OpenCloudOS-Kernel/drivers/crypto/inside-secure/safexcel_hash.c

1053 lines
27 KiB
C

/*
* Copyright (C) 2017 Marvell
*
* Antoine Tenart <antoine.tenart@free-electrons.com>
*
* This file is licensed under the terms of the GNU General Public
* License version 2. This program is licensed "as is" without any
* warranty of any kind, whether express or implied.
*/
#include <crypto/hmac.h>
#include <crypto/sha.h>
#include <linux/device.h>
#include <linux/dma-mapping.h>
#include <linux/dmapool.h>
#include "safexcel.h"
struct safexcel_ahash_ctx {
struct safexcel_context base;
struct safexcel_crypto_priv *priv;
u32 alg;
u32 digest;
u32 ipad[SHA1_DIGEST_SIZE / sizeof(u32)];
u32 opad[SHA1_DIGEST_SIZE / sizeof(u32)];
};
struct safexcel_ahash_req {
bool last_req;
bool finish;
bool hmac;
u8 state_sz; /* expected sate size, only set once */
u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
u64 len;
u64 processed;
u8 cache[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
u8 cache_next[SHA256_BLOCK_SIZE] __aligned(sizeof(u32));
};
struct safexcel_ahash_export_state {
u64 len;
u64 processed;
u32 state[SHA256_DIGEST_SIZE / sizeof(u32)];
u8 cache[SHA256_BLOCK_SIZE];
};
static void safexcel_hash_token(struct safexcel_command_desc *cdesc,
u32 input_length, u32 result_length)
{
struct safexcel_token *token =
(struct safexcel_token *)cdesc->control_data.token;
token[0].opcode = EIP197_TOKEN_OPCODE_DIRECTION;
token[0].packet_length = input_length;
token[0].stat = EIP197_TOKEN_STAT_LAST_HASH;
token[0].instructions = EIP197_TOKEN_INS_TYPE_HASH;
token[1].opcode = EIP197_TOKEN_OPCODE_INSERT;
token[1].packet_length = result_length;
token[1].stat = EIP197_TOKEN_STAT_LAST_HASH |
EIP197_TOKEN_STAT_LAST_PACKET;
token[1].instructions = EIP197_TOKEN_INS_TYPE_OUTPUT |
EIP197_TOKEN_INS_INSERT_HASH_DIGEST;
}
static void safexcel_context_control(struct safexcel_ahash_ctx *ctx,
struct safexcel_ahash_req *req,
struct safexcel_command_desc *cdesc,
unsigned int digestsize,
unsigned int blocksize)
{
int i;
cdesc->control_data.control0 |= CONTEXT_CONTROL_TYPE_HASH_OUT;
cdesc->control_data.control0 |= ctx->alg;
cdesc->control_data.control0 |= ctx->digest;
if (ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED) {
if (req->processed) {
if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(6);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224 ||
ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(9);
cdesc->control_data.control1 |= CONTEXT_CONTROL_DIGEST_CNT;
} else {
cdesc->control_data.control0 |= CONTEXT_CONTROL_RESTART_HASH;
}
if (!req->finish)
cdesc->control_data.control0 |= CONTEXT_CONTROL_NO_FINISH_HASH;
/*
* Copy the input digest if needed, and setup the context
* fields. Do this now as we need it to setup the first command
* descriptor.
*/
if (req->processed) {
for (i = 0; i < digestsize / sizeof(u32); i++)
ctx->base.ctxr->data[i] = cpu_to_le32(req->state[i]);
if (req->finish)
ctx->base.ctxr->data[i] = cpu_to_le32(req->processed / blocksize);
}
} else if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC) {
cdesc->control_data.control0 |= CONTEXT_CONTROL_SIZE(10);
memcpy(ctx->base.ctxr->data, ctx->ipad, digestsize);
memcpy(ctx->base.ctxr->data + digestsize / sizeof(u32),
ctx->opad, digestsize);
}
}
static int safexcel_handle_result(struct safexcel_crypto_priv *priv, int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct safexcel_result_desc *rdesc;
struct ahash_request *areq = ahash_request_cast(async);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_req *sreq = ahash_request_ctx(areq);
int cache_len, result_sz = sreq->state_sz;
*ret = 0;
spin_lock_bh(&priv->ring[ring].egress_lock);
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"hash: result: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
} else if (rdesc->result_data.error_code) {
dev_err(priv->dev,
"hash: result: result descriptor error (%d)\n",
rdesc->result_data.error_code);
*ret = -EINVAL;
}
safexcel_complete(priv, ring);
spin_unlock_bh(&priv->ring[ring].egress_lock);
if (sreq->finish)
result_sz = crypto_ahash_digestsize(ahash);
memcpy(sreq->state, areq->result, result_sz);
dma_unmap_sg(priv->dev, areq->src,
sg_nents_for_len(areq->src, areq->nbytes), DMA_TO_DEVICE);
safexcel_free_context(priv, async, sreq->state_sz);
cache_len = sreq->len - sreq->processed;
if (cache_len)
memcpy(sreq->cache, sreq->cache_next, cache_len);
*should_complete = true;
return 1;
}
static int safexcel_ahash_send(struct crypto_async_request *async, int ring,
struct safexcel_request *request, int *commands,
int *results)
{
struct ahash_request *areq = ahash_request_cast(async);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_crypto_priv *priv = ctx->priv;
struct safexcel_command_desc *cdesc, *first_cdesc = NULL;
struct safexcel_result_desc *rdesc;
struct scatterlist *sg;
int i, nents, queued, len, cache_len, extra, n_cdesc = 0, ret = 0;
queued = len = req->len - req->processed;
if (queued < crypto_ahash_blocksize(ahash))
cache_len = queued;
else
cache_len = queued - areq->nbytes;
/*
* If this is not the last request and the queued data does not fit
* into full blocks, cache it for the next send() call.
*/
extra = queued & (crypto_ahash_blocksize(ahash) - 1);
if (!req->last_req && extra) {
sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
req->cache_next, extra, areq->nbytes - extra);
queued -= extra;
len -= extra;
}
spin_lock_bh(&priv->ring[ring].egress_lock);
/* Add a command descriptor for the cached data, if any */
if (cache_len) {
ctx->base.cache = kzalloc(cache_len, EIP197_GFP_FLAGS(*async));
if (!ctx->base.cache) {
ret = -ENOMEM;
goto unlock;
}
memcpy(ctx->base.cache, req->cache, cache_len);
ctx->base.cache_dma = dma_map_single(priv->dev, ctx->base.cache,
cache_len, DMA_TO_DEVICE);
if (dma_mapping_error(priv->dev, ctx->base.cache_dma)) {
ret = -EINVAL;
goto free_cache;
}
ctx->base.cache_sz = cache_len;
first_cdesc = safexcel_add_cdesc(priv, ring, 1,
(cache_len == len),
ctx->base.cache_dma,
cache_len, len,
ctx->base.ctxr_dma);
if (IS_ERR(first_cdesc)) {
ret = PTR_ERR(first_cdesc);
goto unmap_cache;
}
n_cdesc++;
queued -= cache_len;
if (!queued)
goto send_command;
}
/* Now handle the current ahash request buffer(s) */
nents = dma_map_sg(priv->dev, areq->src,
sg_nents_for_len(areq->src, areq->nbytes),
DMA_TO_DEVICE);
if (!nents) {
ret = -ENOMEM;
goto cdesc_rollback;
}
for_each_sg(areq->src, sg, nents, i) {
int sglen = sg_dma_len(sg);
/* Do not overflow the request */
if (queued - sglen < 0)
sglen = queued;
cdesc = safexcel_add_cdesc(priv, ring, !n_cdesc,
!(queued - sglen), sg_dma_address(sg),
sglen, len, ctx->base.ctxr_dma);
if (IS_ERR(cdesc)) {
ret = PTR_ERR(cdesc);
goto cdesc_rollback;
}
n_cdesc++;
if (n_cdesc == 1)
first_cdesc = cdesc;
queued -= sglen;
if (!queued)
break;
}
send_command:
/* Setup the context options */
safexcel_context_control(ctx, req, first_cdesc, req->state_sz,
crypto_ahash_blocksize(ahash));
/* Add the token */
safexcel_hash_token(first_cdesc, len, req->state_sz);
ctx->base.result_dma = dma_map_single(priv->dev, areq->result,
req->state_sz, DMA_FROM_DEVICE);
if (dma_mapping_error(priv->dev, ctx->base.result_dma)) {
ret = -EINVAL;
goto cdesc_rollback;
}
/* Add a result descriptor */
rdesc = safexcel_add_rdesc(priv, ring, 1, 1, ctx->base.result_dma,
req->state_sz);
if (IS_ERR(rdesc)) {
ret = PTR_ERR(rdesc);
goto cdesc_rollback;
}
spin_unlock_bh(&priv->ring[ring].egress_lock);
req->processed += len;
request->req = &areq->base;
ctx->base.handle_result = safexcel_handle_result;
*commands = n_cdesc;
*results = 1;
return 0;
cdesc_rollback:
for (i = 0; i < n_cdesc; i++)
safexcel_ring_rollback_wptr(priv, &priv->ring[ring].cdr);
unmap_cache:
if (ctx->base.cache_dma) {
dma_unmap_single(priv->dev, ctx->base.cache_dma,
ctx->base.cache_sz, DMA_TO_DEVICE);
ctx->base.cache_sz = 0;
}
free_cache:
if (ctx->base.cache) {
kfree(ctx->base.cache);
ctx->base.cache = NULL;
}
unlock:
spin_unlock_bh(&priv->ring[ring].egress_lock);
return ret;
}
static inline bool safexcel_ahash_needs_inv_get(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
unsigned int state_w_sz = req->state_sz / sizeof(u32);
int i;
for (i = 0; i < state_w_sz; i++)
if (ctx->base.ctxr->data[i] != cpu_to_le32(req->state[i]))
return true;
if (ctx->base.ctxr->data[state_w_sz] !=
cpu_to_le32(req->processed / crypto_ahash_blocksize(ahash)))
return true;
return false;
}
static int safexcel_handle_inv_result(struct safexcel_crypto_priv *priv,
int ring,
struct crypto_async_request *async,
bool *should_complete, int *ret)
{
struct safexcel_result_desc *rdesc;
struct ahash_request *areq = ahash_request_cast(async);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(ahash);
int enq_ret;
*ret = 0;
spin_lock_bh(&priv->ring[ring].egress_lock);
rdesc = safexcel_ring_next_rptr(priv, &priv->ring[ring].rdr);
if (IS_ERR(rdesc)) {
dev_err(priv->dev,
"hash: invalidate: could not retrieve the result descriptor\n");
*ret = PTR_ERR(rdesc);
} else if (rdesc->result_data.error_code) {
dev_err(priv->dev,
"hash: invalidate: result descriptor error (%d)\n",
rdesc->result_data.error_code);
*ret = -EINVAL;
}
safexcel_complete(priv, ring);
spin_unlock_bh(&priv->ring[ring].egress_lock);
if (ctx->base.exit_inv) {
dma_pool_free(priv->context_pool, ctx->base.ctxr,
ctx->base.ctxr_dma);
*should_complete = true;
return 1;
}
ring = safexcel_select_ring(priv);
ctx->base.ring = ring;
ctx->base.needs_inv = false;
ctx->base.send = safexcel_ahash_send;
spin_lock_bh(&priv->ring[ring].queue_lock);
enq_ret = crypto_enqueue_request(&priv->ring[ring].queue, async);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (enq_ret != -EINPROGRESS)
*ret = enq_ret;
if (!priv->ring[ring].need_dequeue)
safexcel_dequeue(priv, ring);
*should_complete = false;
return 1;
}
static int safexcel_ahash_send_inv(struct crypto_async_request *async,
int ring, struct safexcel_request *request,
int *commands, int *results)
{
struct ahash_request *areq = ahash_request_cast(async);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
int ret;
ctx->base.handle_result = safexcel_handle_inv_result;
ret = safexcel_invalidate_cache(async, &ctx->base, ctx->priv,
ctx->base.ctxr_dma, ring, request);
if (unlikely(ret))
return ret;
*commands = 1;
*results = 1;
return 0;
}
static int safexcel_ahash_exit_inv(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
struct ahash_request req;
struct safexcel_inv_result result = { 0 };
int ring = ctx->base.ring;
memset(&req, 0, sizeof(struct ahash_request));
/* create invalidation request */
init_completion(&result.completion);
ahash_request_set_callback(&req, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_inv_complete, &result);
ahash_request_set_tfm(&req, __crypto_ahash_cast(tfm));
ctx = crypto_tfm_ctx(req.base.tfm);
ctx->base.exit_inv = true;
ctx->base.send = safexcel_ahash_send_inv;
spin_lock_bh(&priv->ring[ring].queue_lock);
crypto_enqueue_request(&priv->ring[ring].queue, &req.base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (!priv->ring[ring].need_dequeue)
safexcel_dequeue(priv, ring);
wait_for_completion_interruptible(&result.completion);
if (result.error) {
dev_warn(priv->dev, "hash: completion error (%d)\n",
result.error);
return result.error;
}
return 0;
}
static int safexcel_ahash_cache(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
int queued, cache_len;
cache_len = req->len - areq->nbytes - req->processed;
queued = req->len - req->processed;
/*
* In case there isn't enough bytes to proceed (less than a
* block size), cache the data until we have enough.
*/
if (cache_len + areq->nbytes <= crypto_ahash_blocksize(ahash)) {
sg_pcopy_to_buffer(areq->src, sg_nents(areq->src),
req->cache + cache_len,
areq->nbytes, 0);
return areq->nbytes;
}
/* We could'nt cache all the data */
return -E2BIG;
}
static int safexcel_ahash_enqueue(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret, ring;
ctx->base.send = safexcel_ahash_send;
if (req->processed && ctx->digest == CONTEXT_CONTROL_DIGEST_PRECOMPUTED)
ctx->base.needs_inv = safexcel_ahash_needs_inv_get(areq);
if (ctx->base.ctxr) {
if (ctx->base.needs_inv)
ctx->base.send = safexcel_ahash_send_inv;
} else {
ctx->base.ring = safexcel_select_ring(priv);
ctx->base.ctxr = dma_pool_zalloc(priv->context_pool,
EIP197_GFP_FLAGS(areq->base),
&ctx->base.ctxr_dma);
if (!ctx->base.ctxr)
return -ENOMEM;
}
ring = ctx->base.ring;
spin_lock_bh(&priv->ring[ring].queue_lock);
ret = crypto_enqueue_request(&priv->ring[ring].queue, &areq->base);
spin_unlock_bh(&priv->ring[ring].queue_lock);
if (!priv->ring[ring].need_dequeue)
safexcel_dequeue(priv, ring);
return ret;
}
static int safexcel_ahash_update(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
/* If the request is 0 length, do nothing */
if (!areq->nbytes)
return 0;
req->len += areq->nbytes;
safexcel_ahash_cache(areq);
/*
* We're not doing partial updates when performing an hmac request.
* Everything will be handled by the final() call.
*/
if (ctx->digest == CONTEXT_CONTROL_DIGEST_HMAC)
return 0;
if (req->hmac)
return safexcel_ahash_enqueue(areq);
if (!req->last_req &&
req->len - req->processed > crypto_ahash_blocksize(ahash))
return safexcel_ahash_enqueue(areq);
return 0;
}
static int safexcel_ahash_final(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
req->last_req = true;
req->finish = true;
/* If we have an overall 0 length request */
if (!(req->len + areq->nbytes)) {
if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA1)
memcpy(areq->result, sha1_zero_message_hash,
SHA1_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA224)
memcpy(areq->result, sha224_zero_message_hash,
SHA224_DIGEST_SIZE);
else if (ctx->alg == CONTEXT_CONTROL_CRYPTO_ALG_SHA256)
memcpy(areq->result, sha256_zero_message_hash,
SHA256_DIGEST_SIZE);
return 0;
}
return safexcel_ahash_enqueue(areq);
}
static int safexcel_ahash_finup(struct ahash_request *areq)
{
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
req->last_req = true;
req->finish = true;
safexcel_ahash_update(areq);
return safexcel_ahash_final(areq);
}
static int safexcel_ahash_export(struct ahash_request *areq, void *out)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
struct safexcel_ahash_export_state *export = out;
export->len = req->len;
export->processed = req->processed;
memcpy(export->state, req->state, req->state_sz);
memset(export->cache, 0, crypto_ahash_blocksize(ahash));
memcpy(export->cache, req->cache, crypto_ahash_blocksize(ahash));
return 0;
}
static int safexcel_ahash_import(struct ahash_request *areq, const void *in)
{
struct crypto_ahash *ahash = crypto_ahash_reqtfm(areq);
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
const struct safexcel_ahash_export_state *export = in;
int ret;
ret = crypto_ahash_init(areq);
if (ret)
return ret;
req->len = export->len;
req->processed = export->processed;
memcpy(req->cache, export->cache, crypto_ahash_blocksize(ahash));
memcpy(req->state, export->state, req->state_sz);
return 0;
}
static int safexcel_ahash_cra_init(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_alg_template *tmpl =
container_of(__crypto_ahash_alg(tfm->__crt_alg),
struct safexcel_alg_template, alg.ahash);
ctx->priv = tmpl->priv;
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct safexcel_ahash_req));
return 0;
}
static int safexcel_sha1_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
req->state[0] = SHA1_H0;
req->state[1] = SHA1_H1;
req->state[2] = SHA1_H2;
req->state[3] = SHA1_H3;
req->state[4] = SHA1_H4;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA1;
ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA1_DIGEST_SIZE;
return 0;
}
static int safexcel_sha1_digest(struct ahash_request *areq)
{
int ret = safexcel_sha1_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
static void safexcel_ahash_cra_exit(struct crypto_tfm *tfm)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(tfm);
struct safexcel_crypto_priv *priv = ctx->priv;
int ret;
/* context not allocated, skip invalidation */
if (!ctx->base.ctxr)
return;
ret = safexcel_ahash_exit_inv(tfm);
if (ret)
dev_warn(priv->dev, "hash: invalidation error %d\n", ret);
}
struct safexcel_alg_template safexcel_alg_sha1 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.alg.ahash = {
.init = safexcel_sha1_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha1_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha1",
.cra_driver_name = "safexcel-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_hmac_sha1_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
safexcel_sha1_init(areq);
ctx->digest = CONTEXT_CONTROL_DIGEST_HMAC;
return 0;
}
static int safexcel_hmac_sha1_digest(struct ahash_request *areq)
{
int ret = safexcel_hmac_sha1_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_ahash_result {
struct completion completion;
int error;
};
static void safexcel_ahash_complete(struct crypto_async_request *req, int error)
{
struct safexcel_ahash_result *result = req->data;
if (error == -EINPROGRESS)
return;
result->error = error;
complete(&result->completion);
}
static int safexcel_hmac_init_pad(struct ahash_request *areq,
unsigned int blocksize, const u8 *key,
unsigned int keylen, u8 *ipad, u8 *opad)
{
struct safexcel_ahash_result result;
struct scatterlist sg;
int ret, i;
u8 *keydup;
if (keylen <= blocksize) {
memcpy(ipad, key, keylen);
} else {
keydup = kmemdup(key, keylen, GFP_KERNEL);
if (!keydup)
return -ENOMEM;
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_ahash_complete, &result);
sg_init_one(&sg, keydup, keylen);
ahash_request_set_crypt(areq, &sg, ipad, keylen);
init_completion(&result.completion);
ret = crypto_ahash_digest(areq);
if (ret == -EINPROGRESS) {
wait_for_completion_interruptible(&result.completion);
ret = result.error;
}
/* Avoid leaking */
memzero_explicit(keydup, keylen);
kfree(keydup);
if (ret)
return ret;
keylen = crypto_ahash_digestsize(crypto_ahash_reqtfm(areq));
}
memset(ipad + keylen, 0, blocksize - keylen);
memcpy(opad, ipad, blocksize);
for (i = 0; i < blocksize; i++) {
ipad[i] ^= HMAC_IPAD_VALUE;
opad[i] ^= HMAC_OPAD_VALUE;
}
return 0;
}
static int safexcel_hmac_init_iv(struct ahash_request *areq,
unsigned int blocksize, u8 *pad, void *state)
{
struct safexcel_ahash_result result;
struct safexcel_ahash_req *req;
struct scatterlist sg;
int ret;
ahash_request_set_callback(areq, CRYPTO_TFM_REQ_MAY_BACKLOG,
safexcel_ahash_complete, &result);
sg_init_one(&sg, pad, blocksize);
ahash_request_set_crypt(areq, &sg, pad, blocksize);
init_completion(&result.completion);
ret = crypto_ahash_init(areq);
if (ret)
return ret;
req = ahash_request_ctx(areq);
req->hmac = true;
req->last_req = true;
ret = crypto_ahash_update(areq);
if (ret && ret != -EINPROGRESS)
return ret;
wait_for_completion_interruptible(&result.completion);
if (result.error)
return result.error;
return crypto_ahash_export(areq, state);
}
static int safexcel_hmac_setkey(const char *alg, const u8 *key,
unsigned int keylen, void *istate, void *ostate)
{
struct ahash_request *areq;
struct crypto_ahash *tfm;
unsigned int blocksize;
u8 *ipad, *opad;
int ret;
tfm = crypto_alloc_ahash(alg, CRYPTO_ALG_TYPE_AHASH,
CRYPTO_ALG_TYPE_AHASH_MASK);
if (IS_ERR(tfm))
return PTR_ERR(tfm);
areq = ahash_request_alloc(tfm, GFP_KERNEL);
if (!areq) {
ret = -ENOMEM;
goto free_ahash;
}
crypto_ahash_clear_flags(tfm, ~0);
blocksize = crypto_tfm_alg_blocksize(crypto_ahash_tfm(tfm));
ipad = kzalloc(2 * blocksize, GFP_KERNEL);
if (!ipad) {
ret = -ENOMEM;
goto free_request;
}
opad = ipad + blocksize;
ret = safexcel_hmac_init_pad(areq, blocksize, key, keylen, ipad, opad);
if (ret)
goto free_ipad;
ret = safexcel_hmac_init_iv(areq, blocksize, ipad, istate);
if (ret)
goto free_ipad;
ret = safexcel_hmac_init_iv(areq, blocksize, opad, ostate);
free_ipad:
kfree(ipad);
free_request:
ahash_request_free(areq);
free_ahash:
crypto_free_ahash(tfm);
return ret;
}
static int safexcel_hmac_sha1_setkey(struct crypto_ahash *tfm, const u8 *key,
unsigned int keylen)
{
struct safexcel_ahash_ctx *ctx = crypto_tfm_ctx(crypto_ahash_tfm(tfm));
struct safexcel_ahash_export_state istate, ostate;
int ret, i;
ret = safexcel_hmac_setkey("safexcel-sha1", key, keylen, &istate, &ostate);
if (ret)
return ret;
memcpy(ctx->ipad, &istate.state, SHA1_DIGEST_SIZE);
memcpy(ctx->opad, &ostate.state, SHA1_DIGEST_SIZE);
for (i = 0; i < ARRAY_SIZE(istate.state); i++) {
if (ctx->ipad[i] != le32_to_cpu(istate.state[i]) ||
ctx->opad[i] != le32_to_cpu(ostate.state[i])) {
ctx->base.needs_inv = true;
break;
}
}
return 0;
}
struct safexcel_alg_template safexcel_alg_hmac_sha1 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.alg.ahash = {
.init = safexcel_hmac_sha1_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_hmac_sha1_digest,
.setkey = safexcel_hmac_sha1_setkey,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "hmac(sha1)",
.cra_driver_name = "safexcel-hmac-sha1",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha256_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
req->state[0] = SHA256_H0;
req->state[1] = SHA256_H1;
req->state[2] = SHA256_H2;
req->state[3] = SHA256_H3;
req->state[4] = SHA256_H4;
req->state[5] = SHA256_H5;
req->state[6] = SHA256_H6;
req->state[7] = SHA256_H7;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA256;
ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
static int safexcel_sha256_digest(struct ahash_request *areq)
{
int ret = safexcel_sha256_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha256 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.alg.ahash = {
.init = safexcel_sha256_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha256_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha256",
.cra_driver_name = "safexcel-sha256",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};
static int safexcel_sha224_init(struct ahash_request *areq)
{
struct safexcel_ahash_ctx *ctx = crypto_ahash_ctx(crypto_ahash_reqtfm(areq));
struct safexcel_ahash_req *req = ahash_request_ctx(areq);
memset(req, 0, sizeof(*req));
req->state[0] = SHA224_H0;
req->state[1] = SHA224_H1;
req->state[2] = SHA224_H2;
req->state[3] = SHA224_H3;
req->state[4] = SHA224_H4;
req->state[5] = SHA224_H5;
req->state[6] = SHA224_H6;
req->state[7] = SHA224_H7;
ctx->alg = CONTEXT_CONTROL_CRYPTO_ALG_SHA224;
ctx->digest = CONTEXT_CONTROL_DIGEST_PRECOMPUTED;
req->state_sz = SHA256_DIGEST_SIZE;
return 0;
}
static int safexcel_sha224_digest(struct ahash_request *areq)
{
int ret = safexcel_sha224_init(areq);
if (ret)
return ret;
return safexcel_ahash_finup(areq);
}
struct safexcel_alg_template safexcel_alg_sha224 = {
.type = SAFEXCEL_ALG_TYPE_AHASH,
.alg.ahash = {
.init = safexcel_sha224_init,
.update = safexcel_ahash_update,
.final = safexcel_ahash_final,
.finup = safexcel_ahash_finup,
.digest = safexcel_sha224_digest,
.export = safexcel_ahash_export,
.import = safexcel_ahash_import,
.halg = {
.digestsize = SHA224_DIGEST_SIZE,
.statesize = sizeof(struct safexcel_ahash_export_state),
.base = {
.cra_name = "sha224",
.cra_driver_name = "safexcel-sha224",
.cra_priority = 300,
.cra_flags = CRYPTO_ALG_ASYNC |
CRYPTO_ALG_KERN_DRIVER_ONLY,
.cra_blocksize = SHA224_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct safexcel_ahash_ctx),
.cra_init = safexcel_ahash_cra_init,
.cra_exit = safexcel_ahash_cra_exit,
.cra_module = THIS_MODULE,
},
},
},
};