OpenCloudOS-Kernel/drivers/video/aty/mach64_gx.c

911 lines
20 KiB
C

/*
* ATI Mach64 GX Support
*/
#include <linux/delay.h>
#include <linux/fb.h>
#include <asm/io.h>
#include <video/mach64.h>
#include "atyfb.h"
/* Definitions for the ICS 2595 == ATI 18818_1 Clockchip */
#define REF_FREQ_2595 1432 /* 14.33 MHz (exact 14.31818) */
#define REF_DIV_2595 46 /* really 43 on ICS 2595 !!! */
/* ohne Prescaler */
#define MAX_FREQ_2595 15938 /* 159.38 MHz (really 170.486) */
#define MIN_FREQ_2595 8000 /* 80.00 MHz ( 85.565) */
/* mit Prescaler 2, 4, 8 */
#define ABS_MIN_FREQ_2595 1000 /* 10.00 MHz (really 10.697) */
#define N_ADJ_2595 257
#define STOP_BITS_2595 0x1800
#define MIN_N_408 2
#define MIN_N_1703 6
#define MIN_M 2
#define MAX_M 30
#define MIN_N 35
#define MAX_N 255-8
/*
* Support Functions
*/
static void aty_dac_waste4(const struct atyfb_par *par)
{
(void) aty_ld_8(DAC_REGS, par);
(void) aty_ld_8(DAC_REGS + 2, par);
(void) aty_ld_8(DAC_REGS + 2, par);
(void) aty_ld_8(DAC_REGS + 2, par);
(void) aty_ld_8(DAC_REGS + 2, par);
}
static void aty_StrobeClock(const struct atyfb_par *par)
{
u8 tmp;
udelay(26);
tmp = aty_ld_8(CLOCK_CNTL, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, tmp | CLOCK_STROBE, par);
return;
}
/*
* IBM RGB514 DAC and Clock Chip
*/
static void aty_st_514(int offset, u8 val, const struct atyfb_par *par)
{
aty_st_8(DAC_CNTL, 1, par);
/* right addr byte */
aty_st_8(DAC_W_INDEX, offset & 0xff, par);
/* left addr byte */
aty_st_8(DAC_DATA, (offset >> 8) & 0xff, par);
aty_st_8(DAC_MASK, val, par);
aty_st_8(DAC_CNTL, 0, par);
}
static int aty_set_dac_514(const struct fb_info *info,
const union aty_pll *pll, u32 bpp, u32 accel)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
static struct {
u8 pixel_dly;
u8 misc2_cntl;
u8 pixel_rep;
u8 pixel_cntl_index;
u8 pixel_cntl_v1;
} tab[3] = {
{
0, 0x41, 0x03, 0x71, 0x45}, /* 8 bpp */
{
0, 0x45, 0x04, 0x0c, 0x01}, /* 555 */
{
0, 0x45, 0x06, 0x0e, 0x00}, /* XRGB */
};
int i;
switch (bpp) {
case 8:
default:
i = 0;
break;
case 16:
i = 1;
break;
case 32:
i = 2;
break;
}
aty_st_514(0x90, 0x00, par); /* VRAM Mask Low */
aty_st_514(0x04, tab[i].pixel_dly, par); /* Horizontal Sync Control */
aty_st_514(0x05, 0x00, par); /* Power Management */
aty_st_514(0x02, 0x01, par); /* Misc Clock Control */
aty_st_514(0x71, tab[i].misc2_cntl, par); /* Misc Control 2 */
aty_st_514(0x0a, tab[i].pixel_rep, par); /* Pixel Format */
aty_st_514(tab[i].pixel_cntl_index, tab[i].pixel_cntl_v1, par);
/* Misc Control 2 / 16 BPP Control / 32 BPP Control */
return 0;
}
static int aty_var_to_pll_514(const struct fb_info *info, u32 vclk_per,
u32 bpp, union aty_pll *pll)
{
/*
* FIXME: use real calculations instead of using fixed values from the old
* driver
*/
static struct {
u32 limit; /* pixlock rounding limit (arbitrary) */
u8 m; /* (df<<6) | vco_div_count */
u8 n; /* ref_div_count */
} RGB514_clocks[7] = {
{
8000, (3 << 6) | 20, 9}, /* 7395 ps / 135.2273 MHz */
{
10000, (1 << 6) | 19, 3}, /* 9977 ps / 100.2273 MHz */
{
13000, (1 << 6) | 2, 3}, /* 12509 ps / 79.9432 MHz */
{
14000, (2 << 6) | 8, 7}, /* 13394 ps / 74.6591 MHz */
{
16000, (1 << 6) | 44, 6}, /* 15378 ps / 65.0284 MHz */
{
25000, (1 << 6) | 15, 5}, /* 17460 ps / 57.2727 MHz */
{
50000, (0 << 6) | 53, 7}, /* 33145 ps / 30.1705 MHz */
};
int i;
for (i = 0; i < ARRAY_SIZE(RGB514_clocks); i++)
if (vclk_per <= RGB514_clocks[i].limit) {
pll->ibm514.m = RGB514_clocks[i].m;
pll->ibm514.n = RGB514_clocks[i].n;
return 0;
}
return -EINVAL;
}
static u32 aty_pll_514_to_var(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u8 df, vco_div_count, ref_div_count;
df = pll->ibm514.m >> 6;
vco_div_count = pll->ibm514.m & 0x3f;
ref_div_count = pll->ibm514.n;
return ((par->ref_clk_per * ref_div_count) << (3 - df))/
(vco_div_count + 65);
}
static void aty_set_pll_514(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
aty_st_514(0x06, 0x02, par); /* DAC Operation */
aty_st_514(0x10, 0x01, par); /* PLL Control 1 */
aty_st_514(0x70, 0x01, par); /* Misc Control 1 */
aty_st_514(0x8f, 0x1f, par); /* PLL Ref. Divider Input */
aty_st_514(0x03, 0x00, par); /* Sync Control */
aty_st_514(0x05, 0x00, par); /* Power Management */
aty_st_514(0x20, pll->ibm514.m, par); /* F0 / M0 */
aty_st_514(0x21, pll->ibm514.n, par); /* F1 / N0 */
}
const struct aty_dac_ops aty_dac_ibm514 = {
.set_dac = aty_set_dac_514,
};
const struct aty_pll_ops aty_pll_ibm514 = {
.var_to_pll = aty_var_to_pll_514,
.pll_to_var = aty_pll_514_to_var,
.set_pll = aty_set_pll_514,
};
/*
* ATI 68860-B DAC
*/
static int aty_set_dac_ATI68860_B(const struct fb_info *info,
const union aty_pll *pll, u32 bpp,
u32 accel)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 gModeReg, devSetupRegA, temp, mask;
gModeReg = 0;
devSetupRegA = 0;
switch (bpp) {
case 8:
gModeReg = 0x83;
devSetupRegA =
0x60 | 0x00 /*(info->mach64DAC8Bit ? 0x00 : 0x01) */ ;
break;
case 15:
gModeReg = 0xA0;
devSetupRegA = 0x60;
break;
case 16:
gModeReg = 0xA1;
devSetupRegA = 0x60;
break;
case 24:
gModeReg = 0xC0;
devSetupRegA = 0x60;
break;
case 32:
gModeReg = 0xE3;
devSetupRegA = 0x60;
break;
}
if (!accel) {
gModeReg = 0x80;
devSetupRegA = 0x61;
}
temp = aty_ld_8(DAC_CNTL, par);
aty_st_8(DAC_CNTL, (temp & ~DAC_EXT_SEL_RS2) | DAC_EXT_SEL_RS3,
par);
aty_st_8(DAC_REGS + 2, 0x1D, par);
aty_st_8(DAC_REGS + 3, gModeReg, par);
aty_st_8(DAC_REGS, 0x02, par);
temp = aty_ld_8(DAC_CNTL, par);
aty_st_8(DAC_CNTL, temp | DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3, par);
if (info->fix.smem_len < ONE_MB)
mask = 0x04;
else if (info->fix.smem_len == ONE_MB)
mask = 0x08;
else
mask = 0x0C;
/* The following assumes that the BIOS has correctly set R7 of the
* Device Setup Register A at boot time.
*/
#define A860_DELAY_L 0x80
temp = aty_ld_8(DAC_REGS, par);
aty_st_8(DAC_REGS, (devSetupRegA | mask) | (temp & A860_DELAY_L),
par);
temp = aty_ld_8(DAC_CNTL, par);
aty_st_8(DAC_CNTL, (temp & ~(DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3)),
par);
aty_st_le32(BUS_CNTL, 0x890e20f1, par);
aty_st_le32(DAC_CNTL, 0x47052100, par);
return 0;
}
const struct aty_dac_ops aty_dac_ati68860b = {
.set_dac = aty_set_dac_ATI68860_B,
};
/*
* AT&T 21C498 DAC
*/
static int aty_set_dac_ATT21C498(const struct fb_info *info,
const union aty_pll *pll, u32 bpp,
u32 accel)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 dotClock;
int muxmode = 0;
int DACMask = 0;
dotClock = 100000000 / pll->ics2595.period_in_ps;
switch (bpp) {
case 8:
if (dotClock > 8000) {
DACMask = 0x24;
muxmode = 1;
} else
DACMask = 0x04;
break;
case 15:
DACMask = 0x16;
break;
case 16:
DACMask = 0x36;
break;
case 24:
DACMask = 0xE6;
break;
case 32:
DACMask = 0xE6;
break;
}
if (1 /* info->mach64DAC8Bit */ )
DACMask |= 0x02;
aty_dac_waste4(par);
aty_st_8(DAC_REGS + 2, DACMask, par);
aty_st_le32(BUS_CNTL, 0x890e20f1, par);
aty_st_le32(DAC_CNTL, 0x00072000, par);
return muxmode;
}
const struct aty_dac_ops aty_dac_att21c498 = {
.set_dac = aty_set_dac_ATT21C498,
};
/*
* ATI 18818 / ICS 2595 Clock Chip
*/
static int aty_var_to_pll_18818(const struct fb_info *info, u32 vclk_per,
u32 bpp, union aty_pll *pll)
{
u32 MHz100; /* in 0.01 MHz */
u32 program_bits;
u32 post_divider;
/* Calculate the programming word */
MHz100 = 100000000 / vclk_per;
program_bits = -1;
post_divider = 1;
if (MHz100 > MAX_FREQ_2595) {
MHz100 = MAX_FREQ_2595;
return -EINVAL;
} else if (MHz100 < ABS_MIN_FREQ_2595) {
program_bits = 0; /* MHz100 = 257 */
return -EINVAL;
} else {
while (MHz100 < MIN_FREQ_2595) {
MHz100 *= 2;
post_divider *= 2;
}
}
MHz100 *= 1000;
MHz100 = (REF_DIV_2595 * MHz100) / REF_FREQ_2595;
MHz100 += 500; /* + 0.5 round */
MHz100 /= 1000;
if (program_bits == -1) {
program_bits = MHz100 - N_ADJ_2595;
switch (post_divider) {
case 1:
program_bits |= 0x0600;
break;
case 2:
program_bits |= 0x0400;
break;
case 4:
program_bits |= 0x0200;
break;
case 8:
default:
break;
}
}
program_bits |= STOP_BITS_2595;
pll->ics2595.program_bits = program_bits;
pll->ics2595.locationAddr = 0;
pll->ics2595.post_divider = post_divider;
pll->ics2595.period_in_ps = vclk_per;
return 0;
}
static u32 aty_pll_18818_to_var(const struct fb_info *info,
const union aty_pll *pll)
{
return (pll->ics2595.period_in_ps); /* default for now */
}
static void aty_ICS2595_put1bit(u8 data, const struct atyfb_par *par)
{
u8 tmp;
data &= 0x01;
tmp = aty_ld_8(CLOCK_CNTL, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset,
(tmp & ~0x04) | (data << 2), par);
tmp = aty_ld_8(CLOCK_CNTL, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, (tmp & ~0x08) | (0 << 3),
par);
aty_StrobeClock(par);
tmp = aty_ld_8(CLOCK_CNTL, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, (tmp & ~0x08) | (1 << 3),
par);
aty_StrobeClock(par);
return;
}
static void aty_set_pll18818(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 program_bits;
u32 locationAddr;
u32 i;
u8 old_clock_cntl;
u8 old_crtc_ext_disp;
old_clock_cntl = aty_ld_8(CLOCK_CNTL, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 0, par);
old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par);
aty_st_8(CRTC_GEN_CNTL + 3,
old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par);
mdelay(15); /* delay for 50 (15) ms */
program_bits = pll->ics2595.program_bits;
locationAddr = pll->ics2595.locationAddr;
/* Program the clock chip */
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 0, par); /* Strobe = 0 */
aty_StrobeClock(par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset, 1, par); /* Strobe = 0 */
aty_StrobeClock(par);
aty_ICS2595_put1bit(1, par); /* Send start bits */
aty_ICS2595_put1bit(0, par); /* Start bit */
aty_ICS2595_put1bit(0, par); /* Read / ~Write */
for (i = 0; i < 5; i++) { /* Location 0..4 */
aty_ICS2595_put1bit(locationAddr & 1, par);
locationAddr >>= 1;
}
for (i = 0; i < 8 + 1 + 2 + 2; i++) {
aty_ICS2595_put1bit(program_bits & 1, par);
program_bits >>= 1;
}
mdelay(1); /* delay for 1 ms */
(void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */
aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par);
aty_st_8(CLOCK_CNTL + par->clk_wr_offset,
old_clock_cntl | CLOCK_STROBE, par);
mdelay(50); /* delay for 50 (15) ms */
aty_st_8(CLOCK_CNTL + par->clk_wr_offset,
((pll->ics2595.locationAddr & 0x0F) | CLOCK_STROBE), par);
return;
}
const struct aty_pll_ops aty_pll_ati18818_1 = {
.var_to_pll = aty_var_to_pll_18818,
.pll_to_var = aty_pll_18818_to_var,
.set_pll = aty_set_pll18818,
};
/*
* STG 1703 Clock Chip
*/
static int aty_var_to_pll_1703(const struct fb_info *info, u32 vclk_per,
u32 bpp, union aty_pll *pll)
{
u32 mhz100; /* in 0.01 MHz */
u32 program_bits;
/* u32 post_divider; */
u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq;
u32 temp, tempB;
u16 remainder, preRemainder;
short divider = 0, tempA;
/* Calculate the programming word */
mhz100 = 100000000 / vclk_per;
mach64MinFreq = MIN_FREQ_2595;
mach64MaxFreq = MAX_FREQ_2595;
mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */
/* Calculate program word */
if (mhz100 == 0)
program_bits = 0xE0;
else {
if (mhz100 < mach64MinFreq)
mhz100 = mach64MinFreq;
if (mhz100 > mach64MaxFreq)
mhz100 = mach64MaxFreq;
divider = 0;
while (mhz100 < (mach64MinFreq << 3)) {
mhz100 <<= 1;
divider += 0x20;
}
temp = (unsigned int) (mhz100);
temp = (unsigned int) (temp * (MIN_N_1703 + 2));
temp -= (short) (mach64RefFreq << 1);
tempA = MIN_N_1703;
preRemainder = 0xffff;
do {
tempB = temp;
remainder = tempB % mach64RefFreq;
tempB = tempB / mach64RefFreq;
if ((tempB & 0xffff) <= 127
&& (remainder <= preRemainder)) {
preRemainder = remainder;
divider &= ~0x1f;
divider |= tempA;
divider =
(divider & 0x00ff) +
((tempB & 0xff) << 8);
}
temp += mhz100;
tempA++;
} while (tempA <= (MIN_N_1703 << 1));
program_bits = divider;
}
pll->ics2595.program_bits = program_bits;
pll->ics2595.locationAddr = 0;
pll->ics2595.post_divider = divider; /* fuer nix */
pll->ics2595.period_in_ps = vclk_per;
return 0;
}
static u32 aty_pll_1703_to_var(const struct fb_info *info,
const union aty_pll *pll)
{
return (pll->ics2595.period_in_ps); /* default for now */
}
static void aty_set_pll_1703(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 program_bits;
u32 locationAddr;
char old_crtc_ext_disp;
old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par);
aty_st_8(CRTC_GEN_CNTL + 3,
old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par);
program_bits = pll->ics2595.program_bits;
locationAddr = pll->ics2595.locationAddr;
/* Program clock */
aty_dac_waste4(par);
(void) aty_ld_8(DAC_REGS + 2, par);
aty_st_8(DAC_REGS + 2, (locationAddr << 1) + 0x20, par);
aty_st_8(DAC_REGS + 2, 0, par);
aty_st_8(DAC_REGS + 2, (program_bits & 0xFF00) >> 8, par);
aty_st_8(DAC_REGS + 2, (program_bits & 0xFF), par);
(void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */
aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par);
return;
}
const struct aty_pll_ops aty_pll_stg1703 = {
.var_to_pll = aty_var_to_pll_1703,
.pll_to_var = aty_pll_1703_to_var,
.set_pll = aty_set_pll_1703,
};
/*
* Chrontel 8398 Clock Chip
*/
static int aty_var_to_pll_8398(const struct fb_info *info, u32 vclk_per,
u32 bpp, union aty_pll *pll)
{
u32 tempA, tempB, fOut, longMHz100, diff, preDiff;
u32 mhz100; /* in 0.01 MHz */
u32 program_bits;
/* u32 post_divider; */
u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq;
u16 m, n, k = 0, save_m, save_n, twoToKth;
/* Calculate the programming word */
mhz100 = 100000000 / vclk_per;
mach64MinFreq = MIN_FREQ_2595;
mach64MaxFreq = MAX_FREQ_2595;
mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */
save_m = 0;
save_n = 0;
/* Calculate program word */
if (mhz100 == 0)
program_bits = 0xE0;
else {
if (mhz100 < mach64MinFreq)
mhz100 = mach64MinFreq;
if (mhz100 > mach64MaxFreq)
mhz100 = mach64MaxFreq;
longMHz100 = mhz100 * 256 / 100; /* 8 bit scale this */
while (mhz100 < (mach64MinFreq << 3)) {
mhz100 <<= 1;
k++;
}
twoToKth = 1 << k;
diff = 0;
preDiff = 0xFFFFFFFF;
for (m = MIN_M; m <= MAX_M; m++) {
for (n = MIN_N; n <= MAX_N; n++) {
tempA = 938356; /* 14.31818 * 65536 */
tempA *= (n + 8); /* 43..256 */
tempB = twoToKth * 256;
tempB *= (m + 2); /* 4..32 */
fOut = tempA / tempB; /* 8 bit scale */
if (longMHz100 > fOut)
diff = longMHz100 - fOut;
else
diff = fOut - longMHz100;
if (diff < preDiff) {
save_m = m;
save_n = n;
preDiff = diff;
}
}
}
program_bits = (k << 6) + (save_m) + (save_n << 8);
}
pll->ics2595.program_bits = program_bits;
pll->ics2595.locationAddr = 0;
pll->ics2595.post_divider = 0;
pll->ics2595.period_in_ps = vclk_per;
return 0;
}
static u32 aty_pll_8398_to_var(const struct fb_info *info,
const union aty_pll *pll)
{
return (pll->ics2595.period_in_ps); /* default for now */
}
static void aty_set_pll_8398(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 program_bits;
u32 locationAddr;
char old_crtc_ext_disp;
char tmp;
old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par);
aty_st_8(CRTC_GEN_CNTL + 3,
old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par);
program_bits = pll->ics2595.program_bits;
locationAddr = pll->ics2595.locationAddr;
/* Program clock */
tmp = aty_ld_8(DAC_CNTL, par);
aty_st_8(DAC_CNTL, tmp | DAC_EXT_SEL_RS2 | DAC_EXT_SEL_RS3, par);
aty_st_8(DAC_REGS, locationAddr, par);
aty_st_8(DAC_REGS + 1, (program_bits & 0xff00) >> 8, par);
aty_st_8(DAC_REGS + 1, (program_bits & 0xff), par);
tmp = aty_ld_8(DAC_CNTL, par);
aty_st_8(DAC_CNTL, (tmp & ~DAC_EXT_SEL_RS2) | DAC_EXT_SEL_RS3,
par);
(void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */
aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par);
return;
}
const struct aty_pll_ops aty_pll_ch8398 = {
.var_to_pll = aty_var_to_pll_8398,
.pll_to_var = aty_pll_8398_to_var,
.set_pll = aty_set_pll_8398,
};
/*
* AT&T 20C408 Clock Chip
*/
static int aty_var_to_pll_408(const struct fb_info *info, u32 vclk_per,
u32 bpp, union aty_pll *pll)
{
u32 mhz100; /* in 0.01 MHz */
u32 program_bits;
/* u32 post_divider; */
u32 mach64MinFreq, mach64MaxFreq, mach64RefFreq;
u32 temp, tempB;
u16 remainder, preRemainder;
short divider = 0, tempA;
/* Calculate the programming word */
mhz100 = 100000000 / vclk_per;
mach64MinFreq = MIN_FREQ_2595;
mach64MaxFreq = MAX_FREQ_2595;
mach64RefFreq = REF_FREQ_2595; /* 14.32 MHz */
/* Calculate program word */
if (mhz100 == 0)
program_bits = 0xFF;
else {
if (mhz100 < mach64MinFreq)
mhz100 = mach64MinFreq;
if (mhz100 > mach64MaxFreq)
mhz100 = mach64MaxFreq;
while (mhz100 < (mach64MinFreq << 3)) {
mhz100 <<= 1;
divider += 0x40;
}
temp = (unsigned int) mhz100;
temp = (unsigned int) (temp * (MIN_N_408 + 2));
temp -= ((short) (mach64RefFreq << 1));
tempA = MIN_N_408;
preRemainder = 0xFFFF;
do {
tempB = temp;
remainder = tempB % mach64RefFreq;
tempB = tempB / mach64RefFreq;
if (((tempB & 0xFFFF) <= 255)
&& (remainder <= preRemainder)) {
preRemainder = remainder;
divider &= ~0x3f;
divider |= tempA;
divider =
(divider & 0x00FF) +
((tempB & 0xFF) << 8);
}
temp += mhz100;
tempA++;
} while (tempA <= 32);
program_bits = divider;
}
pll->ics2595.program_bits = program_bits;
pll->ics2595.locationAddr = 0;
pll->ics2595.post_divider = divider; /* fuer nix */
pll->ics2595.period_in_ps = vclk_per;
return 0;
}
static u32 aty_pll_408_to_var(const struct fb_info *info,
const union aty_pll *pll)
{
return (pll->ics2595.period_in_ps); /* default for now */
}
static void aty_set_pll_408(const struct fb_info *info,
const union aty_pll *pll)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
u32 program_bits;
u32 locationAddr;
u8 tmpA, tmpB, tmpC;
char old_crtc_ext_disp;
old_crtc_ext_disp = aty_ld_8(CRTC_GEN_CNTL + 3, par);
aty_st_8(CRTC_GEN_CNTL + 3,
old_crtc_ext_disp | (CRTC_EXT_DISP_EN >> 24), par);
program_bits = pll->ics2595.program_bits;
locationAddr = pll->ics2595.locationAddr;
/* Program clock */
aty_dac_waste4(par);
tmpB = aty_ld_8(DAC_REGS + 2, par) | 1;
aty_dac_waste4(par);
aty_st_8(DAC_REGS + 2, tmpB, par);
tmpA = tmpB;
tmpC = tmpA;
tmpA |= 8;
tmpB = 1;
aty_st_8(DAC_REGS, tmpB, par);
aty_st_8(DAC_REGS + 2, tmpA, par);
udelay(400); /* delay for 400 us */
locationAddr = (locationAddr << 2) + 0x40;
tmpB = locationAddr;
tmpA = program_bits >> 8;
aty_st_8(DAC_REGS, tmpB, par);
aty_st_8(DAC_REGS + 2, tmpA, par);
tmpB = locationAddr + 1;
tmpA = (u8) program_bits;
aty_st_8(DAC_REGS, tmpB, par);
aty_st_8(DAC_REGS + 2, tmpA, par);
tmpB = locationAddr + 2;
tmpA = 0x77;
aty_st_8(DAC_REGS, tmpB, par);
aty_st_8(DAC_REGS + 2, tmpA, par);
udelay(400); /* delay for 400 us */
tmpA = tmpC & (~(1 | 8));
tmpB = 1;
aty_st_8(DAC_REGS, tmpB, par);
aty_st_8(DAC_REGS + 2, tmpA, par);
(void) aty_ld_8(DAC_REGS, par); /* Clear DAC Counter */
aty_st_8(CRTC_GEN_CNTL + 3, old_crtc_ext_disp, par);
return;
}
const struct aty_pll_ops aty_pll_att20c408 = {
.var_to_pll = aty_var_to_pll_408,
.pll_to_var = aty_pll_408_to_var,
.set_pll = aty_set_pll_408,
};
/*
* Unsupported DAC and Clock Chip
*/
static int aty_set_dac_unsupported(const struct fb_info *info,
const union aty_pll *pll, u32 bpp,
u32 accel)
{
struct atyfb_par *par = (struct atyfb_par *) info->par;
aty_st_le32(BUS_CNTL, 0x890e20f1, par);
aty_st_le32(DAC_CNTL, 0x47052100, par);
/* new in 2.2.3p1 from Geert. ???????? */
aty_st_le32(BUS_CNTL, 0x590e10ff, par);
aty_st_le32(DAC_CNTL, 0x47012100, par);
return 0;
}
static int dummy(void)
{
return 0;
}
const struct aty_dac_ops aty_dac_unsupported = {
.set_dac = aty_set_dac_unsupported,
};
const struct aty_pll_ops aty_pll_unsupported = {
.var_to_pll = (void *) dummy,
.pll_to_var = (void *) dummy,
.set_pll = (void *) dummy,
};