OpenCloudOS-Kernel/kernel/pid.c

417 lines
10 KiB
C

/*
* Generic pidhash and scalable, time-bounded PID allocator
*
* (C) 2002-2003 William Irwin, IBM
* (C) 2004 William Irwin, Oracle
* (C) 2002-2004 Ingo Molnar, Red Hat
*
* pid-structures are backing objects for tasks sharing a given ID to chain
* against. There is very little to them aside from hashing them and
* parking tasks using given ID's on a list.
*
* The hash is always changed with the tasklist_lock write-acquired,
* and the hash is only accessed with the tasklist_lock at least
* read-acquired, so there's no additional SMP locking needed here.
*
* We have a list of bitmap pages, which bitmaps represent the PID space.
* Allocating and freeing PIDs is completely lockless. The worst-case
* allocation scenario when all but one out of 1 million PIDs possible are
* allocated already: the scanning of 32 list entries and at most PAGE_SIZE
* bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
*/
#include <linux/mm.h>
#include <linux/module.h>
#include <linux/slab.h>
#include <linux/init.h>
#include <linux/bootmem.h>
#include <linux/hash.h>
#include <linux/pid_namespace.h>
#define pid_hashfn(nr) hash_long((unsigned long)nr, pidhash_shift)
static struct hlist_head *pid_hash;
static int pidhash_shift;
static struct kmem_cache *pid_cachep;
int pid_max = PID_MAX_DEFAULT;
#define RESERVED_PIDS 300
int pid_max_min = RESERVED_PIDS + 1;
int pid_max_max = PID_MAX_LIMIT;
#define BITS_PER_PAGE (PAGE_SIZE*8)
#define BITS_PER_PAGE_MASK (BITS_PER_PAGE-1)
static inline int mk_pid(struct pid_namespace *pid_ns,
struct pidmap *map, int off)
{
return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
}
#define find_next_offset(map, off) \
find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
/*
* PID-map pages start out as NULL, they get allocated upon
* first use and are never deallocated. This way a low pid_max
* value does not cause lots of bitmaps to be allocated, but
* the scheme scales to up to 4 million PIDs, runtime.
*/
struct pid_namespace init_pid_ns = {
.kref = {
.refcount = ATOMIC_INIT(2),
},
.pidmap = {
[ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
},
.last_pid = 0,
.child_reaper = &init_task
};
/*
* Note: disable interrupts while the pidmap_lock is held as an
* interrupt might come in and do read_lock(&tasklist_lock).
*
* If we don't disable interrupts there is a nasty deadlock between
* detach_pid()->free_pid() and another cpu that does
* spin_lock(&pidmap_lock) followed by an interrupt routine that does
* read_lock(&tasklist_lock);
*
* After we clean up the tasklist_lock and know there are no
* irq handlers that take it we can leave the interrupts enabled.
* For now it is easier to be safe than to prove it can't happen.
*/
static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
static fastcall void free_pidmap(struct pid_namespace *pid_ns, int pid)
{
struct pidmap *map = pid_ns->pidmap + pid / BITS_PER_PAGE;
int offset = pid & BITS_PER_PAGE_MASK;
clear_bit(offset, map->page);
atomic_inc(&map->nr_free);
}
static int alloc_pidmap(struct pid_namespace *pid_ns)
{
int i, offset, max_scan, pid, last = pid_ns->last_pid;
struct pidmap *map;
pid = last + 1;
if (pid >= pid_max)
pid = RESERVED_PIDS;
offset = pid & BITS_PER_PAGE_MASK;
map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
max_scan = (pid_max + BITS_PER_PAGE - 1)/BITS_PER_PAGE - !offset;
for (i = 0; i <= max_scan; ++i) {
if (unlikely(!map->page)) {
void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
/*
* Free the page if someone raced with us
* installing it:
*/
spin_lock_irq(&pidmap_lock);
if (map->page)
kfree(page);
else
map->page = page;
spin_unlock_irq(&pidmap_lock);
if (unlikely(!map->page))
break;
}
if (likely(atomic_read(&map->nr_free))) {
do {
if (!test_and_set_bit(offset, map->page)) {
atomic_dec(&map->nr_free);
pid_ns->last_pid = pid;
return pid;
}
offset = find_next_offset(map, offset);
pid = mk_pid(pid_ns, map, offset);
/*
* find_next_offset() found a bit, the pid from it
* is in-bounds, and if we fell back to the last
* bitmap block and the final block was the same
* as the starting point, pid is before last_pid.
*/
} while (offset < BITS_PER_PAGE && pid < pid_max &&
(i != max_scan || pid < last ||
!((last+1) & BITS_PER_PAGE_MASK)));
}
if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
++map;
offset = 0;
} else {
map = &pid_ns->pidmap[0];
offset = RESERVED_PIDS;
if (unlikely(last == offset))
break;
}
pid = mk_pid(pid_ns, map, offset);
}
return -1;
}
static int next_pidmap(struct pid_namespace *pid_ns, int last)
{
int offset;
struct pidmap *map, *end;
offset = (last + 1) & BITS_PER_PAGE_MASK;
map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
end = &pid_ns->pidmap[PIDMAP_ENTRIES];
for (; map < end; map++, offset = 0) {
if (unlikely(!map->page))
continue;
offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
if (offset < BITS_PER_PAGE)
return mk_pid(pid_ns, map, offset);
}
return -1;
}
fastcall void put_pid(struct pid *pid)
{
if (!pid)
return;
if ((atomic_read(&pid->count) == 1) ||
atomic_dec_and_test(&pid->count))
kmem_cache_free(pid_cachep, pid);
}
EXPORT_SYMBOL_GPL(put_pid);
static void delayed_put_pid(struct rcu_head *rhp)
{
struct pid *pid = container_of(rhp, struct pid, rcu);
put_pid(pid);
}
fastcall void free_pid(struct pid *pid)
{
/* We can be called with write_lock_irq(&tasklist_lock) held */
unsigned long flags;
spin_lock_irqsave(&pidmap_lock, flags);
hlist_del_rcu(&pid->pid_chain);
spin_unlock_irqrestore(&pidmap_lock, flags);
free_pidmap(&init_pid_ns, pid->nr);
call_rcu(&pid->rcu, delayed_put_pid);
}
struct pid *alloc_pid(void)
{
struct pid *pid;
enum pid_type type;
int nr = -1;
pid = kmem_cache_alloc(pid_cachep, GFP_KERNEL);
if (!pid)
goto out;
nr = alloc_pidmap(current->nsproxy->pid_ns);
if (nr < 0)
goto out_free;
atomic_set(&pid->count, 1);
pid->nr = nr;
for (type = 0; type < PIDTYPE_MAX; ++type)
INIT_HLIST_HEAD(&pid->tasks[type]);
spin_lock_irq(&pidmap_lock);
hlist_add_head_rcu(&pid->pid_chain, &pid_hash[pid_hashfn(pid->nr)]);
spin_unlock_irq(&pidmap_lock);
out:
return pid;
out_free:
kmem_cache_free(pid_cachep, pid);
pid = NULL;
goto out;
}
struct pid * fastcall find_pid(int nr)
{
struct hlist_node *elem;
struct pid *pid;
hlist_for_each_entry_rcu(pid, elem,
&pid_hash[pid_hashfn(nr)], pid_chain) {
if (pid->nr == nr)
return pid;
}
return NULL;
}
EXPORT_SYMBOL_GPL(find_pid);
int fastcall attach_pid(struct task_struct *task, enum pid_type type, int nr)
{
struct pid_link *link;
struct pid *pid;
link = &task->pids[type];
link->pid = pid = find_pid(nr);
hlist_add_head_rcu(&link->node, &pid->tasks[type]);
return 0;
}
void fastcall detach_pid(struct task_struct *task, enum pid_type type)
{
struct pid_link *link;
struct pid *pid;
int tmp;
link = &task->pids[type];
pid = link->pid;
hlist_del_rcu(&link->node);
link->pid = NULL;
for (tmp = PIDTYPE_MAX; --tmp >= 0; )
if (!hlist_empty(&pid->tasks[tmp]))
return;
free_pid(pid);
}
/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
void fastcall transfer_pid(struct task_struct *old, struct task_struct *new,
enum pid_type type)
{
new->pids[type].pid = old->pids[type].pid;
hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
old->pids[type].pid = NULL;
}
struct task_struct * fastcall pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result = NULL;
if (pid) {
struct hlist_node *first;
first = rcu_dereference(pid->tasks[type].first);
if (first)
result = hlist_entry(first, struct task_struct, pids[(type)].node);
}
return result;
}
/*
* Must be called under rcu_read_lock() or with tasklist_lock read-held.
*/
struct task_struct *find_task_by_pid_type(int type, int nr)
{
return pid_task(find_pid(nr), type);
}
EXPORT_SYMBOL(find_task_by_pid_type);
struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(task->pids[type].pid);
rcu_read_unlock();
return pid;
}
struct task_struct *fastcall get_pid_task(struct pid *pid, enum pid_type type)
{
struct task_struct *result;
rcu_read_lock();
result = pid_task(pid, type);
if (result)
get_task_struct(result);
rcu_read_unlock();
return result;
}
struct pid *find_get_pid(pid_t nr)
{
struct pid *pid;
rcu_read_lock();
pid = get_pid(find_pid(nr));
rcu_read_unlock();
return pid;
}
/*
* Used by proc to find the first pid that is greater then or equal to nr.
*
* If there is a pid at nr this function is exactly the same as find_pid.
*/
struct pid *find_ge_pid(int nr)
{
struct pid *pid;
do {
pid = find_pid(nr);
if (pid)
break;
nr = next_pidmap(current->nsproxy->pid_ns, nr);
} while (nr > 0);
return pid;
}
EXPORT_SYMBOL_GPL(find_get_pid);
int copy_pid_ns(int flags, struct task_struct *tsk)
{
struct pid_namespace *old_ns = tsk->nsproxy->pid_ns;
int err = 0;
if (!old_ns)
return 0;
get_pid_ns(old_ns);
return err;
}
void free_pid_ns(struct kref *kref)
{
struct pid_namespace *ns;
ns = container_of(kref, struct pid_namespace, kref);
kfree(ns);
}
/*
* The pid hash table is scaled according to the amount of memory in the
* machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
* more.
*/
void __init pidhash_init(void)
{
int i, pidhash_size;
unsigned long megabytes = nr_kernel_pages >> (20 - PAGE_SHIFT);
pidhash_shift = max(4, fls(megabytes * 4));
pidhash_shift = min(12, pidhash_shift);
pidhash_size = 1 << pidhash_shift;
printk("PID hash table entries: %d (order: %d, %Zd bytes)\n",
pidhash_size, pidhash_shift,
pidhash_size * sizeof(struct hlist_head));
pid_hash = alloc_bootmem(pidhash_size * sizeof(*(pid_hash)));
if (!pid_hash)
panic("Could not alloc pidhash!\n");
for (i = 0; i < pidhash_size; i++)
INIT_HLIST_HEAD(&pid_hash[i]);
}
void __init pidmap_init(void)
{
init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
/* Reserve PID 0. We never call free_pidmap(0) */
set_bit(0, init_pid_ns.pidmap[0].page);
atomic_dec(&init_pid_ns.pidmap[0].nr_free);
pid_cachep = KMEM_CACHE(pid, SLAB_PANIC);
}