OpenCloudOS-Kernel/drivers/gpu/drm/ttm/ttm_bo_util.c

707 lines
16 KiB
C

/* SPDX-License-Identifier: GPL-2.0 OR MIT */
/**************************************************************************
*
* Copyright (c) 2007-2009 VMware, Inc., Palo Alto, CA., USA
* All Rights Reserved.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the
* "Software"), to deal in the Software without restriction, including
* without limitation the rights to use, copy, modify, merge, publish,
* distribute, sub license, and/or sell copies of the Software, and to
* permit persons to whom the Software is furnished to do so, subject to
* the following conditions:
*
* The above copyright notice and this permission notice (including the
* next paragraph) shall be included in all copies or substantial portions
* of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDERS, AUTHORS AND/OR ITS SUPPLIERS BE LIABLE FOR ANY CLAIM,
* DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
* OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE
* USE OR OTHER DEALINGS IN THE SOFTWARE.
*
**************************************************************************/
/*
* Authors: Thomas Hellstrom <thellstrom-at-vmware-dot-com>
*/
#include <drm/ttm/ttm_bo_driver.h>
#include <drm/ttm/ttm_placement.h>
#include <drm/drm_vma_manager.h>
#include <linux/io.h>
#include <linux/highmem.h>
#include <linux/wait.h>
#include <linux/slab.h>
#include <linux/vmalloc.h>
#include <linux/module.h>
#include <linux/dma-resv.h>
struct ttm_transfer_obj {
struct ttm_buffer_object base;
struct ttm_buffer_object *bo;
};
void ttm_bo_free_old_node(struct ttm_buffer_object *bo)
{
ttm_resource_free(bo, &bo->mem);
}
int ttm_bo_move_ttm(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_mem)
{
struct ttm_tt *ttm = bo->ttm;
struct ttm_resource *old_mem = &bo->mem;
int ret;
if (old_mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
if (unlikely(ret != 0)) {
if (ret != -ERESTARTSYS)
pr_err("Failed to expire sync object before unbinding TTM\n");
return ret;
}
ttm_tt_unbind(bo->bdev, ttm);
ttm_bo_free_old_node(bo);
ttm_flag_masked(&old_mem->placement, TTM_PL_FLAG_SYSTEM,
TTM_PL_MASK_MEM);
old_mem->mem_type = TTM_PL_SYSTEM;
}
ret = ttm_tt_set_placement_caching(ttm, new_mem->placement);
if (unlikely(ret != 0))
return ret;
if (new_mem->mem_type != TTM_PL_SYSTEM) {
ret = ttm_tt_bind(bo->bdev, ttm, new_mem, ctx);
if (unlikely(ret != 0))
return ret;
}
*old_mem = *new_mem;
new_mem->mm_node = NULL;
return 0;
}
EXPORT_SYMBOL(ttm_bo_move_ttm);
int ttm_mem_io_reserve(struct ttm_bo_device *bdev,
struct ttm_resource *mem)
{
if (mem->bus.offset || mem->bus.addr)
return 0;
mem->bus.is_iomem = false;
if (!bdev->driver->io_mem_reserve)
return 0;
return bdev->driver->io_mem_reserve(bdev, mem);
}
void ttm_mem_io_free(struct ttm_bo_device *bdev,
struct ttm_resource *mem)
{
if (!mem->bus.offset && !mem->bus.addr)
return;
if (bdev->driver->io_mem_free)
bdev->driver->io_mem_free(bdev, mem);
mem->bus.offset = 0;
mem->bus.addr = NULL;
}
static int ttm_resource_ioremap(struct ttm_bo_device *bdev,
struct ttm_resource *mem,
void **virtual)
{
int ret;
void *addr;
*virtual = NULL;
ret = ttm_mem_io_reserve(bdev, mem);
if (ret || !mem->bus.is_iomem)
return ret;
if (mem->bus.addr) {
addr = mem->bus.addr;
} else {
size_t bus_size = (size_t)mem->num_pages << PAGE_SHIFT;
if (mem->placement & TTM_PL_FLAG_WC)
addr = ioremap_wc(mem->bus.offset, bus_size);
else
addr = ioremap(mem->bus.offset, bus_size);
if (!addr) {
ttm_mem_io_free(bdev, mem);
return -ENOMEM;
}
}
*virtual = addr;
return 0;
}
static void ttm_resource_iounmap(struct ttm_bo_device *bdev,
struct ttm_resource *mem,
void *virtual)
{
if (virtual && mem->bus.addr == NULL)
iounmap(virtual);
ttm_mem_io_free(bdev, mem);
}
static int ttm_copy_io_page(void *dst, void *src, unsigned long page)
{
uint32_t *dstP =
(uint32_t *) ((unsigned long)dst + (page << PAGE_SHIFT));
uint32_t *srcP =
(uint32_t *) ((unsigned long)src + (page << PAGE_SHIFT));
int i;
for (i = 0; i < PAGE_SIZE / sizeof(uint32_t); ++i)
iowrite32(ioread32(srcP++), dstP++);
return 0;
}
static int ttm_copy_io_ttm_page(struct ttm_tt *ttm, void *src,
unsigned long page,
pgprot_t prot)
{
struct page *d = ttm->pages[page];
void *dst;
if (!d)
return -ENOMEM;
src = (void *)((unsigned long)src + (page << PAGE_SHIFT));
dst = kmap_atomic_prot(d, prot);
if (!dst)
return -ENOMEM;
memcpy_fromio(dst, src, PAGE_SIZE);
kunmap_atomic(dst);
return 0;
}
static int ttm_copy_ttm_io_page(struct ttm_tt *ttm, void *dst,
unsigned long page,
pgprot_t prot)
{
struct page *s = ttm->pages[page];
void *src;
if (!s)
return -ENOMEM;
dst = (void *)((unsigned long)dst + (page << PAGE_SHIFT));
src = kmap_atomic_prot(s, prot);
if (!src)
return -ENOMEM;
memcpy_toio(dst, src, PAGE_SIZE);
kunmap_atomic(src);
return 0;
}
int ttm_bo_move_memcpy(struct ttm_buffer_object *bo,
struct ttm_operation_ctx *ctx,
struct ttm_resource *new_mem)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
struct ttm_tt *ttm = bo->ttm;
struct ttm_resource *old_mem = &bo->mem;
struct ttm_resource old_copy = *old_mem;
void *old_iomap;
void *new_iomap;
int ret;
unsigned long i;
unsigned long page;
unsigned long add = 0;
int dir;
ret = ttm_bo_wait(bo, ctx->interruptible, ctx->no_wait_gpu);
if (ret)
return ret;
ret = ttm_resource_ioremap(bdev, old_mem, &old_iomap);
if (ret)
return ret;
ret = ttm_resource_ioremap(bdev, new_mem, &new_iomap);
if (ret)
goto out;
/*
* Single TTM move. NOP.
*/
if (old_iomap == NULL && new_iomap == NULL)
goto out2;
/*
* Don't move nonexistent data. Clear destination instead.
*/
if (old_iomap == NULL &&
(ttm == NULL || (ttm->state == tt_unpopulated &&
!(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)))) {
memset_io(new_iomap, 0, new_mem->num_pages*PAGE_SIZE);
goto out2;
}
/*
* TTM might be null for moves within the same region.
*/
if (ttm) {
ret = ttm_tt_populate(bdev, ttm, ctx);
if (ret)
goto out1;
}
add = 0;
dir = 1;
if ((old_mem->mem_type == new_mem->mem_type) &&
(new_mem->start < old_mem->start + old_mem->size)) {
dir = -1;
add = new_mem->num_pages - 1;
}
for (i = 0; i < new_mem->num_pages; ++i) {
page = i * dir + add;
if (old_iomap == NULL) {
pgprot_t prot = ttm_io_prot(old_mem->placement,
PAGE_KERNEL);
ret = ttm_copy_ttm_io_page(ttm, new_iomap, page,
prot);
} else if (new_iomap == NULL) {
pgprot_t prot = ttm_io_prot(new_mem->placement,
PAGE_KERNEL);
ret = ttm_copy_io_ttm_page(ttm, old_iomap, page,
prot);
} else {
ret = ttm_copy_io_page(new_iomap, old_iomap, page);
}
if (ret)
goto out1;
}
mb();
out2:
old_copy = *old_mem;
*old_mem = *new_mem;
new_mem->mm_node = NULL;
if (!man->use_tt) {
ttm_tt_destroy(bdev, ttm);
bo->ttm = NULL;
}
out1:
ttm_resource_iounmap(bdev, old_mem, new_iomap);
out:
ttm_resource_iounmap(bdev, &old_copy, old_iomap);
/*
* On error, keep the mm node!
*/
if (!ret)
ttm_resource_free(bo, &old_copy);
return ret;
}
EXPORT_SYMBOL(ttm_bo_move_memcpy);
static void ttm_transfered_destroy(struct ttm_buffer_object *bo)
{
struct ttm_transfer_obj *fbo;
fbo = container_of(bo, struct ttm_transfer_obj, base);
ttm_bo_put(fbo->bo);
kfree(fbo);
}
/**
* ttm_buffer_object_transfer
*
* @bo: A pointer to a struct ttm_buffer_object.
* @new_obj: A pointer to a pointer to a newly created ttm_buffer_object,
* holding the data of @bo with the old placement.
*
* This is a utility function that may be called after an accelerated move
* has been scheduled. A new buffer object is created as a placeholder for
* the old data while it's being copied. When that buffer object is idle,
* it can be destroyed, releasing the space of the old placement.
* Returns:
* !0: Failure.
*/
static int ttm_buffer_object_transfer(struct ttm_buffer_object *bo,
struct ttm_buffer_object **new_obj)
{
struct ttm_transfer_obj *fbo;
int ret;
fbo = kmalloc(sizeof(*fbo), GFP_KERNEL);
if (!fbo)
return -ENOMEM;
fbo->base = *bo;
fbo->base.mem.placement |= TTM_PL_FLAG_NO_EVICT;
ttm_bo_get(bo);
fbo->bo = bo;
/**
* Fix up members that we shouldn't copy directly:
* TODO: Explicit member copy would probably be better here.
*/
atomic_inc(&ttm_bo_glob.bo_count);
INIT_LIST_HEAD(&fbo->base.ddestroy);
INIT_LIST_HEAD(&fbo->base.lru);
INIT_LIST_HEAD(&fbo->base.swap);
fbo->base.moving = NULL;
drm_vma_node_reset(&fbo->base.base.vma_node);
kref_init(&fbo->base.kref);
fbo->base.destroy = &ttm_transfered_destroy;
fbo->base.acc_size = 0;
if (bo->type != ttm_bo_type_sg)
fbo->base.base.resv = &fbo->base.base._resv;
dma_resv_init(&fbo->base.base._resv);
fbo->base.base.dev = NULL;
ret = dma_resv_trylock(&fbo->base.base._resv);
WARN_ON(!ret);
*new_obj = &fbo->base;
return 0;
}
pgprot_t ttm_io_prot(uint32_t caching_flags, pgprot_t tmp)
{
/* Cached mappings need no adjustment */
if (caching_flags & TTM_PL_FLAG_CACHED)
return tmp;
#if defined(__i386__) || defined(__x86_64__)
if (caching_flags & TTM_PL_FLAG_WC)
tmp = pgprot_writecombine(tmp);
else if (boot_cpu_data.x86 > 3)
tmp = pgprot_noncached(tmp);
#endif
#if defined(__ia64__) || defined(__arm__) || defined(__aarch64__) || \
defined(__powerpc__) || defined(__mips__)
if (caching_flags & TTM_PL_FLAG_WC)
tmp = pgprot_writecombine(tmp);
else
tmp = pgprot_noncached(tmp);
#endif
#if defined(__sparc__)
tmp = pgprot_noncached(tmp);
#endif
return tmp;
}
EXPORT_SYMBOL(ttm_io_prot);
static int ttm_bo_ioremap(struct ttm_buffer_object *bo,
unsigned long offset,
unsigned long size,
struct ttm_bo_kmap_obj *map)
{
struct ttm_resource *mem = &bo->mem;
if (bo->mem.bus.addr) {
map->bo_kmap_type = ttm_bo_map_premapped;
map->virtual = (void *)(((u8 *)bo->mem.bus.addr) + offset);
} else {
map->bo_kmap_type = ttm_bo_map_iomap;
if (mem->placement & TTM_PL_FLAG_WC)
map->virtual = ioremap_wc(bo->mem.bus.offset + offset,
size);
else
map->virtual = ioremap(bo->mem.bus.offset + offset,
size);
}
return (!map->virtual) ? -ENOMEM : 0;
}
static int ttm_bo_kmap_ttm(struct ttm_buffer_object *bo,
unsigned long start_page,
unsigned long num_pages,
struct ttm_bo_kmap_obj *map)
{
struct ttm_resource *mem = &bo->mem;
struct ttm_operation_ctx ctx = {
.interruptible = false,
.no_wait_gpu = false
};
struct ttm_tt *ttm = bo->ttm;
pgprot_t prot;
int ret;
BUG_ON(!ttm);
ret = ttm_tt_populate(bo->bdev, ttm, &ctx);
if (ret)
return ret;
if (num_pages == 1 && (mem->placement & TTM_PL_FLAG_CACHED)) {
/*
* We're mapping a single page, and the desired
* page protection is consistent with the bo.
*/
map->bo_kmap_type = ttm_bo_map_kmap;
map->page = ttm->pages[start_page];
map->virtual = kmap(map->page);
} else {
/*
* We need to use vmap to get the desired page protection
* or to make the buffer object look contiguous.
*/
prot = ttm_io_prot(mem->placement, PAGE_KERNEL);
map->bo_kmap_type = ttm_bo_map_vmap;
map->virtual = vmap(ttm->pages + start_page, num_pages,
0, prot);
}
return (!map->virtual) ? -ENOMEM : 0;
}
int ttm_bo_kmap(struct ttm_buffer_object *bo,
unsigned long start_page, unsigned long num_pages,
struct ttm_bo_kmap_obj *map)
{
unsigned long offset, size;
int ret;
map->virtual = NULL;
map->bo = bo;
if (num_pages > bo->num_pages)
return -EINVAL;
if (start_page > bo->num_pages)
return -EINVAL;
ret = ttm_mem_io_reserve(bo->bdev, &bo->mem);
if (ret)
return ret;
if (!bo->mem.bus.is_iomem) {
return ttm_bo_kmap_ttm(bo, start_page, num_pages, map);
} else {
offset = start_page << PAGE_SHIFT;
size = num_pages << PAGE_SHIFT;
return ttm_bo_ioremap(bo, offset, size, map);
}
}
EXPORT_SYMBOL(ttm_bo_kmap);
void ttm_bo_kunmap(struct ttm_bo_kmap_obj *map)
{
if (!map->virtual)
return;
switch (map->bo_kmap_type) {
case ttm_bo_map_iomap:
iounmap(map->virtual);
break;
case ttm_bo_map_vmap:
vunmap(map->virtual);
break;
case ttm_bo_map_kmap:
kunmap(map->page);
break;
case ttm_bo_map_premapped:
break;
default:
BUG();
}
ttm_mem_io_free(map->bo->bdev, &map->bo->mem);
map->virtual = NULL;
map->page = NULL;
}
EXPORT_SYMBOL(ttm_bo_kunmap);
int ttm_bo_move_accel_cleanup(struct ttm_buffer_object *bo,
struct dma_fence *fence,
bool evict,
struct ttm_resource *new_mem)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_resource_manager *man = ttm_manager_type(bdev, new_mem->mem_type);
struct ttm_resource *old_mem = &bo->mem;
int ret;
struct ttm_buffer_object *ghost_obj;
dma_resv_add_excl_fence(bo->base.resv, fence);
if (evict) {
ret = ttm_bo_wait(bo, false, false);
if (ret)
return ret;
if (!man->use_tt) {
ttm_tt_destroy(bdev, bo->ttm);
bo->ttm = NULL;
}
ttm_bo_free_old_node(bo);
} else {
/**
* This should help pipeline ordinary buffer moves.
*
* Hang old buffer memory on a new buffer object,
* and leave it to be released when the GPU
* operation has completed.
*/
dma_fence_put(bo->moving);
bo->moving = dma_fence_get(fence);
ret = ttm_buffer_object_transfer(bo, &ghost_obj);
if (ret)
return ret;
dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
/**
* If we're not moving to fixed memory, the TTM object
* needs to stay alive. Otherwhise hang it on the ghost
* bo to be unbound and destroyed.
*/
if (man->use_tt)
ghost_obj->ttm = NULL;
else
bo->ttm = NULL;
dma_resv_unlock(&ghost_obj->base._resv);
ttm_bo_put(ghost_obj);
}
*old_mem = *new_mem;
new_mem->mm_node = NULL;
return 0;
}
EXPORT_SYMBOL(ttm_bo_move_accel_cleanup);
int ttm_bo_pipeline_move(struct ttm_buffer_object *bo,
struct dma_fence *fence, bool evict,
struct ttm_resource *new_mem)
{
struct ttm_bo_device *bdev = bo->bdev;
struct ttm_resource *old_mem = &bo->mem;
struct ttm_resource_manager *from = ttm_manager_type(bdev, old_mem->mem_type);
struct ttm_resource_manager *to = ttm_manager_type(bdev, new_mem->mem_type);
int ret;
dma_resv_add_excl_fence(bo->base.resv, fence);
if (!evict) {
struct ttm_buffer_object *ghost_obj;
/**
* This should help pipeline ordinary buffer moves.
*
* Hang old buffer memory on a new buffer object,
* and leave it to be released when the GPU
* operation has completed.
*/
dma_fence_put(bo->moving);
bo->moving = dma_fence_get(fence);
ret = ttm_buffer_object_transfer(bo, &ghost_obj);
if (ret)
return ret;
dma_resv_add_excl_fence(&ghost_obj->base._resv, fence);
/**
* If we're not moving to fixed memory, the TTM object
* needs to stay alive. Otherwhise hang it on the ghost
* bo to be unbound and destroyed.
*/
if (to->use_tt)
ghost_obj->ttm = NULL;
else
bo->ttm = NULL;
dma_resv_unlock(&ghost_obj->base._resv);
ttm_bo_put(ghost_obj);
} else if (!from->use_tt) {
/**
* BO doesn't have a TTM we need to bind/unbind. Just remember
* this eviction and free up the allocation
*/
spin_lock(&from->move_lock);
if (!from->move || dma_fence_is_later(fence, from->move)) {
dma_fence_put(from->move);
from->move = dma_fence_get(fence);
}
spin_unlock(&from->move_lock);
ttm_bo_free_old_node(bo);
dma_fence_put(bo->moving);
bo->moving = dma_fence_get(fence);
} else {
/**
* Last resort, wait for the move to be completed.
*
* Should never happen in pratice.
*/
ret = ttm_bo_wait(bo, false, false);
if (ret)
return ret;
if (!to->use_tt) {
ttm_tt_destroy(bdev, bo->ttm);
bo->ttm = NULL;
}
ttm_bo_free_old_node(bo);
}
*old_mem = *new_mem;
new_mem->mm_node = NULL;
return 0;
}
EXPORT_SYMBOL(ttm_bo_pipeline_move);
int ttm_bo_pipeline_gutting(struct ttm_buffer_object *bo)
{
struct ttm_buffer_object *ghost;
int ret;
ret = ttm_buffer_object_transfer(bo, &ghost);
if (ret)
return ret;
ret = dma_resv_copy_fences(&ghost->base._resv, bo->base.resv);
/* Last resort, wait for the BO to be idle when we are OOM */
if (ret)
ttm_bo_wait(bo, false, false);
memset(&bo->mem, 0, sizeof(bo->mem));
bo->mem.mem_type = TTM_PL_SYSTEM;
bo->ttm = NULL;
dma_resv_unlock(&ghost->base._resv);
ttm_bo_put(ghost);
return 0;
}