OpenCloudOS-Kernel/sound/pci/hda/hda_proc.c

913 lines
26 KiB
C

// SPDX-License-Identifier: GPL-2.0-or-later
/*
* Universal Interface for Intel High Definition Audio Codec
*
* Generic proc interface
*
* Copyright (c) 2004 Takashi Iwai <tiwai@suse.de>
*/
#include <linux/init.h>
#include <linux/slab.h>
#include <sound/core.h>
#include <linux/module.h>
#include <sound/hda_codec.h>
#include "hda_local.h"
static int dump_coef = -1;
module_param(dump_coef, int, 0644);
MODULE_PARM_DESC(dump_coef, "Dump processing coefficients in codec proc file (-1=auto, 0=disable, 1=enable)");
/* always use noncached version */
#define param_read(codec, nid, parm) \
snd_hdac_read_parm_uncached(&(codec)->core, nid, parm)
static const char *get_wid_type_name(unsigned int wid_value)
{
static const char * const names[16] = {
[AC_WID_AUD_OUT] = "Audio Output",
[AC_WID_AUD_IN] = "Audio Input",
[AC_WID_AUD_MIX] = "Audio Mixer",
[AC_WID_AUD_SEL] = "Audio Selector",
[AC_WID_PIN] = "Pin Complex",
[AC_WID_POWER] = "Power Widget",
[AC_WID_VOL_KNB] = "Volume Knob Widget",
[AC_WID_BEEP] = "Beep Generator Widget",
[AC_WID_VENDOR] = "Vendor Defined Widget",
};
if (wid_value == -1)
return "UNKNOWN Widget";
wid_value &= 0xf;
if (names[wid_value])
return names[wid_value];
else
return "UNKNOWN Widget";
}
static void print_nid_array(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
struct snd_array *array)
{
int i;
struct hda_nid_item *items = array->list, *item;
struct snd_kcontrol *kctl;
for (i = 0; i < array->used; i++) {
item = &items[i];
if (item->nid == nid) {
kctl = item->kctl;
snd_iprintf(buffer,
" Control: name=\"%s\", index=%i, device=%i\n",
kctl->id.name, kctl->id.index + item->index,
kctl->id.device);
if (item->flags & HDA_NID_ITEM_AMP)
snd_iprintf(buffer,
" ControlAmp: chs=%lu, dir=%s, "
"idx=%lu, ofs=%lu\n",
get_amp_channels(kctl),
get_amp_direction(kctl) ? "Out" : "In",
get_amp_index(kctl),
get_amp_offset(kctl));
}
}
}
static void print_nid_pcms(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
int type;
struct hda_pcm *cpcm;
list_for_each_entry(cpcm, &codec->pcm_list_head, list) {
for (type = 0; type < 2; type++) {
if (cpcm->stream[type].nid != nid || cpcm->pcm == NULL)
continue;
snd_iprintf(buffer, " Device: name=\"%s\", "
"type=\"%s\", device=%i\n",
cpcm->name,
snd_hda_pcm_type_name[cpcm->pcm_type],
cpcm->pcm->device);
}
}
}
static void print_amp_caps(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid, int dir)
{
unsigned int caps;
caps = param_read(codec, nid, dir == HDA_OUTPUT ?
AC_PAR_AMP_OUT_CAP : AC_PAR_AMP_IN_CAP);
if (caps == -1 || caps == 0) {
snd_iprintf(buffer, "N/A\n");
return;
}
snd_iprintf(buffer, "ofs=0x%02x, nsteps=0x%02x, stepsize=0x%02x, "
"mute=%x\n",
caps & AC_AMPCAP_OFFSET,
(caps & AC_AMPCAP_NUM_STEPS) >> AC_AMPCAP_NUM_STEPS_SHIFT,
(caps & AC_AMPCAP_STEP_SIZE) >> AC_AMPCAP_STEP_SIZE_SHIFT,
(caps & AC_AMPCAP_MUTE) >> AC_AMPCAP_MUTE_SHIFT);
}
/* is this a stereo widget or a stereo-to-mono mix? */
static bool is_stereo_amps(struct hda_codec *codec, hda_nid_t nid,
int dir, unsigned int wcaps, int indices)
{
hda_nid_t conn;
if (wcaps & AC_WCAP_STEREO)
return true;
/* check for a stereo-to-mono mix; it must be:
* only a single connection, only for input, and only a mixer widget
*/
if (indices != 1 || dir != HDA_INPUT ||
get_wcaps_type(wcaps) != AC_WID_AUD_MIX)
return false;
if (snd_hda_get_raw_connections(codec, nid, &conn, 1) < 0)
return false;
/* the connection source is a stereo? */
wcaps = snd_hda_param_read(codec, conn, AC_PAR_AUDIO_WIDGET_CAP);
return !!(wcaps & AC_WCAP_STEREO);
}
static void print_amp_vals(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
int dir, unsigned int wcaps, int indices)
{
unsigned int val;
bool stereo;
int i;
stereo = is_stereo_amps(codec, nid, dir, wcaps, indices);
dir = dir == HDA_OUTPUT ? AC_AMP_GET_OUTPUT : AC_AMP_GET_INPUT;
for (i = 0; i < indices; i++) {
snd_iprintf(buffer, " [");
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_AMP_GAIN_MUTE,
AC_AMP_GET_LEFT | dir | i);
snd_iprintf(buffer, "0x%02x", val);
if (stereo) {
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_AMP_GAIN_MUTE,
AC_AMP_GET_RIGHT | dir | i);
snd_iprintf(buffer, " 0x%02x", val);
}
snd_iprintf(buffer, "]");
}
snd_iprintf(buffer, "\n");
}
static void print_pcm_rates(struct snd_info_buffer *buffer, unsigned int pcm)
{
static unsigned int rates[] = {
8000, 11025, 16000, 22050, 32000, 44100, 48000, 88200,
96000, 176400, 192000, 384000
};
int i;
pcm &= AC_SUPPCM_RATES;
snd_iprintf(buffer, " rates [0x%x]:", pcm);
for (i = 0; i < ARRAY_SIZE(rates); i++)
if (pcm & (1 << i))
snd_iprintf(buffer, " %d", rates[i]);
snd_iprintf(buffer, "\n");
}
static void print_pcm_bits(struct snd_info_buffer *buffer, unsigned int pcm)
{
char buf[SND_PRINT_BITS_ADVISED_BUFSIZE];
snd_iprintf(buffer, " bits [0x%x]:", (pcm >> 16) & 0xff);
snd_print_pcm_bits(pcm, buf, sizeof(buf));
snd_iprintf(buffer, "%s\n", buf);
}
static void print_pcm_formats(struct snd_info_buffer *buffer,
unsigned int streams)
{
snd_iprintf(buffer, " formats [0x%x]:", streams & 0xf);
if (streams & AC_SUPFMT_PCM)
snd_iprintf(buffer, " PCM");
if (streams & AC_SUPFMT_FLOAT32)
snd_iprintf(buffer, " FLOAT");
if (streams & AC_SUPFMT_AC3)
snd_iprintf(buffer, " AC3");
snd_iprintf(buffer, "\n");
}
static void print_pcm_caps(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
unsigned int pcm = param_read(codec, nid, AC_PAR_PCM);
unsigned int stream = param_read(codec, nid, AC_PAR_STREAM);
if (pcm == -1 || stream == -1) {
snd_iprintf(buffer, "N/A\n");
return;
}
print_pcm_rates(buffer, pcm);
print_pcm_bits(buffer, pcm);
print_pcm_formats(buffer, stream);
}
static const char *get_jack_connection(u32 cfg)
{
static const char * const names[16] = {
"Unknown", "1/8", "1/4", "ATAPI",
"RCA", "Optical","Digital", "Analog",
"DIN", "XLR", "RJ11", "Comb",
NULL, NULL, NULL, "Other"
};
cfg = (cfg & AC_DEFCFG_CONN_TYPE) >> AC_DEFCFG_CONN_TYPE_SHIFT;
if (names[cfg])
return names[cfg];
else
return "UNKNOWN";
}
static const char *get_jack_color(u32 cfg)
{
static const char * const names[16] = {
"Unknown", "Black", "Grey", "Blue",
"Green", "Red", "Orange", "Yellow",
"Purple", "Pink", NULL, NULL,
NULL, NULL, "White", "Other",
};
cfg = (cfg & AC_DEFCFG_COLOR) >> AC_DEFCFG_COLOR_SHIFT;
if (names[cfg])
return names[cfg];
else
return "UNKNOWN";
}
/*
* Parse the pin default config value and returns the string of the
* jack location, e.g. "Rear", "Front", etc.
*/
static const char *get_jack_location(u32 cfg)
{
static const char * const bases[7] = {
"N/A", "Rear", "Front", "Left", "Right", "Top", "Bottom",
};
static const unsigned char specials_idx[] = {
0x07, 0x08,
0x17, 0x18, 0x19,
0x37, 0x38
};
static const char * const specials[] = {
"Rear Panel", "Drive Bar",
"Riser", "HDMI", "ATAPI",
"Mobile-In", "Mobile-Out"
};
int i;
cfg = (cfg & AC_DEFCFG_LOCATION) >> AC_DEFCFG_LOCATION_SHIFT;
if ((cfg & 0x0f) < 7)
return bases[cfg & 0x0f];
for (i = 0; i < ARRAY_SIZE(specials_idx); i++) {
if (cfg == specials_idx[i])
return specials[i];
}
return "UNKNOWN";
}
/*
* Parse the pin default config value and returns the string of the
* jack connectivity, i.e. external or internal connection.
*/
static const char *get_jack_connectivity(u32 cfg)
{
static const char * const jack_locations[4] = {
"Ext", "Int", "Sep", "Oth"
};
return jack_locations[(cfg >> (AC_DEFCFG_LOCATION_SHIFT + 4)) & 3];
}
/*
* Parse the pin default config value and returns the string of the
* jack type, i.e. the purpose of the jack, such as Line-Out or CD.
*/
static const char *get_jack_type(u32 cfg)
{
static const char * const jack_types[16] = {
"Line Out", "Speaker", "HP Out", "CD",
"SPDIF Out", "Digital Out", "Modem Line", "Modem Hand",
"Line In", "Aux", "Mic", "Telephony",
"SPDIF In", "Digital In", "Reserved", "Other"
};
return jack_types[(cfg & AC_DEFCFG_DEVICE)
>> AC_DEFCFG_DEVICE_SHIFT];
}
static void print_pin_caps(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
int *supports_vref)
{
static const char * const jack_conns[4] = {
"Jack", "N/A", "Fixed", "Both"
};
unsigned int caps, val;
caps = param_read(codec, nid, AC_PAR_PIN_CAP);
snd_iprintf(buffer, " Pincap 0x%08x:", caps);
if (caps & AC_PINCAP_IN)
snd_iprintf(buffer, " IN");
if (caps & AC_PINCAP_OUT)
snd_iprintf(buffer, " OUT");
if (caps & AC_PINCAP_HP_DRV)
snd_iprintf(buffer, " HP");
if (caps & AC_PINCAP_EAPD)
snd_iprintf(buffer, " EAPD");
if (caps & AC_PINCAP_PRES_DETECT)
snd_iprintf(buffer, " Detect");
if (caps & AC_PINCAP_BALANCE)
snd_iprintf(buffer, " Balanced");
if (caps & AC_PINCAP_HDMI) {
/* Realtek uses this bit as a different meaning */
if ((codec->core.vendor_id >> 16) == 0x10ec)
snd_iprintf(buffer, " R/L");
else {
if (caps & AC_PINCAP_HBR)
snd_iprintf(buffer, " HBR");
snd_iprintf(buffer, " HDMI");
}
}
if (caps & AC_PINCAP_DP)
snd_iprintf(buffer, " DP");
if (caps & AC_PINCAP_TRIG_REQ)
snd_iprintf(buffer, " Trigger");
if (caps & AC_PINCAP_IMP_SENSE)
snd_iprintf(buffer, " ImpSense");
snd_iprintf(buffer, "\n");
if (caps & AC_PINCAP_VREF) {
unsigned int vref =
(caps & AC_PINCAP_VREF) >> AC_PINCAP_VREF_SHIFT;
snd_iprintf(buffer, " Vref caps:");
if (vref & AC_PINCAP_VREF_HIZ)
snd_iprintf(buffer, " HIZ");
if (vref & AC_PINCAP_VREF_50)
snd_iprintf(buffer, " 50");
if (vref & AC_PINCAP_VREF_GRD)
snd_iprintf(buffer, " GRD");
if (vref & AC_PINCAP_VREF_80)
snd_iprintf(buffer, " 80");
if (vref & AC_PINCAP_VREF_100)
snd_iprintf(buffer, " 100");
snd_iprintf(buffer, "\n");
*supports_vref = 1;
} else
*supports_vref = 0;
if (caps & AC_PINCAP_EAPD) {
val = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_EAPD_BTLENABLE, 0);
snd_iprintf(buffer, " EAPD 0x%x:", val);
if (val & AC_EAPDBTL_BALANCED)
snd_iprintf(buffer, " BALANCED");
if (val & AC_EAPDBTL_EAPD)
snd_iprintf(buffer, " EAPD");
if (val & AC_EAPDBTL_LR_SWAP)
snd_iprintf(buffer, " R/L");
snd_iprintf(buffer, "\n");
}
caps = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONFIG_DEFAULT, 0);
snd_iprintf(buffer, " Pin Default 0x%08x: [%s] %s at %s %s\n", caps,
jack_conns[(caps & AC_DEFCFG_PORT_CONN) >> AC_DEFCFG_PORT_CONN_SHIFT],
get_jack_type(caps),
get_jack_connectivity(caps),
get_jack_location(caps));
snd_iprintf(buffer, " Conn = %s, Color = %s\n",
get_jack_connection(caps),
get_jack_color(caps));
/* Default association and sequence values refer to default grouping
* of pin complexes and their sequence within the group. This is used
* for priority and resource allocation.
*/
snd_iprintf(buffer, " DefAssociation = 0x%x, Sequence = 0x%x\n",
(caps & AC_DEFCFG_DEF_ASSOC) >> AC_DEFCFG_ASSOC_SHIFT,
caps & AC_DEFCFG_SEQUENCE);
if (((caps & AC_DEFCFG_MISC) >> AC_DEFCFG_MISC_SHIFT) &
AC_DEFCFG_MISC_NO_PRESENCE) {
/* Miscellaneous bit indicates external hardware does not
* support presence detection even if the pin complex
* indicates it is supported.
*/
snd_iprintf(buffer, " Misc = NO_PRESENCE\n");
}
}
static void print_pin_ctls(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
int supports_vref)
{
unsigned int pinctls;
pinctls = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_PIN_WIDGET_CONTROL, 0);
snd_iprintf(buffer, " Pin-ctls: 0x%02x:", pinctls);
if (pinctls & AC_PINCTL_IN_EN)
snd_iprintf(buffer, " IN");
if (pinctls & AC_PINCTL_OUT_EN)
snd_iprintf(buffer, " OUT");
if (pinctls & AC_PINCTL_HP_EN)
snd_iprintf(buffer, " HP");
if (supports_vref) {
int vref = pinctls & AC_PINCTL_VREFEN;
switch (vref) {
case AC_PINCTL_VREF_HIZ:
snd_iprintf(buffer, " VREF_HIZ");
break;
case AC_PINCTL_VREF_50:
snd_iprintf(buffer, " VREF_50");
break;
case AC_PINCTL_VREF_GRD:
snd_iprintf(buffer, " VREF_GRD");
break;
case AC_PINCTL_VREF_80:
snd_iprintf(buffer, " VREF_80");
break;
case AC_PINCTL_VREF_100:
snd_iprintf(buffer, " VREF_100");
break;
}
}
snd_iprintf(buffer, "\n");
}
static void print_vol_knob(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
unsigned int cap = param_read(codec, nid, AC_PAR_VOL_KNB_CAP);
snd_iprintf(buffer, " Volume-Knob: delta=%d, steps=%d, ",
(cap >> 7) & 1, cap & 0x7f);
cap = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_VOLUME_KNOB_CONTROL, 0);
snd_iprintf(buffer, "direct=%d, val=%d\n",
(cap >> 7) & 1, cap & 0x7f);
}
static void print_audio_io(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
unsigned int wid_type)
{
int conv = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_CONV, 0);
snd_iprintf(buffer,
" Converter: stream=%d, channel=%d\n",
(conv & AC_CONV_STREAM) >> AC_CONV_STREAM_SHIFT,
conv & AC_CONV_CHANNEL);
if (wid_type == AC_WID_AUD_IN && (conv & AC_CONV_CHANNEL) == 0) {
int sdi = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_SDI_SELECT, 0);
snd_iprintf(buffer, " SDI-Select: %d\n",
sdi & AC_SDI_SELECT);
}
}
static void print_digital_conv(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
unsigned int digi1 = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DIGI_CONVERT_1, 0);
unsigned char digi2 = digi1 >> 8;
unsigned char digi3 = digi1 >> 16;
snd_iprintf(buffer, " Digital:");
if (digi1 & AC_DIG1_ENABLE)
snd_iprintf(buffer, " Enabled");
if (digi1 & AC_DIG1_V)
snd_iprintf(buffer, " Validity");
if (digi1 & AC_DIG1_VCFG)
snd_iprintf(buffer, " ValidityCfg");
if (digi1 & AC_DIG1_EMPHASIS)
snd_iprintf(buffer, " Preemphasis");
if (digi1 & AC_DIG1_COPYRIGHT)
snd_iprintf(buffer, " Non-Copyright");
if (digi1 & AC_DIG1_NONAUDIO)
snd_iprintf(buffer, " Non-Audio");
if (digi1 & AC_DIG1_PROFESSIONAL)
snd_iprintf(buffer, " Pro");
if (digi1 & AC_DIG1_LEVEL)
snd_iprintf(buffer, " GenLevel");
if (digi3 & AC_DIG3_KAE)
snd_iprintf(buffer, " KAE");
snd_iprintf(buffer, "\n");
snd_iprintf(buffer, " Digital category: 0x%x\n",
digi2 & AC_DIG2_CC);
snd_iprintf(buffer, " IEC Coding Type: 0x%x\n",
digi3 & AC_DIG3_ICT);
}
static const char *get_pwr_state(u32 state)
{
static const char * const buf[] = {
"D0", "D1", "D2", "D3", "D3cold"
};
if (state < ARRAY_SIZE(buf))
return buf[state];
return "UNKNOWN";
}
static void print_power_state(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
static const char * const names[] = {
[ilog2(AC_PWRST_D0SUP)] = "D0",
[ilog2(AC_PWRST_D1SUP)] = "D1",
[ilog2(AC_PWRST_D2SUP)] = "D2",
[ilog2(AC_PWRST_D3SUP)] = "D3",
[ilog2(AC_PWRST_D3COLDSUP)] = "D3cold",
[ilog2(AC_PWRST_S3D3COLDSUP)] = "S3D3cold",
[ilog2(AC_PWRST_CLKSTOP)] = "CLKSTOP",
[ilog2(AC_PWRST_EPSS)] = "EPSS",
};
int sup = param_read(codec, nid, AC_PAR_POWER_STATE);
int pwr = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_POWER_STATE, 0);
if (sup != -1) {
int i;
snd_iprintf(buffer, " Power states: ");
for (i = 0; i < ARRAY_SIZE(names); i++) {
if (sup & (1U << i))
snd_iprintf(buffer, " %s", names[i]);
}
snd_iprintf(buffer, "\n");
}
snd_iprintf(buffer, " Power: setting=%s, actual=%s",
get_pwr_state(pwr & AC_PWRST_SETTING),
get_pwr_state((pwr & AC_PWRST_ACTUAL) >>
AC_PWRST_ACTUAL_SHIFT));
if (pwr & AC_PWRST_ERROR)
snd_iprintf(buffer, ", Error");
if (pwr & AC_PWRST_CLK_STOP_OK)
snd_iprintf(buffer, ", Clock-stop-OK");
if (pwr & AC_PWRST_SETTING_RESET)
snd_iprintf(buffer, ", Setting-reset");
snd_iprintf(buffer, "\n");
}
static void print_unsol_cap(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
int unsol = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_UNSOLICITED_RESPONSE, 0);
snd_iprintf(buffer,
" Unsolicited: tag=%02x, enabled=%d\n",
unsol & AC_UNSOL_TAG,
(unsol & AC_UNSOL_ENABLED) ? 1 : 0);
}
static inline bool can_dump_coef(struct hda_codec *codec)
{
switch (dump_coef) {
case 0: return false;
case 1: return true;
default: return codec->dump_coef;
}
}
static void print_proc_caps(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
unsigned int i, ncoeff, oldindex;
unsigned int proc_caps = param_read(codec, nid, AC_PAR_PROC_CAP);
ncoeff = (proc_caps & AC_PCAP_NUM_COEF) >> AC_PCAP_NUM_COEF_SHIFT;
snd_iprintf(buffer, " Processing caps: benign=%d, ncoeff=%d\n",
proc_caps & AC_PCAP_BENIGN, ncoeff);
if (!can_dump_coef(codec))
return;
/* Note: This is racy - another process could run in parallel and change
the coef index too. */
oldindex = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_COEF_INDEX, 0);
for (i = 0; i < ncoeff; i++) {
unsigned int val;
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, i);
val = snd_hda_codec_read(codec, nid, 0, AC_VERB_GET_PROC_COEF,
0);
snd_iprintf(buffer, " Coeff 0x%02x: 0x%04x\n", i, val);
}
snd_hda_codec_write(codec, nid, 0, AC_VERB_SET_COEF_INDEX, oldindex);
}
static void print_conn_list(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid,
unsigned int wid_type, hda_nid_t *conn,
int conn_len)
{
int c, curr = -1;
const hda_nid_t *list;
int cache_len;
if (conn_len > 1 &&
wid_type != AC_WID_AUD_MIX &&
wid_type != AC_WID_VOL_KNB &&
wid_type != AC_WID_POWER)
curr = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_CONNECT_SEL, 0);
snd_iprintf(buffer, " Connection: %d\n", conn_len);
if (conn_len > 0) {
snd_iprintf(buffer, " ");
for (c = 0; c < conn_len; c++) {
snd_iprintf(buffer, " 0x%02x", conn[c]);
if (c == curr)
snd_iprintf(buffer, "*");
}
snd_iprintf(buffer, "\n");
}
/* Get Cache connections info */
cache_len = snd_hda_get_conn_list(codec, nid, &list);
if (cache_len >= 0 && (cache_len != conn_len ||
memcmp(list, conn, conn_len) != 0)) {
snd_iprintf(buffer, " In-driver Connection: %d\n", cache_len);
if (cache_len > 0) {
snd_iprintf(buffer, " ");
for (c = 0; c < cache_len; c++)
snd_iprintf(buffer, " 0x%02x", list[c]);
snd_iprintf(buffer, "\n");
}
}
}
static void print_gpio(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
unsigned int gpio =
param_read(codec, codec->core.afg, AC_PAR_GPIO_CAP);
unsigned int enable, direction, wake, unsol, sticky, data;
int i, max;
snd_iprintf(buffer, "GPIO: io=%d, o=%d, i=%d, "
"unsolicited=%d, wake=%d\n",
gpio & AC_GPIO_IO_COUNT,
(gpio & AC_GPIO_O_COUNT) >> AC_GPIO_O_COUNT_SHIFT,
(gpio & AC_GPIO_I_COUNT) >> AC_GPIO_I_COUNT_SHIFT,
(gpio & AC_GPIO_UNSOLICITED) ? 1 : 0,
(gpio & AC_GPIO_WAKE) ? 1 : 0);
max = gpio & AC_GPIO_IO_COUNT;
if (!max || max > 8)
return;
enable = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_MASK, 0);
direction = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_DIRECTION, 0);
wake = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_WAKE_MASK, 0);
unsol = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_UNSOLICITED_RSP_MASK, 0);
sticky = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_STICKY_MASK, 0);
data = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_GPIO_DATA, 0);
for (i = 0; i < max; ++i)
snd_iprintf(buffer,
" IO[%d]: enable=%d, dir=%d, wake=%d, "
"sticky=%d, data=%d, unsol=%d\n", i,
(enable & (1<<i)) ? 1 : 0,
(direction & (1<<i)) ? 1 : 0,
(wake & (1<<i)) ? 1 : 0,
(sticky & (1<<i)) ? 1 : 0,
(data & (1<<i)) ? 1 : 0,
(unsol & (1<<i)) ? 1 : 0);
/* FIXME: add GPO and GPI pin information */
print_nid_array(buffer, codec, nid, &codec->mixers);
print_nid_array(buffer, codec, nid, &codec->nids);
}
static void print_device_list(struct snd_info_buffer *buffer,
struct hda_codec *codec, hda_nid_t nid)
{
int i, curr = -1;
u8 dev_list[AC_MAX_DEV_LIST_LEN];
int devlist_len;
devlist_len = snd_hda_get_devices(codec, nid, dev_list,
AC_MAX_DEV_LIST_LEN);
snd_iprintf(buffer, " Devices: %d\n", devlist_len);
if (devlist_len <= 0)
return;
curr = snd_hda_codec_read(codec, nid, 0,
AC_VERB_GET_DEVICE_SEL, 0);
for (i = 0; i < devlist_len; i++) {
if (i == curr)
snd_iprintf(buffer, " *");
else
snd_iprintf(buffer, " ");
snd_iprintf(buffer,
"Dev %02d: PD = %d, ELDV = %d, IA = %d\n", i,
!!(dev_list[i] & AC_DE_PD),
!!(dev_list[i] & AC_DE_ELDV),
!!(dev_list[i] & AC_DE_IA));
}
}
static void print_codec_core_info(struct hdac_device *codec,
struct snd_info_buffer *buffer)
{
snd_iprintf(buffer, "Codec: ");
if (codec->vendor_name && codec->chip_name)
snd_iprintf(buffer, "%s %s\n",
codec->vendor_name, codec->chip_name);
else
snd_iprintf(buffer, "Not Set\n");
snd_iprintf(buffer, "Address: %d\n", codec->addr);
if (codec->afg)
snd_iprintf(buffer, "AFG Function Id: 0x%x (unsol %u)\n",
codec->afg_function_id, codec->afg_unsol);
if (codec->mfg)
snd_iprintf(buffer, "MFG Function Id: 0x%x (unsol %u)\n",
codec->mfg_function_id, codec->mfg_unsol);
snd_iprintf(buffer, "Vendor Id: 0x%08x\n", codec->vendor_id);
snd_iprintf(buffer, "Subsystem Id: 0x%08x\n", codec->subsystem_id);
snd_iprintf(buffer, "Revision Id: 0x%x\n", codec->revision_id);
if (codec->mfg)
snd_iprintf(buffer, "Modem Function Group: 0x%x\n", codec->mfg);
else
snd_iprintf(buffer, "No Modem Function Group found\n");
}
static void print_codec_info(struct snd_info_entry *entry,
struct snd_info_buffer *buffer)
{
struct hda_codec *codec = entry->private_data;
hda_nid_t nid, fg;
int i, nodes;
print_codec_core_info(&codec->core, buffer);
fg = codec->core.afg;
if (!fg)
return;
snd_hda_power_up(codec);
snd_iprintf(buffer, "Default PCM:\n");
print_pcm_caps(buffer, codec, fg);
snd_iprintf(buffer, "Default Amp-In caps: ");
print_amp_caps(buffer, codec, fg, HDA_INPUT);
snd_iprintf(buffer, "Default Amp-Out caps: ");
print_amp_caps(buffer, codec, fg, HDA_OUTPUT);
snd_iprintf(buffer, "State of AFG node 0x%02x:\n", fg);
print_power_state(buffer, codec, fg);
nodes = snd_hda_get_sub_nodes(codec, fg, &nid);
if (! nid || nodes < 0) {
snd_iprintf(buffer, "Invalid AFG subtree\n");
snd_hda_power_down(codec);
return;
}
print_gpio(buffer, codec, fg);
if (codec->proc_widget_hook)
codec->proc_widget_hook(buffer, codec, fg);
for (i = 0; i < nodes; i++, nid++) {
unsigned int wid_caps =
param_read(codec, nid, AC_PAR_AUDIO_WIDGET_CAP);
unsigned int wid_type = get_wcaps_type(wid_caps);
hda_nid_t *conn = NULL;
int conn_len = 0;
snd_iprintf(buffer, "Node 0x%02x [%s] wcaps 0x%x:", nid,
get_wid_type_name(wid_type), wid_caps);
if (wid_caps & AC_WCAP_STEREO) {
unsigned int chans = get_wcaps_channels(wid_caps);
if (chans == 2)
snd_iprintf(buffer, " Stereo");
else
snd_iprintf(buffer, " %d-Channels", chans);
} else
snd_iprintf(buffer, " Mono");
if (wid_caps & AC_WCAP_DIGITAL)
snd_iprintf(buffer, " Digital");
if (wid_caps & AC_WCAP_IN_AMP)
snd_iprintf(buffer, " Amp-In");
if (wid_caps & AC_WCAP_OUT_AMP)
snd_iprintf(buffer, " Amp-Out");
if (wid_caps & AC_WCAP_STRIPE)
snd_iprintf(buffer, " Stripe");
if (wid_caps & AC_WCAP_LR_SWAP)
snd_iprintf(buffer, " R/L");
if (wid_caps & AC_WCAP_CP_CAPS)
snd_iprintf(buffer, " CP");
snd_iprintf(buffer, "\n");
print_nid_array(buffer, codec, nid, &codec->mixers);
print_nid_array(buffer, codec, nid, &codec->nids);
print_nid_pcms(buffer, codec, nid);
/* volume knob is a special widget that always have connection
* list
*/
if (wid_type == AC_WID_VOL_KNB)
wid_caps |= AC_WCAP_CONN_LIST;
if (wid_caps & AC_WCAP_CONN_LIST) {
conn_len = snd_hda_get_num_raw_conns(codec, nid);
if (conn_len > 0) {
conn = kmalloc_array(conn_len,
sizeof(hda_nid_t),
GFP_KERNEL);
if (!conn)
return;
if (snd_hda_get_raw_connections(codec, nid, conn,
conn_len) < 0)
conn_len = 0;
}
}
if (wid_caps & AC_WCAP_IN_AMP) {
snd_iprintf(buffer, " Amp-In caps: ");
print_amp_caps(buffer, codec, nid, HDA_INPUT);
snd_iprintf(buffer, " Amp-In vals: ");
if (wid_type == AC_WID_PIN ||
(codec->single_adc_amp &&
wid_type == AC_WID_AUD_IN))
print_amp_vals(buffer, codec, nid, HDA_INPUT,
wid_caps, 1);
else
print_amp_vals(buffer, codec, nid, HDA_INPUT,
wid_caps, conn_len);
}
if (wid_caps & AC_WCAP_OUT_AMP) {
snd_iprintf(buffer, " Amp-Out caps: ");
print_amp_caps(buffer, codec, nid, HDA_OUTPUT);
snd_iprintf(buffer, " Amp-Out vals: ");
if (wid_type == AC_WID_PIN &&
codec->pin_amp_workaround)
print_amp_vals(buffer, codec, nid, HDA_OUTPUT,
wid_caps, conn_len);
else
print_amp_vals(buffer, codec, nid, HDA_OUTPUT,
wid_caps, 1);
}
switch (wid_type) {
case AC_WID_PIN: {
int supports_vref;
print_pin_caps(buffer, codec, nid, &supports_vref);
print_pin_ctls(buffer, codec, nid, supports_vref);
break;
}
case AC_WID_VOL_KNB:
print_vol_knob(buffer, codec, nid);
break;
case AC_WID_AUD_OUT:
case AC_WID_AUD_IN:
print_audio_io(buffer, codec, nid, wid_type);
if (wid_caps & AC_WCAP_DIGITAL)
print_digital_conv(buffer, codec, nid);
if (wid_caps & AC_WCAP_FORMAT_OVRD) {
snd_iprintf(buffer, " PCM:\n");
print_pcm_caps(buffer, codec, nid);
}
break;
}
if (wid_caps & AC_WCAP_UNSOL_CAP)
print_unsol_cap(buffer, codec, nid);
if (wid_caps & AC_WCAP_POWER)
print_power_state(buffer, codec, nid);
if (wid_caps & AC_WCAP_DELAY)
snd_iprintf(buffer, " Delay: %d samples\n",
(wid_caps & AC_WCAP_DELAY) >>
AC_WCAP_DELAY_SHIFT);
if (wid_type == AC_WID_PIN && codec->dp_mst)
print_device_list(buffer, codec, nid);
if (wid_caps & AC_WCAP_CONN_LIST)
print_conn_list(buffer, codec, nid, wid_type,
conn, conn_len);
if (wid_caps & AC_WCAP_PROC_WID)
print_proc_caps(buffer, codec, nid);
if (codec->proc_widget_hook)
codec->proc_widget_hook(buffer, codec, nid);
kfree(conn);
}
snd_hda_power_down(codec);
}
/*
* create a proc read
*/
int snd_hda_codec_proc_new(struct hda_codec *codec)
{
char name[32];
snprintf(name, sizeof(name), "codec#%d", codec->core.addr);
return snd_card_ro_proc_new(codec->card, name, codec, print_codec_info);
}