OpenCloudOS-Kernel/drivers/firmware/efi/libstub/random.c

195 lines
5.4 KiB
C

/*
* Copyright (C) 2016 Linaro Ltd; <ard.biesheuvel@linaro.org>
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*
*/
#include <linux/efi.h>
#include <linux/log2.h>
#include <asm/efi.h>
#include "efistub.h"
struct efi_rng_protocol {
efi_status_t (*get_info)(struct efi_rng_protocol *,
unsigned long *, efi_guid_t *);
efi_status_t (*get_rng)(struct efi_rng_protocol *,
efi_guid_t *, unsigned long, u8 *out);
};
efi_status_t efi_get_random_bytes(efi_system_table_t *sys_table_arg,
unsigned long size, u8 *out)
{
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
efi_status_t status;
struct efi_rng_protocol *rng;
status = efi_call_early(locate_protocol, &rng_proto, NULL,
(void **)&rng);
if (status != EFI_SUCCESS)
return status;
return rng->get_rng(rng, NULL, size, out);
}
/*
* Return the number of slots covered by this entry, i.e., the number of
* addresses it covers that are suitably aligned and supply enough room
* for the allocation.
*/
static unsigned long get_entry_num_slots(efi_memory_desc_t *md,
unsigned long size,
unsigned long align_shift)
{
unsigned long align = 1UL << align_shift;
u64 first_slot, last_slot, region_end;
if (md->type != EFI_CONVENTIONAL_MEMORY)
return 0;
region_end = min((u64)ULONG_MAX, md->phys_addr + md->num_pages*EFI_PAGE_SIZE - 1);
first_slot = round_up(md->phys_addr, align);
last_slot = round_down(region_end - size + 1, align);
if (first_slot > last_slot)
return 0;
return ((unsigned long)(last_slot - first_slot) >> align_shift) + 1;
}
/*
* The UEFI memory descriptors have a virtual address field that is only used
* when installing the virtual mapping using SetVirtualAddressMap(). Since it
* is unused here, we can reuse it to keep track of each descriptor's slot
* count.
*/
#define MD_NUM_SLOTS(md) ((md)->virt_addr)
efi_status_t efi_random_alloc(efi_system_table_t *sys_table_arg,
unsigned long size,
unsigned long align,
unsigned long *addr,
unsigned long random_seed)
{
unsigned long map_size, desc_size, total_slots = 0, target_slot;
unsigned long buff_size;
efi_status_t status;
efi_memory_desc_t *memory_map;
int map_offset;
struct efi_boot_memmap map;
map.map = &memory_map;
map.map_size = &map_size;
map.desc_size = &desc_size;
map.desc_ver = NULL;
map.key_ptr = NULL;
map.buff_size = &buff_size;
status = efi_get_memory_map(sys_table_arg, &map);
if (status != EFI_SUCCESS)
return status;
if (align < EFI_ALLOC_ALIGN)
align = EFI_ALLOC_ALIGN;
/* count the suitable slots in each memory map entry */
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
unsigned long slots;
slots = get_entry_num_slots(md, size, ilog2(align));
MD_NUM_SLOTS(md) = slots;
total_slots += slots;
}
/* find a random number between 0 and total_slots */
target_slot = (total_slots * (u16)random_seed) >> 16;
/*
* target_slot is now a value in the range [0, total_slots), and so
* it corresponds with exactly one of the suitable slots we recorded
* when iterating over the memory map the first time around.
*
* So iterate over the memory map again, subtracting the number of
* slots of each entry at each iteration, until we have found the entry
* that covers our chosen slot. Use the residual value of target_slot
* to calculate the randomly chosen address, and allocate it directly
* using EFI_ALLOCATE_ADDRESS.
*/
for (map_offset = 0; map_offset < map_size; map_offset += desc_size) {
efi_memory_desc_t *md = (void *)memory_map + map_offset;
efi_physical_addr_t target;
unsigned long pages;
if (target_slot >= MD_NUM_SLOTS(md)) {
target_slot -= MD_NUM_SLOTS(md);
continue;
}
target = round_up(md->phys_addr, align) + target_slot * align;
pages = round_up(size, EFI_PAGE_SIZE) / EFI_PAGE_SIZE;
status = efi_call_early(allocate_pages, EFI_ALLOCATE_ADDRESS,
EFI_LOADER_DATA, pages, &target);
if (status == EFI_SUCCESS)
*addr = target;
break;
}
efi_call_early(free_pool, memory_map);
return status;
}
#define RANDOM_SEED_SIZE 32
efi_status_t efi_random_get_seed(efi_system_table_t *sys_table_arg)
{
efi_guid_t rng_proto = EFI_RNG_PROTOCOL_GUID;
efi_guid_t rng_algo_raw = EFI_RNG_ALGORITHM_RAW;
efi_guid_t rng_table_guid = LINUX_EFI_RANDOM_SEED_TABLE_GUID;
struct efi_rng_protocol *rng;
struct linux_efi_random_seed *seed;
efi_status_t status;
status = efi_call_early(locate_protocol, &rng_proto, NULL,
(void **)&rng);
if (status != EFI_SUCCESS)
return status;
status = efi_call_early(allocate_pool, EFI_RUNTIME_SERVICES_DATA,
sizeof(*seed) + RANDOM_SEED_SIZE,
(void **)&seed);
if (status != EFI_SUCCESS)
return status;
status = rng->get_rng(rng, &rng_algo_raw, RANDOM_SEED_SIZE,
seed->bits);
if (status == EFI_UNSUPPORTED)
/*
* Use whatever algorithm we have available if the raw algorithm
* is not implemented.
*/
status = rng->get_rng(rng, NULL, RANDOM_SEED_SIZE,
seed->bits);
if (status != EFI_SUCCESS)
goto err_freepool;
seed->size = RANDOM_SEED_SIZE;
status = efi_call_early(install_configuration_table, &rng_table_guid,
seed);
if (status != EFI_SUCCESS)
goto err_freepool;
return EFI_SUCCESS;
err_freepool:
efi_call_early(free_pool, seed);
return status;
}