OpenCloudOS-Kernel/include/linux/filter.h

1476 lines
40 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
/*
* Linux Socket Filter Data Structures
*/
#ifndef __LINUX_FILTER_H__
#define __LINUX_FILTER_H__
#include <stdarg.h>
#include <linux/atomic.h>
#include <linux/refcount.h>
#include <linux/compat.h>
#include <linux/skbuff.h>
#include <linux/linkage.h>
#include <linux/printk.h>
#include <linux/workqueue.h>
#include <linux/sched.h>
#include <linux/capability.h>
#include <linux/set_memory.h>
#include <linux/kallsyms.h>
#include <linux/if_vlan.h>
#include <linux/vmalloc.h>
#include <linux/sockptr.h>
#include <crypto/sha1.h>
#include <linux/u64_stats_sync.h>
#include <net/sch_generic.h>
#include <asm/byteorder.h>
#include <uapi/linux/filter.h>
#include <uapi/linux/bpf.h>
struct sk_buff;
struct sock;
struct seccomp_data;
struct bpf_prog_aux;
struct xdp_rxq_info;
struct xdp_buff;
struct sock_reuseport;
struct ctl_table;
struct ctl_table_header;
/* ArgX, context and stack frame pointer register positions. Note,
* Arg1, Arg2, Arg3, etc are used as argument mappings of function
* calls in BPF_CALL instruction.
*/
#define BPF_REG_ARG1 BPF_REG_1
#define BPF_REG_ARG2 BPF_REG_2
#define BPF_REG_ARG3 BPF_REG_3
#define BPF_REG_ARG4 BPF_REG_4
#define BPF_REG_ARG5 BPF_REG_5
#define BPF_REG_CTX BPF_REG_6
#define BPF_REG_FP BPF_REG_10
/* Additional register mappings for converted user programs. */
#define BPF_REG_A BPF_REG_0
#define BPF_REG_X BPF_REG_7
#define BPF_REG_TMP BPF_REG_2 /* scratch reg */
#define BPF_REG_D BPF_REG_8 /* data, callee-saved */
#define BPF_REG_H BPF_REG_9 /* hlen, callee-saved */
/* Kernel hidden auxiliary/helper register. */
#define BPF_REG_AX MAX_BPF_REG
#define MAX_BPF_EXT_REG (MAX_BPF_REG + 1)
#define MAX_BPF_JIT_REG MAX_BPF_EXT_REG
/* unused opcode to mark special call to bpf_tail_call() helper */
#define BPF_TAIL_CALL 0xf0
/* unused opcode to mark special load instruction. Same as BPF_ABS */
#define BPF_PROBE_MEM 0x20
/* unused opcode to mark call to interpreter with arguments */
#define BPF_CALL_ARGS 0xe0
/* As per nm, we expose JITed images as text (code) section for
* kallsyms. That way, tools like perf can find it to match
* addresses.
*/
#define BPF_SYM_ELF_TYPE 't'
/* BPF program can access up to 512 bytes of stack space. */
#define MAX_BPF_STACK 512
/* Helper macros for filter block array initializers. */
/* ALU ops on registers, bpf_add|sub|...: dst_reg += src_reg */
#define BPF_ALU64_REG(OP, DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
#define BPF_ALU32_REG(OP, DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
/* ALU ops on immediates, bpf_add|sub|...: dst_reg += imm32 */
#define BPF_ALU64_IMM(OP, DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
#define BPF_ALU32_IMM(OP, DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Endianess conversion, cpu_to_{l,b}e(), {l,b}e_to_cpu() */
#define BPF_ENDIAN(TYPE, DST, LEN) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_END | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = LEN })
/* Short form of mov, dst_reg = src_reg */
#define BPF_MOV64_REG(DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
#define BPF_MOV32_REG(DST, SRC) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = 0 })
/* Short form of mov, dst_reg = imm32 */
#define BPF_MOV64_IMM(DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
#define BPF_MOV32_IMM(DST, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Special form of mov32, used for doing explicit zero extension on dst. */
#define BPF_ZEXT_REG(DST) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_X, \
.dst_reg = DST, \
.src_reg = DST, \
.off = 0, \
.imm = 1 })
static inline bool insn_is_zext(const struct bpf_insn *insn)
{
return insn->code == (BPF_ALU | BPF_MOV | BPF_X) && insn->imm == 1;
}
/* BPF_LD_IMM64 macro encodes single 'load 64-bit immediate' insn */
#define BPF_LD_IMM64(DST, IMM) \
BPF_LD_IMM64_RAW(DST, 0, IMM)
#define BPF_LD_IMM64_RAW(DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_DW | BPF_IMM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = (__u32) (IMM) }), \
((struct bpf_insn) { \
.code = 0, /* zero is reserved opcode */ \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = ((__u64) (IMM)) >> 32 })
/* pseudo BPF_LD_IMM64 insn used to refer to process-local map_fd */
#define BPF_LD_MAP_FD(DST, MAP_FD) \
BPF_LD_IMM64_RAW(DST, BPF_PSEUDO_MAP_FD, MAP_FD)
/* Short form of mov based on type, BPF_X: dst_reg = src_reg, BPF_K: dst_reg = imm32 */
#define BPF_MOV64_RAW(TYPE, DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU64 | BPF_MOV | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
#define BPF_MOV32_RAW(TYPE, DST, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_ALU | BPF_MOV | BPF_SRC(TYPE), \
.dst_reg = DST, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
/* Direct packet access, R0 = *(uint *) (skb->data + imm32) */
#define BPF_LD_ABS(SIZE, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_SIZE(SIZE) | BPF_ABS, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = IMM })
/* Indirect packet access, R0 = *(uint *) (skb->data + src_reg + imm32) */
#define BPF_LD_IND(SIZE, SRC, IMM) \
((struct bpf_insn) { \
.code = BPF_LD | BPF_SIZE(SIZE) | BPF_IND, \
.dst_reg = 0, \
.src_reg = SRC, \
.off = 0, \
.imm = IMM })
/* Memory load, dst_reg = *(uint *) (src_reg + off16) */
#define BPF_LDX_MEM(SIZE, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_LDX | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Memory store, *(uint *) (dst_reg + off16) = src_reg */
#define BPF_STX_MEM(SIZE, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_STX | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/*
* Atomic operations:
*
* BPF_ADD *(uint *) (dst_reg + off16) += src_reg
* BPF_AND *(uint *) (dst_reg + off16) &= src_reg
* BPF_OR *(uint *) (dst_reg + off16) |= src_reg
* BPF_XOR *(uint *) (dst_reg + off16) ^= src_reg
* BPF_ADD | BPF_FETCH src_reg = atomic_fetch_add(dst_reg + off16, src_reg);
* BPF_AND | BPF_FETCH src_reg = atomic_fetch_and(dst_reg + off16, src_reg);
* BPF_OR | BPF_FETCH src_reg = atomic_fetch_or(dst_reg + off16, src_reg);
* BPF_XOR | BPF_FETCH src_reg = atomic_fetch_xor(dst_reg + off16, src_reg);
* BPF_XCHG src_reg = atomic_xchg(dst_reg + off16, src_reg)
* BPF_CMPXCHG r0 = atomic_cmpxchg(dst_reg + off16, r0, src_reg)
*/
#define BPF_ATOMIC_OP(SIZE, OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_STX | BPF_SIZE(SIZE) | BPF_ATOMIC, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = OP })
/* Legacy alias */
#define BPF_STX_XADD(SIZE, DST, SRC, OFF) BPF_ATOMIC_OP(SIZE, BPF_ADD, DST, SRC, OFF)
/* Memory store, *(uint *) (dst_reg + off16) = imm32 */
#define BPF_ST_MEM(SIZE, DST, OFF, IMM) \
((struct bpf_insn) { \
.code = BPF_ST | BPF_SIZE(SIZE) | BPF_MEM, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Conditional jumps against registers, if (dst_reg 'op' src_reg) goto pc + off16 */
#define BPF_JMP_REG(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Conditional jumps against immediates, if (dst_reg 'op' imm32) goto pc + off16 */
#define BPF_JMP_IMM(OP, DST, IMM, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Like BPF_JMP_REG, but with 32-bit wide operands for comparison. */
#define BPF_JMP32_REG(OP, DST, SRC, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP32 | BPF_OP(OP) | BPF_X, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = 0 })
/* Like BPF_JMP_IMM, but with 32-bit wide operands for comparison. */
#define BPF_JMP32_IMM(OP, DST, IMM, OFF) \
((struct bpf_insn) { \
.code = BPF_JMP32 | BPF_OP(OP) | BPF_K, \
.dst_reg = DST, \
.src_reg = 0, \
.off = OFF, \
.imm = IMM })
/* Unconditional jumps, goto pc + off16 */
#define BPF_JMP_A(OFF) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_JA, \
.dst_reg = 0, \
.src_reg = 0, \
.off = OFF, \
.imm = 0 })
/* Relative call */
#define BPF_CALL_REL(TGT) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_CALL, \
.dst_reg = 0, \
.src_reg = BPF_PSEUDO_CALL, \
.off = 0, \
.imm = TGT })
/* Function call */
#define BPF_CAST_CALL(x) \
((u64 (*)(u64, u64, u64, u64, u64))(x))
#define BPF_EMIT_CALL(FUNC) \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_CALL, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = ((FUNC) - __bpf_call_base) })
/* Raw code statement block */
#define BPF_RAW_INSN(CODE, DST, SRC, OFF, IMM) \
((struct bpf_insn) { \
.code = CODE, \
.dst_reg = DST, \
.src_reg = SRC, \
.off = OFF, \
.imm = IMM })
/* Program exit */
#define BPF_EXIT_INSN() \
((struct bpf_insn) { \
.code = BPF_JMP | BPF_EXIT, \
.dst_reg = 0, \
.src_reg = 0, \
.off = 0, \
.imm = 0 })
/* Internal classic blocks for direct assignment */
#define __BPF_STMT(CODE, K) \
((struct sock_filter) BPF_STMT(CODE, K))
#define __BPF_JUMP(CODE, K, JT, JF) \
((struct sock_filter) BPF_JUMP(CODE, K, JT, JF))
#define bytes_to_bpf_size(bytes) \
({ \
int bpf_size = -EINVAL; \
\
if (bytes == sizeof(u8)) \
bpf_size = BPF_B; \
else if (bytes == sizeof(u16)) \
bpf_size = BPF_H; \
else if (bytes == sizeof(u32)) \
bpf_size = BPF_W; \
else if (bytes == sizeof(u64)) \
bpf_size = BPF_DW; \
\
bpf_size; \
})
#define bpf_size_to_bytes(bpf_size) \
({ \
int bytes = -EINVAL; \
\
if (bpf_size == BPF_B) \
bytes = sizeof(u8); \
else if (bpf_size == BPF_H) \
bytes = sizeof(u16); \
else if (bpf_size == BPF_W) \
bytes = sizeof(u32); \
else if (bpf_size == BPF_DW) \
bytes = sizeof(u64); \
\
bytes; \
})
#define BPF_SIZEOF(type) \
({ \
const int __size = bytes_to_bpf_size(sizeof(type)); \
BUILD_BUG_ON(__size < 0); \
__size; \
})
#define BPF_FIELD_SIZEOF(type, field) \
({ \
const int __size = bytes_to_bpf_size(sizeof_field(type, field)); \
BUILD_BUG_ON(__size < 0); \
__size; \
})
#define BPF_LDST_BYTES(insn) \
({ \
const int __size = bpf_size_to_bytes(BPF_SIZE((insn)->code)); \
WARN_ON(__size < 0); \
__size; \
})
#define __BPF_MAP_0(m, v, ...) v
#define __BPF_MAP_1(m, v, t, a, ...) m(t, a)
#define __BPF_MAP_2(m, v, t, a, ...) m(t, a), __BPF_MAP_1(m, v, __VA_ARGS__)
#define __BPF_MAP_3(m, v, t, a, ...) m(t, a), __BPF_MAP_2(m, v, __VA_ARGS__)
#define __BPF_MAP_4(m, v, t, a, ...) m(t, a), __BPF_MAP_3(m, v, __VA_ARGS__)
#define __BPF_MAP_5(m, v, t, a, ...) m(t, a), __BPF_MAP_4(m, v, __VA_ARGS__)
#define __BPF_REG_0(...) __BPF_PAD(5)
#define __BPF_REG_1(...) __BPF_MAP(1, __VA_ARGS__), __BPF_PAD(4)
#define __BPF_REG_2(...) __BPF_MAP(2, __VA_ARGS__), __BPF_PAD(3)
#define __BPF_REG_3(...) __BPF_MAP(3, __VA_ARGS__), __BPF_PAD(2)
#define __BPF_REG_4(...) __BPF_MAP(4, __VA_ARGS__), __BPF_PAD(1)
#define __BPF_REG_5(...) __BPF_MAP(5, __VA_ARGS__)
#define __BPF_MAP(n, ...) __BPF_MAP_##n(__VA_ARGS__)
#define __BPF_REG(n, ...) __BPF_REG_##n(__VA_ARGS__)
#define __BPF_CAST(t, a) \
(__force t) \
(__force \
typeof(__builtin_choose_expr(sizeof(t) == sizeof(unsigned long), \
(unsigned long)0, (t)0))) a
#define __BPF_V void
#define __BPF_N
#define __BPF_DECL_ARGS(t, a) t a
#define __BPF_DECL_REGS(t, a) u64 a
#define __BPF_PAD(n) \
__BPF_MAP(n, __BPF_DECL_ARGS, __BPF_N, u64, __ur_1, u64, __ur_2, \
u64, __ur_3, u64, __ur_4, u64, __ur_5)
#define BPF_CALL_x(x, name, ...) \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
typedef u64 (*btf_##name)(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)); \
u64 name(__BPF_REG(x, __BPF_DECL_REGS, __BPF_N, __VA_ARGS__)) \
{ \
return ((btf_##name)____##name)(__BPF_MAP(x,__BPF_CAST,__BPF_N,__VA_ARGS__));\
} \
static __always_inline \
u64 ____##name(__BPF_MAP(x, __BPF_DECL_ARGS, __BPF_V, __VA_ARGS__))
#define BPF_CALL_0(name, ...) BPF_CALL_x(0, name, __VA_ARGS__)
#define BPF_CALL_1(name, ...) BPF_CALL_x(1, name, __VA_ARGS__)
#define BPF_CALL_2(name, ...) BPF_CALL_x(2, name, __VA_ARGS__)
#define BPF_CALL_3(name, ...) BPF_CALL_x(3, name, __VA_ARGS__)
#define BPF_CALL_4(name, ...) BPF_CALL_x(4, name, __VA_ARGS__)
#define BPF_CALL_5(name, ...) BPF_CALL_x(5, name, __VA_ARGS__)
#define bpf_ctx_range(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#define bpf_ctx_range_till(TYPE, MEMBER1, MEMBER2) \
offsetof(TYPE, MEMBER1) ... offsetofend(TYPE, MEMBER2) - 1
#if BITS_PER_LONG == 64
# define bpf_ctx_range_ptr(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetofend(TYPE, MEMBER) - 1
#else
# define bpf_ctx_range_ptr(TYPE, MEMBER) \
offsetof(TYPE, MEMBER) ... offsetof(TYPE, MEMBER) + 8 - 1
#endif /* BITS_PER_LONG == 64 */
#define bpf_target_off(TYPE, MEMBER, SIZE, PTR_SIZE) \
({ \
BUILD_BUG_ON(sizeof_field(TYPE, MEMBER) != (SIZE)); \
*(PTR_SIZE) = (SIZE); \
offsetof(TYPE, MEMBER); \
})
/* A struct sock_filter is architecture independent. */
struct compat_sock_fprog {
u16 len;
compat_uptr_t filter; /* struct sock_filter * */
};
struct sock_fprog_kern {
u16 len;
struct sock_filter *filter;
};
/* Some arches need doubleword alignment for their instructions and/or data */
#define BPF_IMAGE_ALIGNMENT 8
struct bpf_binary_header {
u32 pages;
u8 image[] __aligned(BPF_IMAGE_ALIGNMENT);
};
struct bpf_prog_stats {
u64 cnt;
u64 nsecs;
u64 misses;
struct u64_stats_sync syncp;
} __aligned(2 * sizeof(u64));
struct bpf_prog {
u16 pages; /* Number of allocated pages */
u16 jited:1, /* Is our filter JIT'ed? */
jit_requested:1,/* archs need to JIT the prog */
gpl_compatible:1, /* Is filter GPL compatible? */
cb_access:1, /* Is control block accessed? */
dst_needed:1, /* Do we need dst entry? */
blinded:1, /* Was blinded */
is_func:1, /* program is a bpf function */
kprobe_override:1, /* Do we override a kprobe? */
has_callchain_buf:1, /* callchain buffer allocated? */
enforce_expected_attach_type:1, /* Enforce expected_attach_type checking at attach time */
call_get_stack:1; /* Do we call bpf_get_stack() or bpf_get_stackid() */
enum bpf_prog_type type; /* Type of BPF program */
enum bpf_attach_type expected_attach_type; /* For some prog types */
u32 len; /* Number of filter blocks */
u32 jited_len; /* Size of jited insns in bytes */
u8 tag[BPF_TAG_SIZE];
struct bpf_prog_stats __percpu *stats;
int __percpu *active;
unsigned int (*bpf_func)(const void *ctx,
const struct bpf_insn *insn);
struct bpf_prog_aux *aux; /* Auxiliary fields */
struct sock_fprog_kern *orig_prog; /* Original BPF program */
/* Instructions for interpreter */
struct sock_filter insns[0];
struct bpf_insn insnsi[];
};
struct sk_filter {
refcount_t refcnt;
struct rcu_head rcu;
struct bpf_prog *prog;
};
DECLARE_STATIC_KEY_FALSE(bpf_stats_enabled_key);
#define __BPF_PROG_RUN(prog, ctx, dfunc) ({ \
u32 __ret; \
cant_migrate(); \
if (static_branch_unlikely(&bpf_stats_enabled_key)) { \
struct bpf_prog_stats *__stats; \
u64 __start = sched_clock(); \
__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
__stats = this_cpu_ptr(prog->stats); \
u64_stats_update_begin(&__stats->syncp); \
__stats->cnt++; \
__stats->nsecs += sched_clock() - __start; \
u64_stats_update_end(&__stats->syncp); \
} else { \
__ret = dfunc(ctx, (prog)->insnsi, (prog)->bpf_func); \
} \
__ret; })
#define BPF_PROG_RUN(prog, ctx) \
__BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func)
/*
* Use in preemptible and therefore migratable context to make sure that
* the execution of the BPF program runs on one CPU.
*
* This uses migrate_disable/enable() explicitly to document that the
* invocation of a BPF program does not require reentrancy protection
* against a BPF program which is invoked from a preempting task.
*
* For non RT enabled kernels migrate_disable/enable() maps to
* preempt_disable/enable(), i.e. it disables also preemption.
*/
static inline u32 bpf_prog_run_pin_on_cpu(const struct bpf_prog *prog,
const void *ctx)
{
u32 ret;
migrate_disable();
ret = __BPF_PROG_RUN(prog, ctx, bpf_dispatcher_nop_func);
migrate_enable();
return ret;
}
#define BPF_SKB_CB_LEN QDISC_CB_PRIV_LEN
struct bpf_skb_data_end {
struct qdisc_skb_cb qdisc_cb;
void *data_meta;
void *data_end;
};
struct bpf_nh_params {
u32 nh_family;
union {
u32 ipv4_nh;
struct in6_addr ipv6_nh;
};
};
struct bpf_redirect_info {
u32 flags;
u32 tgt_index;
void *tgt_value;
struct bpf_map *map;
u32 kern_flags;
struct bpf_nh_params nh;
};
DECLARE_PER_CPU(struct bpf_redirect_info, bpf_redirect_info);
/* flags for bpf_redirect_info kern_flags */
#define BPF_RI_F_RF_NO_DIRECT BIT(0) /* no napi_direct on return_frame */
/* Compute the linear packet data range [data, data_end) which
* will be accessed by various program types (cls_bpf, act_bpf,
* lwt, ...). Subsystems allowing direct data access must (!)
* ensure that cb[] area can be written to when BPF program is
* invoked (otherwise cb[] save/restore is necessary).
*/
static inline void bpf_compute_data_pointers(struct sk_buff *skb)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
BUILD_BUG_ON(sizeof(*cb) > sizeof_field(struct sk_buff, cb));
cb->data_meta = skb->data - skb_metadata_len(skb);
cb->data_end = skb->data + skb_headlen(skb);
}
/* Similar to bpf_compute_data_pointers(), except that save orginal
* data in cb->data and cb->meta_data for restore.
*/
static inline void bpf_compute_and_save_data_end(
struct sk_buff *skb, void **saved_data_end)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
*saved_data_end = cb->data_end;
cb->data_end = skb->data + skb_headlen(skb);
}
/* Restore data saved by bpf_compute_data_pointers(). */
static inline void bpf_restore_data_end(
struct sk_buff *skb, void *saved_data_end)
{
struct bpf_skb_data_end *cb = (struct bpf_skb_data_end *)skb->cb;
cb->data_end = saved_data_end;
}
static inline u8 *bpf_skb_cb(struct sk_buff *skb)
{
/* eBPF programs may read/write skb->cb[] area to transfer meta
* data between tail calls. Since this also needs to work with
* tc, that scratch memory is mapped to qdisc_skb_cb's data area.
*
* In some socket filter cases, the cb unfortunately needs to be
* saved/restored so that protocol specific skb->cb[] data won't
* be lost. In any case, due to unpriviledged eBPF programs
* attached to sockets, we need to clear the bpf_skb_cb() area
* to not leak previous contents to user space.
*/
BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) != BPF_SKB_CB_LEN);
BUILD_BUG_ON(sizeof_field(struct __sk_buff, cb) !=
sizeof_field(struct qdisc_skb_cb, data));
return qdisc_skb_cb(skb)->data;
}
/* Must be invoked with migration disabled */
static inline u32 __bpf_prog_run_save_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u8 *cb_data = bpf_skb_cb(skb);
u8 cb_saved[BPF_SKB_CB_LEN];
u32 res;
if (unlikely(prog->cb_access)) {
memcpy(cb_saved, cb_data, sizeof(cb_saved));
memset(cb_data, 0, sizeof(cb_saved));
}
res = BPF_PROG_RUN(prog, skb);
if (unlikely(prog->cb_access))
memcpy(cb_data, cb_saved, sizeof(cb_saved));
return res;
}
static inline u32 bpf_prog_run_save_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u32 res;
migrate_disable();
res = __bpf_prog_run_save_cb(prog, skb);
migrate_enable();
return res;
}
static inline u32 bpf_prog_run_clear_cb(const struct bpf_prog *prog,
struct sk_buff *skb)
{
u8 *cb_data = bpf_skb_cb(skb);
u32 res;
if (unlikely(prog->cb_access))
memset(cb_data, 0, BPF_SKB_CB_LEN);
res = bpf_prog_run_pin_on_cpu(prog, skb);
return res;
}
DECLARE_BPF_DISPATCHER(xdp)
static __always_inline u32 bpf_prog_run_xdp(const struct bpf_prog *prog,
struct xdp_buff *xdp)
{
/* Caller needs to hold rcu_read_lock() (!), otherwise program
* can be released while still running, or map elements could be
* freed early while still having concurrent users. XDP fastpath
* already takes rcu_read_lock() when fetching the program, so
* it's not necessary here anymore.
*/
return __BPF_PROG_RUN(prog, xdp, BPF_DISPATCHER_FUNC(xdp));
}
void bpf_prog_change_xdp(struct bpf_prog *prev_prog, struct bpf_prog *prog);
static inline u32 bpf_prog_insn_size(const struct bpf_prog *prog)
{
return prog->len * sizeof(struct bpf_insn);
}
static inline u32 bpf_prog_tag_scratch_size(const struct bpf_prog *prog)
{
return round_up(bpf_prog_insn_size(prog) +
sizeof(__be64) + 1, SHA1_BLOCK_SIZE);
}
static inline unsigned int bpf_prog_size(unsigned int proglen)
{
return max(sizeof(struct bpf_prog),
offsetof(struct bpf_prog, insns[proglen]));
}
static inline bool bpf_prog_was_classic(const struct bpf_prog *prog)
{
/* When classic BPF programs have been loaded and the arch
* does not have a classic BPF JIT (anymore), they have been
* converted via bpf_migrate_filter() to eBPF and thus always
* have an unspec program type.
*/
return prog->type == BPF_PROG_TYPE_UNSPEC;
}
static inline u32 bpf_ctx_off_adjust_machine(u32 size)
{
const u32 size_machine = sizeof(unsigned long);
if (size > size_machine && size % size_machine == 0)
size = size_machine;
return size;
}
static inline bool
bpf_ctx_narrow_access_ok(u32 off, u32 size, u32 size_default)
{
return size <= size_default && (size & (size - 1)) == 0;
}
static inline u8
bpf_ctx_narrow_access_offset(u32 off, u32 size, u32 size_default)
{
u8 access_off = off & (size_default - 1);
#ifdef __LITTLE_ENDIAN
return access_off;
#else
return size_default - (access_off + size);
#endif
}
#define bpf_ctx_wide_access_ok(off, size, type, field) \
(size == sizeof(__u64) && \
off >= offsetof(type, field) && \
off + sizeof(__u64) <= offsetofend(type, field) && \
off % sizeof(__u64) == 0)
#define bpf_classic_proglen(fprog) (fprog->len * sizeof(fprog->filter[0]))
static inline void bpf_prog_lock_ro(struct bpf_prog *fp)
{
#ifndef CONFIG_BPF_JIT_ALWAYS_ON
if (!fp->jited) {
set_vm_flush_reset_perms(fp);
set_memory_ro((unsigned long)fp, fp->pages);
}
#endif
}
static inline void bpf_jit_binary_lock_ro(struct bpf_binary_header *hdr)
{
set_vm_flush_reset_perms(hdr);
set_memory_ro((unsigned long)hdr, hdr->pages);
set_memory_x((unsigned long)hdr, hdr->pages);
}
static inline struct bpf_binary_header *
bpf_jit_binary_hdr(const struct bpf_prog *fp)
{
unsigned long real_start = (unsigned long)fp->bpf_func;
unsigned long addr = real_start & PAGE_MASK;
return (void *)addr;
}
int sk_filter_trim_cap(struct sock *sk, struct sk_buff *skb, unsigned int cap);
static inline int sk_filter(struct sock *sk, struct sk_buff *skb)
{
return sk_filter_trim_cap(sk, skb, 1);
}
struct bpf_prog *bpf_prog_select_runtime(struct bpf_prog *fp, int *err);
void bpf_prog_free(struct bpf_prog *fp);
bool bpf_opcode_in_insntable(u8 code);
void bpf_prog_free_linfo(struct bpf_prog *prog);
void bpf_prog_fill_jited_linfo(struct bpf_prog *prog,
const u32 *insn_to_jit_off);
int bpf_prog_alloc_jited_linfo(struct bpf_prog *prog);
void bpf_prog_free_jited_linfo(struct bpf_prog *prog);
void bpf_prog_free_unused_jited_linfo(struct bpf_prog *prog);
struct bpf_prog *bpf_prog_alloc(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_alloc_no_stats(unsigned int size, gfp_t gfp_extra_flags);
struct bpf_prog *bpf_prog_realloc(struct bpf_prog *fp_old, unsigned int size,
gfp_t gfp_extra_flags);
void __bpf_prog_free(struct bpf_prog *fp);
static inline void bpf_prog_unlock_free(struct bpf_prog *fp)
{
__bpf_prog_free(fp);
}
typedef int (*bpf_aux_classic_check_t)(struct sock_filter *filter,
unsigned int flen);
int bpf_prog_create(struct bpf_prog **pfp, struct sock_fprog_kern *fprog);
int bpf_prog_create_from_user(struct bpf_prog **pfp, struct sock_fprog *fprog,
bpf_aux_classic_check_t trans, bool save_orig);
void bpf_prog_destroy(struct bpf_prog *fp);
int sk_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_attach_bpf(u32 ufd, struct sock *sk);
int sk_reuseport_attach_filter(struct sock_fprog *fprog, struct sock *sk);
int sk_reuseport_attach_bpf(u32 ufd, struct sock *sk);
void sk_reuseport_prog_free(struct bpf_prog *prog);
int sk_detach_filter(struct sock *sk);
int sk_get_filter(struct sock *sk, struct sock_filter __user *filter,
unsigned int len);
bool sk_filter_charge(struct sock *sk, struct sk_filter *fp);
void sk_filter_uncharge(struct sock *sk, struct sk_filter *fp);
u64 __bpf_call_base(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
#define __bpf_call_base_args \
((u64 (*)(u64, u64, u64, u64, u64, const struct bpf_insn *)) \
(void *)__bpf_call_base)
struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *prog);
void bpf_jit_compile(struct bpf_prog *prog);
bool bpf_jit_needs_zext(void);
bool bpf_helper_changes_pkt_data(void *func);
static inline bool bpf_dump_raw_ok(const struct cred *cred)
{
/* Reconstruction of call-sites is dependent on kallsyms,
* thus make dump the same restriction.
*/
return kallsyms_show_value(cred);
}
struct bpf_prog *bpf_patch_insn_single(struct bpf_prog *prog, u32 off,
const struct bpf_insn *patch, u32 len);
int bpf_remove_insns(struct bpf_prog *prog, u32 off, u32 cnt);
void bpf_clear_redirect_map(struct bpf_map *map);
static inline bool xdp_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
return ri->kern_flags & BPF_RI_F_RF_NO_DIRECT;
}
static inline void xdp_set_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
ri->kern_flags |= BPF_RI_F_RF_NO_DIRECT;
}
static inline void xdp_clear_return_frame_no_direct(void)
{
struct bpf_redirect_info *ri = this_cpu_ptr(&bpf_redirect_info);
ri->kern_flags &= ~BPF_RI_F_RF_NO_DIRECT;
}
static inline int xdp_ok_fwd_dev(const struct net_device *fwd,
unsigned int pktlen)
{
unsigned int len;
if (unlikely(!(fwd->flags & IFF_UP)))
return -ENETDOWN;
len = fwd->mtu + fwd->hard_header_len + VLAN_HLEN;
if (pktlen > len)
return -EMSGSIZE;
return 0;
}
/* The pair of xdp_do_redirect and xdp_do_flush MUST be called in the
* same cpu context. Further for best results no more than a single map
* for the do_redirect/do_flush pair should be used. This limitation is
* because we only track one map and force a flush when the map changes.
* This does not appear to be a real limitation for existing software.
*/
int xdp_do_generic_redirect(struct net_device *dev, struct sk_buff *skb,
struct xdp_buff *xdp, struct bpf_prog *prog);
int xdp_do_redirect(struct net_device *dev,
struct xdp_buff *xdp,
struct bpf_prog *prog);
void xdp_do_flush(void);
/* The xdp_do_flush_map() helper has been renamed to drop the _map suffix, as
* it is no longer only flushing maps. Keep this define for compatibility
* until all drivers are updated - do not use xdp_do_flush_map() in new code!
*/
#define xdp_do_flush_map xdp_do_flush
void bpf_warn_invalid_xdp_action(u32 act);
#ifdef CONFIG_INET
struct sock *bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
struct bpf_prog *prog, struct sk_buff *skb,
u32 hash);
#else
static inline struct sock *
bpf_run_sk_reuseport(struct sock_reuseport *reuse, struct sock *sk,
struct bpf_prog *prog, struct sk_buff *skb,
u32 hash)
{
return NULL;
}
#endif
#ifdef CONFIG_BPF_JIT
extern int bpf_jit_enable;
extern int bpf_jit_harden;
extern int bpf_jit_kallsyms;
extern long bpf_jit_limit;
typedef void (*bpf_jit_fill_hole_t)(void *area, unsigned int size);
struct bpf_binary_header *
bpf_jit_binary_alloc(unsigned int proglen, u8 **image_ptr,
unsigned int alignment,
bpf_jit_fill_hole_t bpf_fill_ill_insns);
void bpf_jit_binary_free(struct bpf_binary_header *hdr);
u64 bpf_jit_alloc_exec_limit(void);
void *bpf_jit_alloc_exec(unsigned long size);
void bpf_jit_free_exec(void *addr);
void bpf_jit_free(struct bpf_prog *fp);
int bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
struct bpf_jit_poke_descriptor *poke);
int bpf_jit_get_func_addr(const struct bpf_prog *prog,
const struct bpf_insn *insn, bool extra_pass,
u64 *func_addr, bool *func_addr_fixed);
struct bpf_prog *bpf_jit_blind_constants(struct bpf_prog *fp);
void bpf_jit_prog_release_other(struct bpf_prog *fp, struct bpf_prog *fp_other);
static inline void bpf_jit_dump(unsigned int flen, unsigned int proglen,
u32 pass, void *image)
{
pr_err("flen=%u proglen=%u pass=%u image=%pK from=%s pid=%d\n", flen,
proglen, pass, image, current->comm, task_pid_nr(current));
if (image)
print_hex_dump(KERN_ERR, "JIT code: ", DUMP_PREFIX_OFFSET,
16, 1, image, proglen, false);
}
static inline bool bpf_jit_is_ebpf(void)
{
# ifdef CONFIG_HAVE_EBPF_JIT
return true;
# else
return false;
# endif
}
static inline bool ebpf_jit_enabled(void)
{
return bpf_jit_enable && bpf_jit_is_ebpf();
}
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
return fp->jited && bpf_jit_is_ebpf();
}
static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
{
/* These are the prerequisites, should someone ever have the
* idea to call blinding outside of them, we make sure to
* bail out.
*/
if (!bpf_jit_is_ebpf())
return false;
if (!prog->jit_requested)
return false;
if (!bpf_jit_harden)
return false;
if (bpf_jit_harden == 1 && capable(CAP_SYS_ADMIN))
return false;
return true;
}
static inline bool bpf_jit_kallsyms_enabled(void)
{
/* There are a couple of corner cases where kallsyms should
* not be enabled f.e. on hardening.
*/
if (bpf_jit_harden)
return false;
if (!bpf_jit_kallsyms)
return false;
if (bpf_jit_kallsyms == 1)
return true;
return false;
}
const char *__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char *sym);
bool is_bpf_text_address(unsigned long addr);
int bpf_get_kallsym(unsigned int symnum, unsigned long *value, char *type,
char *sym);
static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char **modname, char *sym)
{
const char *ret = __bpf_address_lookup(addr, size, off, sym);
if (ret && modname)
*modname = NULL;
return ret;
}
void bpf_prog_kallsyms_add(struct bpf_prog *fp);
void bpf_prog_kallsyms_del(struct bpf_prog *fp);
#else /* CONFIG_BPF_JIT */
static inline bool ebpf_jit_enabled(void)
{
return false;
}
static inline bool bpf_jit_blinding_enabled(struct bpf_prog *prog)
{
return false;
}
static inline bool bpf_prog_ebpf_jited(const struct bpf_prog *fp)
{
return false;
}
static inline int
bpf_jit_add_poke_descriptor(struct bpf_prog *prog,
struct bpf_jit_poke_descriptor *poke)
{
return -ENOTSUPP;
}
static inline void bpf_jit_free(struct bpf_prog *fp)
{
bpf_prog_unlock_free(fp);
}
static inline bool bpf_jit_kallsyms_enabled(void)
{
return false;
}
static inline const char *
__bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char *sym)
{
return NULL;
}
static inline bool is_bpf_text_address(unsigned long addr)
{
return false;
}
static inline int bpf_get_kallsym(unsigned int symnum, unsigned long *value,
char *type, char *sym)
{
return -ERANGE;
}
static inline const char *
bpf_address_lookup(unsigned long addr, unsigned long *size,
unsigned long *off, char **modname, char *sym)
{
return NULL;
}
static inline void bpf_prog_kallsyms_add(struct bpf_prog *fp)
{
}
static inline void bpf_prog_kallsyms_del(struct bpf_prog *fp)
{
}
#endif /* CONFIG_BPF_JIT */
void bpf_prog_kallsyms_del_all(struct bpf_prog *fp);
#define BPF_ANC BIT(15)
static inline bool bpf_needs_clear_a(const struct sock_filter *first)
{
switch (first->code) {
case BPF_RET | BPF_K:
case BPF_LD | BPF_W | BPF_LEN:
return false;
case BPF_LD | BPF_W | BPF_ABS:
case BPF_LD | BPF_H | BPF_ABS:
case BPF_LD | BPF_B | BPF_ABS:
if (first->k == SKF_AD_OFF + SKF_AD_ALU_XOR_X)
return true;
return false;
default:
return true;
}
}
static inline u16 bpf_anc_helper(const struct sock_filter *ftest)
{
BUG_ON(ftest->code & BPF_ANC);
switch (ftest->code) {
case BPF_LD | BPF_W | BPF_ABS:
case BPF_LD | BPF_H | BPF_ABS:
case BPF_LD | BPF_B | BPF_ABS:
#define BPF_ANCILLARY(CODE) case SKF_AD_OFF + SKF_AD_##CODE: \
return BPF_ANC | SKF_AD_##CODE
switch (ftest->k) {
BPF_ANCILLARY(PROTOCOL);
BPF_ANCILLARY(PKTTYPE);
BPF_ANCILLARY(IFINDEX);
BPF_ANCILLARY(NLATTR);
BPF_ANCILLARY(NLATTR_NEST);
BPF_ANCILLARY(MARK);
BPF_ANCILLARY(QUEUE);
BPF_ANCILLARY(HATYPE);
BPF_ANCILLARY(RXHASH);
BPF_ANCILLARY(CPU);
BPF_ANCILLARY(ALU_XOR_X);
BPF_ANCILLARY(VLAN_TAG);
BPF_ANCILLARY(VLAN_TAG_PRESENT);
BPF_ANCILLARY(PAY_OFFSET);
BPF_ANCILLARY(RANDOM);
BPF_ANCILLARY(VLAN_TPID);
}
fallthrough;
default:
return ftest->code;
}
}
void *bpf_internal_load_pointer_neg_helper(const struct sk_buff *skb,
int k, unsigned int size);
static inline void *bpf_load_pointer(const struct sk_buff *skb, int k,
unsigned int size, void *buffer)
{
if (k >= 0)
return skb_header_pointer(skb, k, size, buffer);
return bpf_internal_load_pointer_neg_helper(skb, k, size);
}
static inline int bpf_tell_extensions(void)
{
return SKF_AD_MAX;
}
struct bpf_sock_addr_kern {
struct sock *sk;
struct sockaddr *uaddr;
/* Temporary "register" to make indirect stores to nested structures
* defined above. We need three registers to make such a store, but
* only two (src and dst) are available at convert_ctx_access time
*/
u64 tmp_reg;
void *t_ctx; /* Attach type specific context. */
};
struct bpf_sock_ops_kern {
struct sock *sk;
union {
u32 args[4];
u32 reply;
u32 replylong[4];
};
struct sk_buff *syn_skb;
struct sk_buff *skb;
void *skb_data_end;
u8 op;
u8 is_fullsock;
u8 remaining_opt_len;
u64 temp; /* temp and everything after is not
* initialized to 0 before calling
* the BPF program. New fields that
* should be initialized to 0 should
* be inserted before temp.
* temp is scratch storage used by
* sock_ops_convert_ctx_access
* as temporary storage of a register.
*/
};
struct bpf_sysctl_kern {
struct ctl_table_header *head;
struct ctl_table *table;
void *cur_val;
size_t cur_len;
void *new_val;
size_t new_len;
int new_updated;
int write;
loff_t *ppos;
/* Temporary "register" for indirect stores to ppos. */
u64 tmp_reg;
};
#define BPF_SOCKOPT_KERN_BUF_SIZE 32
struct bpf_sockopt_buf {
u8 data[BPF_SOCKOPT_KERN_BUF_SIZE];
};
struct bpf_sockopt_kern {
struct sock *sk;
u8 *optval;
u8 *optval_end;
s32 level;
s32 optname;
s32 optlen;
s32 retval;
};
int copy_bpf_fprog_from_user(struct sock_fprog *dst, sockptr_t src, int len);
struct bpf_sk_lookup_kern {
u16 family;
u16 protocol;
__be16 sport;
u16 dport;
struct {
__be32 saddr;
__be32 daddr;
} v4;
struct {
const struct in6_addr *saddr;
const struct in6_addr *daddr;
} v6;
struct sock *selected_sk;
bool no_reuseport;
};
extern struct static_key_false bpf_sk_lookup_enabled;
/* Runners for BPF_SK_LOOKUP programs to invoke on socket lookup.
*
* Allowed return values for a BPF SK_LOOKUP program are SK_PASS and
* SK_DROP. Their meaning is as follows:
*
* SK_PASS && ctx.selected_sk != NULL: use selected_sk as lookup result
* SK_PASS && ctx.selected_sk == NULL: continue to htable-based socket lookup
* SK_DROP : terminate lookup with -ECONNREFUSED
*
* This macro aggregates return values and selected sockets from
* multiple BPF programs according to following rules in order:
*
* 1. If any program returned SK_PASS and a non-NULL ctx.selected_sk,
* macro result is SK_PASS and last ctx.selected_sk is used.
* 2. If any program returned SK_DROP return value,
* macro result is SK_DROP.
* 3. Otherwise result is SK_PASS and ctx.selected_sk is NULL.
*
* Caller must ensure that the prog array is non-NULL, and that the
* array as well as the programs it contains remain valid.
*/
#define BPF_PROG_SK_LOOKUP_RUN_ARRAY(array, ctx, func) \
({ \
struct bpf_sk_lookup_kern *_ctx = &(ctx); \
struct bpf_prog_array_item *_item; \
struct sock *_selected_sk = NULL; \
bool _no_reuseport = false; \
struct bpf_prog *_prog; \
bool _all_pass = true; \
u32 _ret; \
\
migrate_disable(); \
_item = &(array)->items[0]; \
while ((_prog = READ_ONCE(_item->prog))) { \
/* restore most recent selection */ \
_ctx->selected_sk = _selected_sk; \
_ctx->no_reuseport = _no_reuseport; \
\
_ret = func(_prog, _ctx); \
if (_ret == SK_PASS && _ctx->selected_sk) { \
/* remember last non-NULL socket */ \
_selected_sk = _ctx->selected_sk; \
_no_reuseport = _ctx->no_reuseport; \
} else if (_ret == SK_DROP && _all_pass) { \
_all_pass = false; \
} \
_item++; \
} \
_ctx->selected_sk = _selected_sk; \
_ctx->no_reuseport = _no_reuseport; \
migrate_enable(); \
_all_pass || _selected_sk ? SK_PASS : SK_DROP; \
})
static inline bool bpf_sk_lookup_run_v4(struct net *net, int protocol,
const __be32 saddr, const __be16 sport,
const __be32 daddr, const u16 dport,
struct sock **psk)
{
struct bpf_prog_array *run_array;
struct sock *selected_sk = NULL;
bool no_reuseport = false;
rcu_read_lock();
run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
if (run_array) {
struct bpf_sk_lookup_kern ctx = {
.family = AF_INET,
.protocol = protocol,
.v4.saddr = saddr,
.v4.daddr = daddr,
.sport = sport,
.dport = dport,
};
u32 act;
act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
if (act == SK_PASS) {
selected_sk = ctx.selected_sk;
no_reuseport = ctx.no_reuseport;
} else {
selected_sk = ERR_PTR(-ECONNREFUSED);
}
}
rcu_read_unlock();
*psk = selected_sk;
return no_reuseport;
}
#if IS_ENABLED(CONFIG_IPV6)
static inline bool bpf_sk_lookup_run_v6(struct net *net, int protocol,
const struct in6_addr *saddr,
const __be16 sport,
const struct in6_addr *daddr,
const u16 dport,
struct sock **psk)
{
struct bpf_prog_array *run_array;
struct sock *selected_sk = NULL;
bool no_reuseport = false;
rcu_read_lock();
run_array = rcu_dereference(net->bpf.run_array[NETNS_BPF_SK_LOOKUP]);
if (run_array) {
struct bpf_sk_lookup_kern ctx = {
.family = AF_INET6,
.protocol = protocol,
.v6.saddr = saddr,
.v6.daddr = daddr,
.sport = sport,
.dport = dport,
};
u32 act;
act = BPF_PROG_SK_LOOKUP_RUN_ARRAY(run_array, ctx, BPF_PROG_RUN);
if (act == SK_PASS) {
selected_sk = ctx.selected_sk;
no_reuseport = ctx.no_reuseport;
} else {
selected_sk = ERR_PTR(-ECONNREFUSED);
}
}
rcu_read_unlock();
*psk = selected_sk;
return no_reuseport;
}
#endif /* IS_ENABLED(CONFIG_IPV6) */
#endif /* __LINUX_FILTER_H__ */