if (!line_size) {
if (block_size) {
/* If linesize is not given, it is equal to blocksize */
line_size = block_size;
} else {
/* Fall back to known size */
pr_warn("L2C OF: no cache block/line size given: "
"falling back to default size %d bytes\n",
CACHE_LINE_SIZE);
line_size = CACHE_LINE_SIZE;
}
}
if (line_size != CACHE_LINE_SIZE)
pr_warn("L2C OF: DT supplied line size %d bytes does "
"not match hardware line size of %d bytes\n",
line_size,
CACHE_LINE_SIZE);
/*
* Since:
* set size = cache size / sets
* ways = cache size / (sets * line size)
* way size = cache size / (cache size / (sets * line size))
* way size = sets * line size
* associativity = ways = cache size / way size
*/
way_size = sets * line_size;
*associativity = cache_size / way_size;
if (way_size > max_way_size) {
pr_err("L2C OF: set size %dKB is too large\n", way_size);
return -EINVAL;
}
pr_info("L2C OF: override cache size: %d bytes (%dKB)\n",
cache_size, cache_size >> 10);
pr_info("L2C OF: override line size: %d bytes\n", line_size);
pr_info("L2C OF: override way size: %d bytes (%dKB)\n",
way_size, way_size >> 10);
pr_info("L2C OF: override associativity: %d\n", *associativity);
/*
* Calculates the bits 17:19 to set for way size:
* 512KB -> 6, 256KB -> 5, ... 16KB -> 1
*/
way_size_bits = ilog2(way_size >> 10) - 3;
if (way_size_bits < 1 || way_size_bits > 6) {
pr_err("L2C OF: cache way size illegal: %dKB is not mapped\n",
way_size);
return -EINVAL;
}
mask |= L2C_AUX_CTRL_WAY_SIZE_MASK;
val |= (way_size_bits << L2C_AUX_CTRL_WAY_SIZE_SHIFT);
*aux_val &= ~mask;
*aux_val |= val;
*aux_mask &= ~mask;
return 0;
}
static void __init l2x0_of_parse(const struct device_node *np,
u32 *aux_val, u32 *aux_mask)
{
u32 data[2] = { 0, 0 };
u32 tag = 0;
u32 dirty = 0;
u32 val = 0, mask = 0;
u32 assoc;
int ret;
of_property_read_u32(np, "arm,tag-latency", &tag);
if (tag) {
mask |= L2X0_AUX_CTRL_TAG_LATENCY_MASK;
val |= (tag - 1) << L2X0_AUX_CTRL_TAG_LATENCY_SHIFT;
}
of_property_read_u32_array(np, "arm,data-latency",
data, ARRAY_SIZE(data));
if (data[0] && data[1]) {
mask |= L2X0_AUX_CTRL_DATA_RD_LATENCY_MASK |
L2X0_AUX_CTRL_DATA_WR_LATENCY_MASK;
val |= ((data[0] - 1) << L2X0_AUX_CTRL_DATA_RD_LATENCY_SHIFT) |
((data[1] - 1) << L2X0_AUX_CTRL_DATA_WR_LATENCY_SHIFT);
}
of_property_read_u32(np, "arm,dirty-latency", &dirty);
if (dirty) {
mask |= L2X0_AUX_CTRL_DIRTY_LATENCY_MASK;
val |= (dirty - 1) << L2X0_AUX_CTRL_DIRTY_LATENCY_SHIFT;
}
ret = l2x0_cache_size_of_parse(np, aux_val, aux_mask, &assoc, SZ_256K);
if (ret)
return;
if (assoc > 8) {
pr_err("l2x0 of: cache setting yield too high associativity\n");
pr_err("l2x0 of: %d calculated, max 8\n", assoc);
} else {
mask |= L2X0_AUX_CTRL_ASSOC_MASK;
val |= (assoc << L2X0_AUX_CTRL_ASSOC_SHIFT);
}
*aux_val &= ~mask;
*aux_val |= val;
*aux_mask &= ~mask;
}
static const struct l2c_init_data of_l2c210_data __initconst = {
.type = "L2C-210",
.way_size_0 = SZ_8K,
.num_lock = 1,
.of_parse = l2x0_of_parse,
.enable = l2c_enable,
.save = l2c_save,
.outer_cache = {
.inv_range = l2c210_inv_range,
.clean_range = l2c210_clean_range,
.flush_range = l2c210_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c_disable,
.sync = l2c210_sync,
.resume = l2c_resume,
},
};
static const struct l2c_init_data of_l2c220_data __initconst = {
.type = "L2C-220",
.way_size_0 = SZ_8K,
.num_lock = 1,
.of_parse = l2x0_of_parse,
.enable = l2c220_enable,
.save = l2c_save,
.outer_cache = {
.inv_range = l2c220_inv_range,
.clean_range = l2c220_clean_range,
.flush_range = l2c220_flush_range,
.flush_all = l2c220_flush_all,
.disable = l2c_disable,
.sync = l2c220_sync,
.resume = l2c_resume,
},
};
static void __init l2c310_of_parse(const struct device_node *np,
u32 *aux_val, u32 *aux_mask)
{
u32 data[3] = { 0, 0, 0 };
u32 tag[3] = { 0, 0, 0 };
u32 filter[2] = { 0, 0 };
u32 assoc;
u32 prefetch;
u32 val;
int ret;
of_property_read_u32_array(np, "arm,tag-latency", tag, ARRAY_SIZE(tag));
if (tag[0] && tag[1] && tag[2])
l2x0_saved_regs.tag_latency =
L310_LATENCY_CTRL_RD(tag[0] - 1) |
L310_LATENCY_CTRL_WR(tag[1] - 1) |
L310_LATENCY_CTRL_SETUP(tag[2] - 1);
of_property_read_u32_array(np, "arm,data-latency",
data, ARRAY_SIZE(data));
if (data[0] && data[1] && data[2])
l2x0_saved_regs.data_latency =
L310_LATENCY_CTRL_RD(data[0] - 1) |
L310_LATENCY_CTRL_WR(data[1] - 1) |
L310_LATENCY_CTRL_SETUP(data[2] - 1);
of_property_read_u32_array(np, "arm,filter-ranges",
filter, ARRAY_SIZE(filter));
if (filter[1]) {
l2x0_saved_regs.filter_end =
ALIGN(filter[0] + filter[1], SZ_1M);
l2x0_saved_regs.filter_start = (filter[0] & ~(SZ_1M - 1))
| L310_ADDR_FILTER_EN;
}
ret = l2x0_cache_size_of_parse(np, aux_val, aux_mask, &assoc, SZ_512K);
if (ret)
return;
switch (assoc) {
case 16:
*aux_val &= ~L2X0_AUX_CTRL_ASSOC_MASK;
*aux_val |= L310_AUX_CTRL_ASSOCIATIVITY_16;
*aux_mask &= ~L2X0_AUX_CTRL_ASSOC_MASK;
break;
case 8:
*aux_val &= ~L2X0_AUX_CTRL_ASSOC_MASK;
*aux_mask &= ~L2X0_AUX_CTRL_ASSOC_MASK;
break;
default:
pr_err("L2C-310 OF cache associativity %d invalid, only 8 or 16 permitted\n",
assoc);
break;
}
prefetch = l2x0_saved_regs.prefetch_ctrl;
ret = of_property_read_u32(np, "arm,double-linefill", &val);
if (ret == 0) {
if (val)
prefetch |= L310_PREFETCH_CTRL_DBL_LINEFILL;
else
prefetch &= ~L310_PREFETCH_CTRL_DBL_LINEFILL;
} else if (ret != -EINVAL) {
pr_err("L2C-310 OF arm,double-linefill property value is missing\n");
}
ret = of_property_read_u32(np, "arm,double-linefill-incr", &val);
if (ret == 0) {
if (val)
prefetch |= L310_PREFETCH_CTRL_DBL_LINEFILL_INCR;
else
prefetch &= ~L310_PREFETCH_CTRL_DBL_LINEFILL_INCR;
} else if (ret != -EINVAL) {
pr_err("L2C-310 OF arm,double-linefill-incr property value is missing\n");
}
ret = of_property_read_u32(np, "arm,double-linefill-wrap", &val);
if (ret == 0) {
if (!val)
prefetch |= L310_PREFETCH_CTRL_DBL_LINEFILL_WRAP;
else
prefetch &= ~L310_PREFETCH_CTRL_DBL_LINEFILL_WRAP;
} else if (ret != -EINVAL) {
pr_err("L2C-310 OF arm,double-linefill-wrap property value is missing\n");
}
ret = of_property_read_u32(np, "arm,prefetch-drop", &val);
if (ret == 0) {
if (val)
prefetch |= L310_PREFETCH_CTRL_PREFETCH_DROP;
else
prefetch &= ~L310_PREFETCH_CTRL_PREFETCH_DROP;
} else if (ret != -EINVAL) {
pr_err("L2C-310 OF arm,prefetch-drop property value is missing\n");
}
ret = of_property_read_u32(np, "arm,prefetch-offset", &val);
if (ret == 0) {
prefetch &= ~L310_PREFETCH_CTRL_OFFSET_MASK;
prefetch |= val & L310_PREFETCH_CTRL_OFFSET_MASK;
} else if (ret != -EINVAL) {
pr_err("L2C-310 OF arm,prefetch-offset property value is missing\n");
}
l2x0_saved_regs.prefetch_ctrl = prefetch;
}
static const struct l2c_init_data of_l2c310_data __initconst = {
.type = "L2C-310",
.way_size_0 = SZ_8K,
.num_lock = 8,
.of_parse = l2c310_of_parse,
.enable = l2c310_enable,
.fixup = l2c310_fixup,
.save = l2c310_save,
.configure = l2c310_configure,
.outer_cache = {
.inv_range = l2c210_inv_range,
.clean_range = l2c210_clean_range,
.flush_range = l2c210_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c310_disable,
.sync = l2c210_sync,
.resume = l2c310_resume,
},
};
/*
* This is a variant of the of_l2c310_data with .sync set to
* NULL. Outer sync operations are not needed when the system is I/O
* coherent, and potentially harmful in certain situations (PCIe/PL310
* deadlock on Armada 375/38x due to hardware I/O coherency). The
* other operations are kept because they are infrequent (therefore do
* not cause the deadlock in practice) and needed for secondary CPU
* boot and other power management activities.
*/
static const struct l2c_init_data of_l2c310_coherent_data __initconst = {
.type = "L2C-310 Coherent",
.way_size_0 = SZ_8K,
.num_lock = 8,
.of_parse = l2c310_of_parse,
.enable = l2c310_enable,
.fixup = l2c310_fixup,
.save = l2c310_save,
.configure = l2c310_configure,
.outer_cache = {
.inv_range = l2c210_inv_range,
.clean_range = l2c210_clean_range,
.flush_range = l2c210_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c310_disable,
.resume = l2c310_resume,
},
};
/*
* Note that the end addresses passed to Linux primitives are
* noninclusive, while the hardware cache range operations use
* inclusive start and end addresses.
*/
static unsigned long aurora_range_end(unsigned long start, unsigned long end)
{
/*
* Limit the number of cache lines processed at once,
* since cache range operations stall the CPU pipeline
* until completion.
*/
if (end > start + MAX_RANGE_SIZE)
end = start + MAX_RANGE_SIZE;
/*
* Cache range operations can't straddle a page boundary.
*/
if (end > PAGE_ALIGN(start+1))
end = PAGE_ALIGN(start+1);
return end;
}
static void aurora_pa_range(unsigned long start, unsigned long end,
unsigned long offset)
{
void __iomem *base = l2x0_base;
unsigned long range_end;
unsigned long flags;
/*
* round start and end adresses up to cache line size
*/
start &= ~(CACHE_LINE_SIZE - 1);
end = ALIGN(end, CACHE_LINE_SIZE);
/*
* perform operation on all full cache lines between 'start' and 'end'
*/
while (start < end) {
range_end = aurora_range_end(start, end);
raw_spin_lock_irqsave(&l2x0_lock, flags);
writel_relaxed(start, base + AURORA_RANGE_BASE_ADDR_REG);
writel_relaxed(range_end - CACHE_LINE_SIZE, base + offset);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
writel_relaxed(0, base + AURORA_SYNC_REG);
start = range_end;
}
}
static void aurora_inv_range(unsigned long start, unsigned long end)
{
aurora_pa_range(start, end, AURORA_INVAL_RANGE_REG);
}
static void aurora_clean_range(unsigned long start, unsigned long end)
{
/*
* If L2 is forced to WT, the L2 will always be clean and we
* don't need to do anything here.
*/
if (!l2_wt_override)
aurora_pa_range(start, end, AURORA_CLEAN_RANGE_REG);
}
static void aurora_flush_range(unsigned long start, unsigned long end)
{
if (l2_wt_override)
aurora_pa_range(start, end, AURORA_INVAL_RANGE_REG);
else
aurora_pa_range(start, end, AURORA_FLUSH_RANGE_REG);
}
static void aurora_flush_all(void)
{
void __iomem *base = l2x0_base;
unsigned long flags;
/* clean all ways */
raw_spin_lock_irqsave(&l2x0_lock, flags);
__l2c_op_way(base + L2X0_CLEAN_INV_WAY);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
writel_relaxed(0, base + AURORA_SYNC_REG);
}
static void aurora_cache_sync(void)
{
writel_relaxed(0, l2x0_base + AURORA_SYNC_REG);
}
static void aurora_disable(void)
{
void __iomem *base = l2x0_base;
unsigned long flags;
raw_spin_lock_irqsave(&l2x0_lock, flags);
__l2c_op_way(base + L2X0_CLEAN_INV_WAY);
writel_relaxed(0, base + AURORA_SYNC_REG);
l2c_write_sec(0, base, L2X0_CTRL);
dsb(st);
raw_spin_unlock_irqrestore(&l2x0_lock, flags);
}
static void aurora_save(void __iomem *base)
{
l2x0_saved_regs.ctrl = readl_relaxed(base + L2X0_CTRL);
l2x0_saved_regs.aux_ctrl = readl_relaxed(base + L2X0_AUX_CTRL);
}
/*
* For Aurora cache in no outer mode, enable via the CP15 coprocessor
* broadcasting of cache commands to L2.
*/
static void __init aurora_enable_no_outer(void __iomem *base, u32 aux,
unsigned num_lock)
{
u32 u;
asm volatile("mrc p15, 1, %0, c15, c2, 0" : "=r" (u));
u |= AURORA_CTRL_FW; /* Set the FW bit */
asm volatile("mcr p15, 1, %0, c15, c2, 0" : : "r" (u));
isb();
l2c_enable(base, aux, num_lock);
}
static void __init aurora_fixup(void __iomem *base, u32 cache_id,
struct outer_cache_fns *fns)
{
sync_reg_offset = AURORA_SYNC_REG;
}
static void __init aurora_of_parse(const struct device_node *np,
u32 *aux_val, u32 *aux_mask)
{
u32 val = AURORA_ACR_REPLACEMENT_TYPE_SEMIPLRU;
u32 mask = AURORA_ACR_REPLACEMENT_MASK;
of_property_read_u32(np, "cache-id-part",
&cache_id_part_number_from_dt);
/* Determine and save the write policy */
l2_wt_override = of_property_read_bool(np, "wt-override");
if (l2_wt_override) {
val |= AURORA_ACR_FORCE_WRITE_THRO_POLICY;
mask |= AURORA_ACR_FORCE_WRITE_POLICY_MASK;
}
*aux_val &= ~mask;
*aux_val |= val;
*aux_mask &= ~mask;
}
static const struct l2c_init_data of_aurora_with_outer_data __initconst = {
.type = "Aurora",
.way_size_0 = SZ_4K,
.num_lock = 4,
.of_parse = aurora_of_parse,
.enable = l2c_enable,
.fixup = aurora_fixup,
.save = aurora_save,
.outer_cache = {
.inv_range = aurora_inv_range,
.clean_range = aurora_clean_range,
.flush_range = aurora_flush_range,
.flush_all = aurora_flush_all,
.disable = aurora_disable,
.sync = aurora_cache_sync,
.resume = l2c_resume,
},
};
static const struct l2c_init_data of_aurora_no_outer_data __initconst = {
.type = "Aurora",
.way_size_0 = SZ_4K,
.num_lock = 4,
.of_parse = aurora_of_parse,
.enable = aurora_enable_no_outer,
.fixup = aurora_fixup,
.save = aurora_save,
.outer_cache = {
.resume = l2c_resume,
},
};
/*
* For certain Broadcom SoCs, depending on the address range, different offsets
* need to be added to the address before passing it to L2 for
* invalidation/clean/flush
*
* Section Address Range Offset EMI
* 1 0x00000000 - 0x3FFFFFFF 0x80000000 VC
* 2 0x40000000 - 0xBFFFFFFF 0x40000000 SYS
* 3 0xC0000000 - 0xFFFFFFFF 0x80000000 VC
*
* When the start and end addresses have crossed two different sections, we
* need to break the L2 operation into two, each within its own section.
* For example, if we need to invalidate addresses starts at 0xBFFF0000 and
* ends at 0xC0001000, we need do invalidate 1) 0xBFFF0000 - 0xBFFFFFFF and 2)
* 0xC0000000 - 0xC0001000
*
* Note 1:
* By breaking a single L2 operation into two, we may potentially suffer some
* performance hit, but keep in mind the cross section case is very rare
*
* Note 2:
* We do not need to handle the case when the start address is in
* Section 1 and the end address is in Section 3, since it is not a valid use
* case
*
* Note 3:
* Section 1 in practical terms can no longer be used on rev A2. Because of
* that the code does not need to handle section 1 at all.
*
*/
#define BCM_SYS_EMI_START_ADDR 0x40000000UL
#define BCM_VC_EMI_SEC3_START_ADDR 0xC0000000UL
#define BCM_SYS_EMI_OFFSET 0x40000000UL
#define BCM_VC_EMI_OFFSET 0x80000000UL
static inline int bcm_addr_is_sys_emi(unsigned long addr)
{
return (addr >= BCM_SYS_EMI_START_ADDR) &&
(addr < BCM_VC_EMI_SEC3_START_ADDR);
}
static inline unsigned long bcm_l2_phys_addr(unsigned long addr)
{
if (bcm_addr_is_sys_emi(addr))
return addr + BCM_SYS_EMI_OFFSET;
else
return addr + BCM_VC_EMI_OFFSET;
}
static void bcm_inv_range(unsigned long start, unsigned long end)
{
unsigned long new_start, new_end;
BUG_ON(start < BCM_SYS_EMI_START_ADDR);
if (unlikely(end <= start))
return;
new_start = bcm_l2_phys_addr(start);
new_end = bcm_l2_phys_addr(end);
/* normal case, no cross section between start and end */
if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) {
l2c210_inv_range(new_start, new_end);
return;
}
/* They cross sections, so it can only be a cross from section
* 2 to section 3
*/
l2c210_inv_range(new_start,
bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1));
l2c210_inv_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR),
new_end);
}
static void bcm_clean_range(unsigned long start, unsigned long end)
{
unsigned long new_start, new_end;
BUG_ON(start < BCM_SYS_EMI_START_ADDR);
if (unlikely(end <= start))
return;
new_start = bcm_l2_phys_addr(start);
new_end = bcm_l2_phys_addr(end);
/* normal case, no cross section between start and end */
if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) {
l2c210_clean_range(new_start, new_end);
return;
}
/* They cross sections, so it can only be a cross from section
* 2 to section 3
*/
l2c210_clean_range(new_start,
bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1));
l2c210_clean_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR),
new_end);
}
static void bcm_flush_range(unsigned long start, unsigned long end)
{
unsigned long new_start, new_end;
BUG_ON(start < BCM_SYS_EMI_START_ADDR);
if (unlikely(end <= start))
return;
if ((end - start) >= l2x0_size) {
outer_cache.flush_all();
return;
}
new_start = bcm_l2_phys_addr(start);
new_end = bcm_l2_phys_addr(end);
/* normal case, no cross section between start and end */
if (likely(bcm_addr_is_sys_emi(end) || !bcm_addr_is_sys_emi(start))) {
l2c210_flush_range(new_start, new_end);
return;
}
/* They cross sections, so it can only be a cross from section
* 2 to section 3
*/
l2c210_flush_range(new_start,
bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR-1));
l2c210_flush_range(bcm_l2_phys_addr(BCM_VC_EMI_SEC3_START_ADDR),
new_end);
}
/* Broadcom L2C-310 start from ARMs R3P2 or later, and require no fixups */
static const struct l2c_init_data of_bcm_l2x0_data __initconst = {
.type = "BCM-L2C-310",
.way_size_0 = SZ_8K,
.num_lock = 8,
.of_parse = l2c310_of_parse,
.enable = l2c310_enable,
.save = l2c310_save,
.configure = l2c310_configure,
.outer_cache = {
.inv_range = bcm_inv_range,
.clean_range = bcm_clean_range,
.flush_range = bcm_flush_range,
.flush_all = l2c210_flush_all,
.disable = l2c310_disable,
.sync = l2c210_sync,
.resume = l2c310_resume,
},
};
static void __init tauros3_save(void __iomem *base)
{
l2c_save(base);
l2x0_saved_regs.aux2_ctrl =
readl_relaxed(base + TAUROS3_AUX2_CTRL);
l2x0_saved_regs.prefetch_ctrl =
readl_relaxed(base + L310_PREFETCH_CTRL);
}
static void tauros3_configure(void __iomem *base)
{
writel_relaxed(l2x0_saved_regs.aux2_ctrl,
base + TAUROS3_AUX2_CTRL);
writel_relaxed(l2x0_saved_regs.prefetch_ctrl,
base + L310_PREFETCH_CTRL);
}
static const struct l2c_init_data of_tauros3_data __initconst = {
.type = "Tauros3",
.way_size_0 = SZ_8K,
.num_lock = 8,
.enable = l2c_enable,
.save = tauros3_save,
.configure = tauros3_configure,
/* Tauros3 broadcasts L1 cache operations to L2 */
.outer_cache = {
.resume = l2c_resume,
},
};
#define L2C_ID(name, fns) { .compatible = name, .data = (void *)&fns }
static const struct of_device_id l2x0_ids[] __initconst = {
L2C_ID("arm,l210-cache", of_l2c210_data),
L2C_ID("arm,l220-cache", of_l2c220_data),
L2C_ID("arm,pl310-cache", of_l2c310_data),
L2C_ID("brcm,bcm11351-a2-pl310-cache", of_bcm_l2x0_data),
L2C_ID("marvell,aurora-outer-cache", of_aurora_with_outer_data),
L2C_ID("marvell,aurora-system-cache", of_aurora_no_outer_data),
L2C_ID("marvell,tauros3-cache", of_tauros3_data),
/* Deprecated IDs */
L2C_ID("bcm,bcm11351-a2-pl310-cache", of_bcm_l2x0_data),
{}
};
int __init l2x0_of_init(u32 aux_val, u32 aux_mask)
{
const struct l2c_init_data *data;
struct device_node *np;
struct resource res;
u32 cache_id, old_aux;
np = of_find_matching_node(NULL, l2x0_ids);
if (!np)
return -ENODEV;
if (of_address_to_resource(np, 0, &res))
return -ENODEV;
l2x0_base = ioremap(res.start, resource_size(&res));
if (!l2x0_base)
return -ENOMEM;
l2x0_saved_regs.phy_base = res.start;
data = of_match_node(l2x0_ids, np)->data;
if (of_device_is_compatible(np, "arm,pl310-cache") &&
of_property_read_bool(np, "arm,io-coherent"))
data = &of_l2c310_coherent_data;
old_aux = readl_relaxed(l2x0_base + L2X0_AUX_CTRL);
if (old_aux != ((old_aux & aux_mask) | aux_val)) {
pr_warn("L2C: platform modifies aux control register: 0x%08x -> 0x%08x\n",
old_aux, (old_aux & aux_mask) | aux_val);
} else if (aux_mask != ~0U && aux_val != 0) {
pr_alert("L2C: platform provided aux values match the hardware, so have no effect. Please remove them.\n");
}
/* All L2 caches are unified, so this property should be specified */
if (!of_property_read_bool(np, "cache-unified"))
pr_err("L2C: device tree omits to specify unified cache\n");
/* Read back current (default) hardware configuration */
if (data->save)
data->save(l2x0_base);
/* L2 configuration can only be changed if the cache is disabled */
if (!(readl_relaxed(l2x0_base + L2X0_CTRL) & L2X0_CTRL_EN))
if (data->of_parse)
data->of_parse(np, &aux_val, &aux_mask);
if (cache_id_part_number_from_dt)
cache_id = cache_id_part_number_from_dt;
else
cache_id = readl_relaxed(l2x0_base + L2X0_CACHE_ID);
return __l2c_init(data, aux_val, aux_mask, cache_id);
}
#endif