OpenCloudOS-Kernel/fs/btrfs/tree-log.c

5749 lines
153 KiB
C

/*
* Copyright (C) 2008 Oracle. All rights reserved.
*
* This program is free software; you can redistribute it and/or
* modify it under the terms of the GNU General Public
* License v2 as published by the Free Software Foundation.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public
* License along with this program; if not, write to the
* Free Software Foundation, Inc., 59 Temple Place - Suite 330,
* Boston, MA 021110-1307, USA.
*/
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/blkdev.h>
#include <linux/list_sort.h>
#include "tree-log.h"
#include "disk-io.h"
#include "locking.h"
#include "print-tree.h"
#include "backref.h"
#include "hash.h"
#include "compression.h"
/* magic values for the inode_only field in btrfs_log_inode:
*
* LOG_INODE_ALL means to log everything
* LOG_INODE_EXISTS means to log just enough to recreate the inode
* during log replay
*/
#define LOG_INODE_ALL 0
#define LOG_INODE_EXISTS 1
/*
* directory trouble cases
*
* 1) on rename or unlink, if the inode being unlinked isn't in the fsync
* log, we must force a full commit before doing an fsync of the directory
* where the unlink was done.
* ---> record transid of last unlink/rename per directory
*
* mkdir foo/some_dir
* normal commit
* rename foo/some_dir foo2/some_dir
* mkdir foo/some_dir
* fsync foo/some_dir/some_file
*
* The fsync above will unlink the original some_dir without recording
* it in its new location (foo2). After a crash, some_dir will be gone
* unless the fsync of some_file forces a full commit
*
* 2) we must log any new names for any file or dir that is in the fsync
* log. ---> check inode while renaming/linking.
*
* 2a) we must log any new names for any file or dir during rename
* when the directory they are being removed from was logged.
* ---> check inode and old parent dir during rename
*
* 2a is actually the more important variant. With the extra logging
* a crash might unlink the old name without recreating the new one
*
* 3) after a crash, we must go through any directories with a link count
* of zero and redo the rm -rf
*
* mkdir f1/foo
* normal commit
* rm -rf f1/foo
* fsync(f1)
*
* The directory f1 was fully removed from the FS, but fsync was never
* called on f1, only its parent dir. After a crash the rm -rf must
* be replayed. This must be able to recurse down the entire
* directory tree. The inode link count fixup code takes care of the
* ugly details.
*/
/*
* stages for the tree walking. The first
* stage (0) is to only pin down the blocks we find
* the second stage (1) is to make sure that all the inodes
* we find in the log are created in the subvolume.
*
* The last stage is to deal with directories and links and extents
* and all the other fun semantics
*/
#define LOG_WALK_PIN_ONLY 0
#define LOG_WALK_REPLAY_INODES 1
#define LOG_WALK_REPLAY_DIR_INDEX 2
#define LOG_WALK_REPLAY_ALL 3
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only,
const loff_t start,
const loff_t end,
struct btrfs_log_ctx *ctx);
static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, u64 objectid);
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
u64 dirid, int del_all);
/*
* tree logging is a special write ahead log used to make sure that
* fsyncs and O_SYNCs can happen without doing full tree commits.
*
* Full tree commits are expensive because they require commonly
* modified blocks to be recowed, creating many dirty pages in the
* extent tree an 4x-6x higher write load than ext3.
*
* Instead of doing a tree commit on every fsync, we use the
* key ranges and transaction ids to find items for a given file or directory
* that have changed in this transaction. Those items are copied into
* a special tree (one per subvolume root), that tree is written to disk
* and then the fsync is considered complete.
*
* After a crash, items are copied out of the log-tree back into the
* subvolume tree. Any file data extents found are recorded in the extent
* allocation tree, and the log-tree freed.
*
* The log tree is read three times, once to pin down all the extents it is
* using in ram and once, once to create all the inodes logged in the tree
* and once to do all the other items.
*/
/*
* start a sub transaction and setup the log tree
* this increments the log tree writer count to make the people
* syncing the tree wait for us to finish
*/
static int start_log_trans(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_log_ctx *ctx)
{
int ret = 0;
mutex_lock(&root->log_mutex);
if (root->log_root) {
if (btrfs_need_log_full_commit(root->fs_info, trans)) {
ret = -EAGAIN;
goto out;
}
if (!root->log_start_pid) {
clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
root->log_start_pid = current->pid;
} else if (root->log_start_pid != current->pid) {
set_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
}
} else {
mutex_lock(&root->fs_info->tree_log_mutex);
if (!root->fs_info->log_root_tree)
ret = btrfs_init_log_root_tree(trans, root->fs_info);
mutex_unlock(&root->fs_info->tree_log_mutex);
if (ret)
goto out;
ret = btrfs_add_log_tree(trans, root);
if (ret)
goto out;
clear_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state);
root->log_start_pid = current->pid;
}
atomic_inc(&root->log_batch);
atomic_inc(&root->log_writers);
if (ctx) {
int index = root->log_transid % 2;
list_add_tail(&ctx->list, &root->log_ctxs[index]);
ctx->log_transid = root->log_transid;
}
out:
mutex_unlock(&root->log_mutex);
return ret;
}
/*
* returns 0 if there was a log transaction running and we were able
* to join, or returns -ENOENT if there were not transactions
* in progress
*/
static int join_running_log_trans(struct btrfs_root *root)
{
int ret = -ENOENT;
smp_mb();
if (!root->log_root)
return -ENOENT;
mutex_lock(&root->log_mutex);
if (root->log_root) {
ret = 0;
atomic_inc(&root->log_writers);
}
mutex_unlock(&root->log_mutex);
return ret;
}
/*
* This either makes the current running log transaction wait
* until you call btrfs_end_log_trans() or it makes any future
* log transactions wait until you call btrfs_end_log_trans()
*/
int btrfs_pin_log_trans(struct btrfs_root *root)
{
int ret = -ENOENT;
mutex_lock(&root->log_mutex);
atomic_inc(&root->log_writers);
mutex_unlock(&root->log_mutex);
return ret;
}
/*
* indicate we're done making changes to the log tree
* and wake up anyone waiting to do a sync
*/
void btrfs_end_log_trans(struct btrfs_root *root)
{
if (atomic_dec_and_test(&root->log_writers)) {
/*
* Implicit memory barrier after atomic_dec_and_test
*/
if (waitqueue_active(&root->log_writer_wait))
wake_up(&root->log_writer_wait);
}
}
/*
* the walk control struct is used to pass state down the chain when
* processing the log tree. The stage field tells us which part
* of the log tree processing we are currently doing. The others
* are state fields used for that specific part
*/
struct walk_control {
/* should we free the extent on disk when done? This is used
* at transaction commit time while freeing a log tree
*/
int free;
/* should we write out the extent buffer? This is used
* while flushing the log tree to disk during a sync
*/
int write;
/* should we wait for the extent buffer io to finish? Also used
* while flushing the log tree to disk for a sync
*/
int wait;
/* pin only walk, we record which extents on disk belong to the
* log trees
*/
int pin;
/* what stage of the replay code we're currently in */
int stage;
/* the root we are currently replaying */
struct btrfs_root *replay_dest;
/* the trans handle for the current replay */
struct btrfs_trans_handle *trans;
/* the function that gets used to process blocks we find in the
* tree. Note the extent_buffer might not be up to date when it is
* passed in, and it must be checked or read if you need the data
* inside it
*/
int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen);
};
/*
* process_func used to pin down extents, write them or wait on them
*/
static int process_one_buffer(struct btrfs_root *log,
struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
int ret = 0;
/*
* If this fs is mixed then we need to be able to process the leaves to
* pin down any logged extents, so we have to read the block.
*/
if (btrfs_fs_incompat(log->fs_info, MIXED_GROUPS)) {
ret = btrfs_read_buffer(eb, gen);
if (ret)
return ret;
}
if (wc->pin)
ret = btrfs_pin_extent_for_log_replay(log->fs_info->extent_root,
eb->start, eb->len);
if (!ret && btrfs_buffer_uptodate(eb, gen, 0)) {
if (wc->pin && btrfs_header_level(eb) == 0)
ret = btrfs_exclude_logged_extents(log, eb);
if (wc->write)
btrfs_write_tree_block(eb);
if (wc->wait)
btrfs_wait_tree_block_writeback(eb);
}
return ret;
}
/*
* Item overwrite used by replay and tree logging. eb, slot and key all refer
* to the src data we are copying out.
*
* root is the tree we are copying into, and path is a scratch
* path for use in this function (it should be released on entry and
* will be released on exit).
*
* If the key is already in the destination tree the existing item is
* overwritten. If the existing item isn't big enough, it is extended.
* If it is too large, it is truncated.
*
* If the key isn't in the destination yet, a new item is inserted.
*/
static noinline int overwrite_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret;
u32 item_size;
u64 saved_i_size = 0;
int save_old_i_size = 0;
unsigned long src_ptr;
unsigned long dst_ptr;
int overwrite_root = 0;
bool inode_item = key->type == BTRFS_INODE_ITEM_KEY;
if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
overwrite_root = 1;
item_size = btrfs_item_size_nr(eb, slot);
src_ptr = btrfs_item_ptr_offset(eb, slot);
/* look for the key in the destination tree */
ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
if (ret < 0)
return ret;
if (ret == 0) {
char *src_copy;
char *dst_copy;
u32 dst_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (dst_size != item_size)
goto insert;
if (item_size == 0) {
btrfs_release_path(path);
return 0;
}
dst_copy = kmalloc(item_size, GFP_NOFS);
src_copy = kmalloc(item_size, GFP_NOFS);
if (!dst_copy || !src_copy) {
btrfs_release_path(path);
kfree(dst_copy);
kfree(src_copy);
return -ENOMEM;
}
read_extent_buffer(eb, src_copy, src_ptr, item_size);
dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
item_size);
ret = memcmp(dst_copy, src_copy, item_size);
kfree(dst_copy);
kfree(src_copy);
/*
* they have the same contents, just return, this saves
* us from cowing blocks in the destination tree and doing
* extra writes that may not have been done by a previous
* sync
*/
if (ret == 0) {
btrfs_release_path(path);
return 0;
}
/*
* We need to load the old nbytes into the inode so when we
* replay the extents we've logged we get the right nbytes.
*/
if (inode_item) {
struct btrfs_inode_item *item;
u64 nbytes;
u32 mode;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
nbytes = btrfs_inode_nbytes(path->nodes[0], item);
item = btrfs_item_ptr(eb, slot,
struct btrfs_inode_item);
btrfs_set_inode_nbytes(eb, item, nbytes);
/*
* If this is a directory we need to reset the i_size to
* 0 so that we can set it up properly when replaying
* the rest of the items in this log.
*/
mode = btrfs_inode_mode(eb, item);
if (S_ISDIR(mode))
btrfs_set_inode_size(eb, item, 0);
}
} else if (inode_item) {
struct btrfs_inode_item *item;
u32 mode;
/*
* New inode, set nbytes to 0 so that the nbytes comes out
* properly when we replay the extents.
*/
item = btrfs_item_ptr(eb, slot, struct btrfs_inode_item);
btrfs_set_inode_nbytes(eb, item, 0);
/*
* If this is a directory we need to reset the i_size to 0 so
* that we can set it up properly when replaying the rest of
* the items in this log.
*/
mode = btrfs_inode_mode(eb, item);
if (S_ISDIR(mode))
btrfs_set_inode_size(eb, item, 0);
}
insert:
btrfs_release_path(path);
/* try to insert the key into the destination tree */
path->skip_release_on_error = 1;
ret = btrfs_insert_empty_item(trans, root, path,
key, item_size);
path->skip_release_on_error = 0;
/* make sure any existing item is the correct size */
if (ret == -EEXIST || ret == -EOVERFLOW) {
u32 found_size;
found_size = btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
if (found_size > item_size)
btrfs_truncate_item(root, path, item_size, 1);
else if (found_size < item_size)
btrfs_extend_item(root, path,
item_size - found_size);
} else if (ret) {
return ret;
}
dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
path->slots[0]);
/* don't overwrite an existing inode if the generation number
* was logged as zero. This is done when the tree logging code
* is just logging an inode to make sure it exists after recovery.
*
* Also, don't overwrite i_size on directories during replay.
* log replay inserts and removes directory items based on the
* state of the tree found in the subvolume, and i_size is modified
* as it goes
*/
if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
struct btrfs_inode_item *src_item;
struct btrfs_inode_item *dst_item;
src_item = (struct btrfs_inode_item *)src_ptr;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(eb, src_item) == 0) {
struct extent_buffer *dst_eb = path->nodes[0];
const u64 ino_size = btrfs_inode_size(eb, src_item);
/*
* For regular files an ino_size == 0 is used only when
* logging that an inode exists, as part of a directory
* fsync, and the inode wasn't fsynced before. In this
* case don't set the size of the inode in the fs/subvol
* tree, otherwise we would be throwing valid data away.
*/
if (S_ISREG(btrfs_inode_mode(eb, src_item)) &&
S_ISREG(btrfs_inode_mode(dst_eb, dst_item)) &&
ino_size != 0) {
struct btrfs_map_token token;
btrfs_init_map_token(&token);
btrfs_set_token_inode_size(dst_eb, dst_item,
ino_size, &token);
}
goto no_copy;
}
if (overwrite_root &&
S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
save_old_i_size = 1;
saved_i_size = btrfs_inode_size(path->nodes[0],
dst_item);
}
}
copy_extent_buffer(path->nodes[0], eb, dst_ptr,
src_ptr, item_size);
if (save_old_i_size) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
}
/* make sure the generation is filled in */
if (key->type == BTRFS_INODE_ITEM_KEY) {
struct btrfs_inode_item *dst_item;
dst_item = (struct btrfs_inode_item *)dst_ptr;
if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
btrfs_set_inode_generation(path->nodes[0], dst_item,
trans->transid);
}
}
no_copy:
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
return 0;
}
/*
* simple helper to read an inode off the disk from a given root
* This can only be called for subvolume roots and not for the log
*/
static noinline struct inode *read_one_inode(struct btrfs_root *root,
u64 objectid)
{
struct btrfs_key key;
struct inode *inode;
key.objectid = objectid;
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
if (IS_ERR(inode)) {
inode = NULL;
} else if (is_bad_inode(inode)) {
iput(inode);
inode = NULL;
}
return inode;
}
/* replays a single extent in 'eb' at 'slot' with 'key' into the
* subvolume 'root'. path is released on entry and should be released
* on exit.
*
* extents in the log tree have not been allocated out of the extent
* tree yet. So, this completes the allocation, taking a reference
* as required if the extent already exists or creating a new extent
* if it isn't in the extent allocation tree yet.
*
* The extent is inserted into the file, dropping any existing extents
* from the file that overlap the new one.
*/
static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int found_type;
u64 extent_end;
u64 start = key->offset;
u64 nbytes = 0;
struct btrfs_file_extent_item *item;
struct inode *inode = NULL;
unsigned long size;
int ret = 0;
item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
found_type = btrfs_file_extent_type(eb, item);
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
nbytes = btrfs_file_extent_num_bytes(eb, item);
extent_end = start + nbytes;
/*
* We don't add to the inodes nbytes if we are prealloc or a
* hole.
*/
if (btrfs_file_extent_disk_bytenr(eb, item) == 0)
nbytes = 0;
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
size = btrfs_file_extent_inline_len(eb, slot, item);
nbytes = btrfs_file_extent_ram_bytes(eb, item);
extent_end = ALIGN(start + size, root->sectorsize);
} else {
ret = 0;
goto out;
}
inode = read_one_inode(root, key->objectid);
if (!inode) {
ret = -EIO;
goto out;
}
/*
* first check to see if we already have this extent in the
* file. This must be done before the btrfs_drop_extents run
* so we don't try to drop this extent.
*/
ret = btrfs_lookup_file_extent(trans, root, path, btrfs_ino(inode),
start, 0);
if (ret == 0 &&
(found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
struct btrfs_file_extent_item cmp1;
struct btrfs_file_extent_item cmp2;
struct btrfs_file_extent_item *existing;
struct extent_buffer *leaf;
leaf = path->nodes[0];
existing = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
read_extent_buffer(eb, &cmp1, (unsigned long)item,
sizeof(cmp1));
read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
sizeof(cmp2));
/*
* we already have a pointer to this exact extent,
* we don't have to do anything
*/
if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
btrfs_release_path(path);
goto out;
}
}
btrfs_release_path(path);
/* drop any overlapping extents */
ret = btrfs_drop_extents(trans, root, inode, start, extent_end, 1);
if (ret)
goto out;
if (found_type == BTRFS_FILE_EXTENT_REG ||
found_type == BTRFS_FILE_EXTENT_PREALLOC) {
u64 offset;
unsigned long dest_offset;
struct btrfs_key ins;
ret = btrfs_insert_empty_item(trans, root, path, key,
sizeof(*item));
if (ret)
goto out;
dest_offset = btrfs_item_ptr_offset(path->nodes[0],
path->slots[0]);
copy_extent_buffer(path->nodes[0], eb, dest_offset,
(unsigned long)item, sizeof(*item));
ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
ins.type = BTRFS_EXTENT_ITEM_KEY;
offset = key->offset - btrfs_file_extent_offset(eb, item);
if (ins.objectid > 0) {
u64 csum_start;
u64 csum_end;
LIST_HEAD(ordered_sums);
/*
* is this extent already allocated in the extent
* allocation tree? If so, just add a reference
*/
ret = btrfs_lookup_data_extent(root, ins.objectid,
ins.offset);
if (ret == 0) {
ret = btrfs_inc_extent_ref(trans, root,
ins.objectid, ins.offset,
0, root->root_key.objectid,
key->objectid, offset);
if (ret)
goto out;
} else {
/*
* insert the extent pointer in the extent
* allocation tree
*/
ret = btrfs_alloc_logged_file_extent(trans,
root, root->root_key.objectid,
key->objectid, offset, &ins);
if (ret)
goto out;
}
btrfs_release_path(path);
if (btrfs_file_extent_compression(eb, item)) {
csum_start = ins.objectid;
csum_end = csum_start + ins.offset;
} else {
csum_start = ins.objectid +
btrfs_file_extent_offset(eb, item);
csum_end = csum_start +
btrfs_file_extent_num_bytes(eb, item);
}
ret = btrfs_lookup_csums_range(root->log_root,
csum_start, csum_end - 1,
&ordered_sums, 0);
if (ret)
goto out;
/*
* Now delete all existing cums in the csum root that
* cover our range. We do this because we can have an
* extent that is completely referenced by one file
* extent item and partially referenced by another
* file extent item (like after using the clone or
* extent_same ioctls). In this case if we end up doing
* the replay of the one that partially references the
* extent first, and we do not do the csum deletion
* below, we can get 2 csum items in the csum tree that
* overlap each other. For example, imagine our log has
* the two following file extent items:
*
* key (257 EXTENT_DATA 409600)
* extent data disk byte 12845056 nr 102400
* extent data offset 20480 nr 20480 ram 102400
*
* key (257 EXTENT_DATA 819200)
* extent data disk byte 12845056 nr 102400
* extent data offset 0 nr 102400 ram 102400
*
* Where the second one fully references the 100K extent
* that starts at disk byte 12845056, and the log tree
* has a single csum item that covers the entire range
* of the extent:
*
* key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
*
* After the first file extent item is replayed, the
* csum tree gets the following csum item:
*
* key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
*
* Which covers the 20K sub-range starting at offset 20K
* of our extent. Now when we replay the second file
* extent item, if we do not delete existing csum items
* that cover any of its blocks, we end up getting two
* csum items in our csum tree that overlap each other:
*
* key (EXTENT_CSUM EXTENT_CSUM 12845056) itemsize 100
* key (EXTENT_CSUM EXTENT_CSUM 12865536) itemsize 20
*
* Which is a problem, because after this anyone trying
* to lookup up for the checksum of any block of our
* extent starting at an offset of 40K or higher, will
* end up looking at the second csum item only, which
* does not contain the checksum for any block starting
* at offset 40K or higher of our extent.
*/
while (!list_empty(&ordered_sums)) {
struct btrfs_ordered_sum *sums;
sums = list_entry(ordered_sums.next,
struct btrfs_ordered_sum,
list);
if (!ret)
ret = btrfs_del_csums(trans,
root->fs_info->csum_root,
sums->bytenr,
sums->len);
if (!ret)
ret = btrfs_csum_file_blocks(trans,
root->fs_info->csum_root,
sums);
list_del(&sums->list);
kfree(sums);
}
if (ret)
goto out;
} else {
btrfs_release_path(path);
}
} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
/* inline extents are easy, we just overwrite them */
ret = overwrite_item(trans, root, path, eb, slot, key);
if (ret)
goto out;
}
inode_add_bytes(inode, nbytes);
ret = btrfs_update_inode(trans, root, inode);
out:
if (inode)
iput(inode);
return ret;
}
/*
* when cleaning up conflicts between the directory names in the
* subvolume, directory names in the log and directory names in the
* inode back references, we may have to unlink inodes from directories.
*
* This is a helper function to do the unlink of a specific directory
* item
*/
static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct inode *dir,
struct btrfs_dir_item *di)
{
struct inode *inode;
char *name;
int name_len;
struct extent_buffer *leaf;
struct btrfs_key location;
int ret;
leaf = path->nodes[0];
btrfs_dir_item_key_to_cpu(leaf, di, &location);
name_len = btrfs_dir_name_len(leaf, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name)
return -ENOMEM;
read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
btrfs_release_path(path);
inode = read_one_inode(root, location.objectid);
if (!inode) {
ret = -EIO;
goto out;
}
ret = link_to_fixup_dir(trans, root, path, location.objectid);
if (ret)
goto out;
ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
if (ret)
goto out;
else
ret = btrfs_run_delayed_items(trans, root);
out:
kfree(name);
iput(inode);
return ret;
}
/*
* helper function to see if a given name and sequence number found
* in an inode back reference are already in a directory and correctly
* point to this inode
*/
static noinline int inode_in_dir(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, u64 objectid, u64 index,
const char *name, int name_len)
{
struct btrfs_dir_item *di;
struct btrfs_key location;
int match = 0;
di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
index, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
btrfs_release_path(path);
di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
if (di && !IS_ERR(di)) {
btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
if (location.objectid != objectid)
goto out;
} else
goto out;
match = 1;
out:
btrfs_release_path(path);
return match;
}
/*
* helper function to check a log tree for a named back reference in
* an inode. This is used to decide if a back reference that is
* found in the subvolume conflicts with what we find in the log.
*
* inode backreferences may have multiple refs in a single item,
* during replay we process one reference at a time, and we don't
* want to delete valid links to a file from the subvolume if that
* link is also in the log.
*/
static noinline int backref_in_log(struct btrfs_root *log,
struct btrfs_key *key,
u64 ref_objectid,
const char *name, int namelen)
{
struct btrfs_path *path;
struct btrfs_inode_ref *ref;
unsigned long ptr;
unsigned long ptr_end;
unsigned long name_ptr;
int found_name_len;
int item_size;
int ret;
int match = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
if (ret != 0)
goto out;
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
if (key->type == BTRFS_INODE_EXTREF_KEY) {
if (btrfs_find_name_in_ext_backref(path, ref_objectid,
name, namelen, NULL))
match = 1;
goto out;
}
item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
ref = (struct btrfs_inode_ref *)ptr;
found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
if (found_name_len == namelen) {
name_ptr = (unsigned long)(ref + 1);
ret = memcmp_extent_buffer(path->nodes[0], name,
name_ptr, namelen);
if (ret == 0) {
match = 1;
goto out;
}
}
ptr = (unsigned long)(ref + 1) + found_name_len;
}
out:
btrfs_free_path(path);
return match;
}
static inline int __add_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct btrfs_root *log_root,
struct inode *dir, struct inode *inode,
struct extent_buffer *eb,
u64 inode_objectid, u64 parent_objectid,
u64 ref_index, char *name, int namelen,
int *search_done)
{
int ret;
char *victim_name;
int victim_name_len;
struct extent_buffer *leaf;
struct btrfs_dir_item *di;
struct btrfs_key search_key;
struct btrfs_inode_extref *extref;
again:
/* Search old style refs */
search_key.objectid = inode_objectid;
search_key.type = BTRFS_INODE_REF_KEY;
search_key.offset = parent_objectid;
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
if (ret == 0) {
struct btrfs_inode_ref *victim_ref;
unsigned long ptr;
unsigned long ptr_end;
leaf = path->nodes[0];
/* are we trying to overwrite a back ref for the root directory
* if so, just jump out, we're done
*/
if (search_key.objectid == search_key.offset)
return 1;
/* check all the names in this back reference to see
* if they are in the log. if so, we allow them to stay
* otherwise they must be unlinked as a conflict
*/
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
while (ptr < ptr_end) {
victim_ref = (struct btrfs_inode_ref *)ptr;
victim_name_len = btrfs_inode_ref_name_len(leaf,
victim_ref);
victim_name = kmalloc(victim_name_len, GFP_NOFS);
if (!victim_name)
return -ENOMEM;
read_extent_buffer(leaf, victim_name,
(unsigned long)(victim_ref + 1),
victim_name_len);
if (!backref_in_log(log_root, &search_key,
parent_objectid,
victim_name,
victim_name_len)) {
inc_nlink(inode);
btrfs_release_path(path);
ret = btrfs_unlink_inode(trans, root, dir,
inode, victim_name,
victim_name_len);
kfree(victim_name);
if (ret)
return ret;
ret = btrfs_run_delayed_items(trans, root);
if (ret)
return ret;
*search_done = 1;
goto again;
}
kfree(victim_name);
ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
}
/*
* NOTE: we have searched root tree and checked the
* corresponding ref, it does not need to check again.
*/
*search_done = 1;
}
btrfs_release_path(path);
/* Same search but for extended refs */
extref = btrfs_lookup_inode_extref(NULL, root, path, name, namelen,
inode_objectid, parent_objectid, 0,
0);
if (!IS_ERR_OR_NULL(extref)) {
u32 item_size;
u32 cur_offset = 0;
unsigned long base;
struct inode *victim_parent;
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
base = btrfs_item_ptr_offset(leaf, path->slots[0]);
while (cur_offset < item_size) {
extref = (struct btrfs_inode_extref *)(base + cur_offset);
victim_name_len = btrfs_inode_extref_name_len(leaf, extref);
if (btrfs_inode_extref_parent(leaf, extref) != parent_objectid)
goto next;
victim_name = kmalloc(victim_name_len, GFP_NOFS);
if (!victim_name)
return -ENOMEM;
read_extent_buffer(leaf, victim_name, (unsigned long)&extref->name,
victim_name_len);
search_key.objectid = inode_objectid;
search_key.type = BTRFS_INODE_EXTREF_KEY;
search_key.offset = btrfs_extref_hash(parent_objectid,
victim_name,
victim_name_len);
ret = 0;
if (!backref_in_log(log_root, &search_key,
parent_objectid, victim_name,
victim_name_len)) {
ret = -ENOENT;
victim_parent = read_one_inode(root,
parent_objectid);
if (victim_parent) {
inc_nlink(inode);
btrfs_release_path(path);
ret = btrfs_unlink_inode(trans, root,
victim_parent,
inode,
victim_name,
victim_name_len);
if (!ret)
ret = btrfs_run_delayed_items(
trans, root);
}
iput(victim_parent);
kfree(victim_name);
if (ret)
return ret;
*search_done = 1;
goto again;
}
kfree(victim_name);
if (ret)
return ret;
next:
cur_offset += victim_name_len + sizeof(*extref);
}
*search_done = 1;
}
btrfs_release_path(path);
/* look for a conflicting sequence number */
di = btrfs_lookup_dir_index_item(trans, root, path, btrfs_ino(dir),
ref_index, name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
if (ret)
return ret;
}
btrfs_release_path(path);
/* look for a conflicing name */
di = btrfs_lookup_dir_item(trans, root, path, btrfs_ino(dir),
name, namelen, 0);
if (di && !IS_ERR(di)) {
ret = drop_one_dir_item(trans, root, path, dir, di);
if (ret)
return ret;
}
btrfs_release_path(path);
return 0;
}
static int extref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
u32 *namelen, char **name, u64 *index,
u64 *parent_objectid)
{
struct btrfs_inode_extref *extref;
extref = (struct btrfs_inode_extref *)ref_ptr;
*namelen = btrfs_inode_extref_name_len(eb, extref);
*name = kmalloc(*namelen, GFP_NOFS);
if (*name == NULL)
return -ENOMEM;
read_extent_buffer(eb, *name, (unsigned long)&extref->name,
*namelen);
*index = btrfs_inode_extref_index(eb, extref);
if (parent_objectid)
*parent_objectid = btrfs_inode_extref_parent(eb, extref);
return 0;
}
static int ref_get_fields(struct extent_buffer *eb, unsigned long ref_ptr,
u32 *namelen, char **name, u64 *index)
{
struct btrfs_inode_ref *ref;
ref = (struct btrfs_inode_ref *)ref_ptr;
*namelen = btrfs_inode_ref_name_len(eb, ref);
*name = kmalloc(*namelen, GFP_NOFS);
if (*name == NULL)
return -ENOMEM;
read_extent_buffer(eb, *name, (unsigned long)(ref + 1), *namelen);
*index = btrfs_inode_ref_index(eb, ref);
return 0;
}
/*
* replay one inode back reference item found in the log tree.
* eb, slot and key refer to the buffer and key found in the log tree.
* root is the destination we are replaying into, and path is for temp
* use by this function. (it should be released on return).
*/
static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
struct inode *dir = NULL;
struct inode *inode = NULL;
unsigned long ref_ptr;
unsigned long ref_end;
char *name = NULL;
int namelen;
int ret;
int search_done = 0;
int log_ref_ver = 0;
u64 parent_objectid;
u64 inode_objectid;
u64 ref_index = 0;
int ref_struct_size;
ref_ptr = btrfs_item_ptr_offset(eb, slot);
ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
if (key->type == BTRFS_INODE_EXTREF_KEY) {
struct btrfs_inode_extref *r;
ref_struct_size = sizeof(struct btrfs_inode_extref);
log_ref_ver = 1;
r = (struct btrfs_inode_extref *)ref_ptr;
parent_objectid = btrfs_inode_extref_parent(eb, r);
} else {
ref_struct_size = sizeof(struct btrfs_inode_ref);
parent_objectid = key->offset;
}
inode_objectid = key->objectid;
/*
* it is possible that we didn't log all the parent directories
* for a given inode. If we don't find the dir, just don't
* copy the back ref in. The link count fixup code will take
* care of the rest
*/
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
inode = read_one_inode(root, inode_objectid);
if (!inode) {
ret = -EIO;
goto out;
}
while (ref_ptr < ref_end) {
if (log_ref_ver) {
ret = extref_get_fields(eb, ref_ptr, &namelen, &name,
&ref_index, &parent_objectid);
/*
* parent object can change from one array
* item to another.
*/
if (!dir)
dir = read_one_inode(root, parent_objectid);
if (!dir) {
ret = -ENOENT;
goto out;
}
} else {
ret = ref_get_fields(eb, ref_ptr, &namelen, &name,
&ref_index);
}
if (ret)
goto out;
/* if we already have a perfect match, we're done */
if (!inode_in_dir(root, path, btrfs_ino(dir), btrfs_ino(inode),
ref_index, name, namelen)) {
/*
* look for a conflicting back reference in the
* metadata. if we find one we have to unlink that name
* of the file before we add our new link. Later on, we
* overwrite any existing back reference, and we don't
* want to create dangling pointers in the directory.
*/
if (!search_done) {
ret = __add_inode_ref(trans, root, path, log,
dir, inode, eb,
inode_objectid,
parent_objectid,
ref_index, name, namelen,
&search_done);
if (ret) {
if (ret == 1)
ret = 0;
goto out;
}
}
/* insert our name */
ret = btrfs_add_link(trans, dir, inode, name, namelen,
0, ref_index);
if (ret)
goto out;
btrfs_update_inode(trans, root, inode);
}
ref_ptr = (unsigned long)(ref_ptr + ref_struct_size) + namelen;
kfree(name);
name = NULL;
if (log_ref_ver) {
iput(dir);
dir = NULL;
}
}
/* finally write the back reference in the inode */
ret = overwrite_item(trans, root, path, eb, slot, key);
out:
btrfs_release_path(path);
kfree(name);
iput(dir);
iput(inode);
return ret;
}
static int insert_orphan_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root, u64 ino)
{
int ret;
ret = btrfs_insert_orphan_item(trans, root, ino);
if (ret == -EEXIST)
ret = 0;
return ret;
}
static int count_inode_extrefs(struct btrfs_root *root,
struct inode *inode, struct btrfs_path *path)
{
int ret = 0;
int name_len;
unsigned int nlink = 0;
u32 item_size;
u32 cur_offset = 0;
u64 inode_objectid = btrfs_ino(inode);
u64 offset = 0;
unsigned long ptr;
struct btrfs_inode_extref *extref;
struct extent_buffer *leaf;
while (1) {
ret = btrfs_find_one_extref(root, inode_objectid, offset, path,
&extref, &offset);
if (ret)
break;
leaf = path->nodes[0];
item_size = btrfs_item_size_nr(leaf, path->slots[0]);
ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
cur_offset = 0;
while (cur_offset < item_size) {
extref = (struct btrfs_inode_extref *) (ptr + cur_offset);
name_len = btrfs_inode_extref_name_len(leaf, extref);
nlink++;
cur_offset += name_len + sizeof(*extref);
}
offset++;
btrfs_release_path(path);
}
btrfs_release_path(path);
if (ret < 0 && ret != -ENOENT)
return ret;
return nlink;
}
static int count_inode_refs(struct btrfs_root *root,
struct inode *inode, struct btrfs_path *path)
{
int ret;
struct btrfs_key key;
unsigned int nlink = 0;
unsigned long ptr;
unsigned long ptr_end;
int name_len;
u64 ino = btrfs_ino(inode);
key.objectid = ino;
key.type = BTRFS_INODE_REF_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
break;
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
process_slot:
btrfs_item_key_to_cpu(path->nodes[0], &key,
path->slots[0]);
if (key.objectid != ino ||
key.type != BTRFS_INODE_REF_KEY)
break;
ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
path->slots[0]);
while (ptr < ptr_end) {
struct btrfs_inode_ref *ref;
ref = (struct btrfs_inode_ref *)ptr;
name_len = btrfs_inode_ref_name_len(path->nodes[0],
ref);
ptr = (unsigned long)(ref + 1) + name_len;
nlink++;
}
if (key.offset == 0)
break;
if (path->slots[0] > 0) {
path->slots[0]--;
goto process_slot;
}
key.offset--;
btrfs_release_path(path);
}
btrfs_release_path(path);
return nlink;
}
/*
* There are a few corners where the link count of the file can't
* be properly maintained during replay. So, instead of adding
* lots of complexity to the log code, we just scan the backrefs
* for any file that has been through replay.
*
* The scan will update the link count on the inode to reflect the
* number of back refs found. If it goes down to zero, the iput
* will free the inode.
*/
static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode)
{
struct btrfs_path *path;
int ret;
u64 nlink = 0;
u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
ret = count_inode_refs(root, inode, path);
if (ret < 0)
goto out;
nlink = ret;
ret = count_inode_extrefs(root, inode, path);
if (ret < 0)
goto out;
nlink += ret;
ret = 0;
if (nlink != inode->i_nlink) {
set_nlink(inode, nlink);
btrfs_update_inode(trans, root, inode);
}
BTRFS_I(inode)->index_cnt = (u64)-1;
if (inode->i_nlink == 0) {
if (S_ISDIR(inode->i_mode)) {
ret = replay_dir_deletes(trans, root, NULL, path,
ino, 1);
if (ret)
goto out;
}
ret = insert_orphan_item(trans, root, ino);
}
out:
btrfs_free_path(path);
return ret;
}
static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path)
{
int ret;
struct btrfs_key key;
struct inode *inode;
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
if (ret < 0)
break;
if (ret == 1) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
key.type != BTRFS_ORPHAN_ITEM_KEY)
break;
ret = btrfs_del_item(trans, root, path);
if (ret)
goto out;
btrfs_release_path(path);
inode = read_one_inode(root, key.offset);
if (!inode)
return -EIO;
ret = fixup_inode_link_count(trans, root, inode);
iput(inode);
if (ret)
goto out;
/*
* fixup on a directory may create new entries,
* make sure we always look for the highset possible
* offset
*/
key.offset = (u64)-1;
}
ret = 0;
out:
btrfs_release_path(path);
return ret;
}
/*
* record a given inode in the fixup dir so we can check its link
* count when replay is done. The link count is incremented here
* so the inode won't go away until we check it
*/
static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
u64 objectid)
{
struct btrfs_key key;
int ret = 0;
struct inode *inode;
inode = read_one_inode(root, objectid);
if (!inode)
return -EIO;
key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
key.type = BTRFS_ORPHAN_ITEM_KEY;
key.offset = objectid;
ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
btrfs_release_path(path);
if (ret == 0) {
if (!inode->i_nlink)
set_nlink(inode, 1);
else
inc_nlink(inode);
ret = btrfs_update_inode(trans, root, inode);
} else if (ret == -EEXIST) {
ret = 0;
} else {
BUG(); /* Logic Error */
}
iput(inode);
return ret;
}
/*
* when replaying the log for a directory, we only insert names
* for inodes that actually exist. This means an fsync on a directory
* does not implicitly fsync all the new files in it
*/
static noinline int insert_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
u64 dirid, u64 index,
char *name, int name_len,
struct btrfs_key *location)
{
struct inode *inode;
struct inode *dir;
int ret;
inode = read_one_inode(root, location->objectid);
if (!inode)
return -ENOENT;
dir = read_one_inode(root, dirid);
if (!dir) {
iput(inode);
return -EIO;
}
ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
/* FIXME, put inode into FIXUP list */
iput(inode);
iput(dir);
return ret;
}
/*
* Return true if an inode reference exists in the log for the given name,
* inode and parent inode.
*/
static bool name_in_log_ref(struct btrfs_root *log_root,
const char *name, const int name_len,
const u64 dirid, const u64 ino)
{
struct btrfs_key search_key;
search_key.objectid = ino;
search_key.type = BTRFS_INODE_REF_KEY;
search_key.offset = dirid;
if (backref_in_log(log_root, &search_key, dirid, name, name_len))
return true;
search_key.type = BTRFS_INODE_EXTREF_KEY;
search_key.offset = btrfs_extref_hash(dirid, name, name_len);
if (backref_in_log(log_root, &search_key, dirid, name, name_len))
return true;
return false;
}
/*
* take a single entry in a log directory item and replay it into
* the subvolume.
*
* if a conflicting item exists in the subdirectory already,
* the inode it points to is unlinked and put into the link count
* fix up tree.
*
* If a name from the log points to a file or directory that does
* not exist in the FS, it is skipped. fsyncs on directories
* do not force down inodes inside that directory, just changes to the
* names or unlinks in a directory.
*
* Returns < 0 on error, 0 if the name wasn't replayed (dentry points to a
* non-existing inode) and 1 if the name was replayed.
*/
static noinline int replay_one_name(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb,
struct btrfs_dir_item *di,
struct btrfs_key *key)
{
char *name;
int name_len;
struct btrfs_dir_item *dst_di;
struct btrfs_key found_key;
struct btrfs_key log_key;
struct inode *dir;
u8 log_type;
int exists;
int ret = 0;
bool update_size = (key->type == BTRFS_DIR_INDEX_KEY);
bool name_added = false;
dir = read_one_inode(root, key->objectid);
if (!dir)
return -EIO;
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name) {
ret = -ENOMEM;
goto out;
}
log_type = btrfs_dir_type(eb, di);
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
btrfs_dir_item_key_to_cpu(eb, di, &log_key);
exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
if (exists == 0)
exists = 1;
else
exists = 0;
btrfs_release_path(path);
if (key->type == BTRFS_DIR_ITEM_KEY) {
dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
name, name_len, 1);
} else if (key->type == BTRFS_DIR_INDEX_KEY) {
dst_di = btrfs_lookup_dir_index_item(trans, root, path,
key->objectid,
key->offset, name,
name_len, 1);
} else {
/* Corruption */
ret = -EINVAL;
goto out;
}
if (IS_ERR_OR_NULL(dst_di)) {
/* we need a sequence number to insert, so we only
* do inserts for the BTRFS_DIR_INDEX_KEY types
*/
if (key->type != BTRFS_DIR_INDEX_KEY)
goto out;
goto insert;
}
btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
/* the existing item matches the logged item */
if (found_key.objectid == log_key.objectid &&
found_key.type == log_key.type &&
found_key.offset == log_key.offset &&
btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
update_size = false;
goto out;
}
/*
* don't drop the conflicting directory entry if the inode
* for the new entry doesn't exist
*/
if (!exists)
goto out;
ret = drop_one_dir_item(trans, root, path, dir, dst_di);
if (ret)
goto out;
if (key->type == BTRFS_DIR_INDEX_KEY)
goto insert;
out:
btrfs_release_path(path);
if (!ret && update_size) {
btrfs_i_size_write(dir, dir->i_size + name_len * 2);
ret = btrfs_update_inode(trans, root, dir);
}
kfree(name);
iput(dir);
if (!ret && name_added)
ret = 1;
return ret;
insert:
if (name_in_log_ref(root->log_root, name, name_len,
key->objectid, log_key.objectid)) {
/* The dentry will be added later. */
ret = 0;
update_size = false;
goto out;
}
btrfs_release_path(path);
ret = insert_one_name(trans, root, key->objectid, key->offset,
name, name_len, &log_key);
if (ret && ret != -ENOENT && ret != -EEXIST)
goto out;
if (!ret)
name_added = true;
update_size = false;
ret = 0;
goto out;
}
/*
* find all the names in a directory item and reconcile them into
* the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
* one name in a directory item, but the same code gets used for
* both directory index types
*/
static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path,
struct extent_buffer *eb, int slot,
struct btrfs_key *key)
{
int ret = 0;
u32 item_size = btrfs_item_size_nr(eb, slot);
struct btrfs_dir_item *di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
struct btrfs_path *fixup_path = NULL;
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
if (verify_dir_item(root, eb, di))
return -EIO;
name_len = btrfs_dir_name_len(eb, di);
ret = replay_one_name(trans, root, path, eb, di, key);
if (ret < 0)
break;
ptr = (unsigned long)(di + 1);
ptr += name_len;
/*
* If this entry refers to a non-directory (directories can not
* have a link count > 1) and it was added in the transaction
* that was not committed, make sure we fixup the link count of
* the inode it the entry points to. Otherwise something like
* the following would result in a directory pointing to an
* inode with a wrong link that does not account for this dir
* entry:
*
* mkdir testdir
* touch testdir/foo
* touch testdir/bar
* sync
*
* ln testdir/bar testdir/bar_link
* ln testdir/foo testdir/foo_link
* xfs_io -c "fsync" testdir/bar
*
* <power failure>
*
* mount fs, log replay happens
*
* File foo would remain with a link count of 1 when it has two
* entries pointing to it in the directory testdir. This would
* make it impossible to ever delete the parent directory has
* it would result in stale dentries that can never be deleted.
*/
if (ret == 1 && btrfs_dir_type(eb, di) != BTRFS_FT_DIR) {
struct btrfs_key di_key;
if (!fixup_path) {
fixup_path = btrfs_alloc_path();
if (!fixup_path) {
ret = -ENOMEM;
break;
}
}
btrfs_dir_item_key_to_cpu(eb, di, &di_key);
ret = link_to_fixup_dir(trans, root, fixup_path,
di_key.objectid);
if (ret)
break;
}
ret = 0;
}
btrfs_free_path(fixup_path);
return ret;
}
/*
* directory replay has two parts. There are the standard directory
* items in the log copied from the subvolume, and range items
* created in the log while the subvolume was logged.
*
* The range items tell us which parts of the key space the log
* is authoritative for. During replay, if a key in the subvolume
* directory is in a logged range item, but not actually in the log
* that means it was deleted from the directory before the fsync
* and should be removed.
*/
static noinline int find_dir_range(struct btrfs_root *root,
struct btrfs_path *path,
u64 dirid, int key_type,
u64 *start_ret, u64 *end_ret)
{
struct btrfs_key key;
u64 found_end;
struct btrfs_dir_log_item *item;
int ret;
int nritems;
if (*start_ret == (u64)-1)
return 1;
key.objectid = dirid;
key.type = key_type;
key.offset = *start_ret;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
if (ret > 0) {
if (path->slots[0] == 0)
goto out;
path->slots[0]--;
}
if (ret != 0)
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto next;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
if (*start_ret >= key.offset && *start_ret <= found_end) {
ret = 0;
*start_ret = key.offset;
*end_ret = found_end;
goto out;
}
ret = 1;
next:
/* check the next slot in the tree to see if it is a valid item */
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
goto out;
} else {
path->slots[0]++;
}
btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
if (key.type != key_type || key.objectid != dirid) {
ret = 1;
goto out;
}
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
found_end = btrfs_dir_log_end(path->nodes[0], item);
*start_ret = key.offset;
*end_ret = found_end;
ret = 0;
out:
btrfs_release_path(path);
return ret;
}
/*
* this looks for a given directory item in the log. If the directory
* item is not in the log, the item is removed and the inode it points
* to is unlinked
*/
static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
struct btrfs_path *log_path,
struct inode *dir,
struct btrfs_key *dir_key)
{
int ret;
struct extent_buffer *eb;
int slot;
u32 item_size;
struct btrfs_dir_item *di;
struct btrfs_dir_item *log_di;
int name_len;
unsigned long ptr;
unsigned long ptr_end;
char *name;
struct inode *inode;
struct btrfs_key location;
again:
eb = path->nodes[0];
slot = path->slots[0];
item_size = btrfs_item_size_nr(eb, slot);
ptr = btrfs_item_ptr_offset(eb, slot);
ptr_end = ptr + item_size;
while (ptr < ptr_end) {
di = (struct btrfs_dir_item *)ptr;
if (verify_dir_item(root, eb, di)) {
ret = -EIO;
goto out;
}
name_len = btrfs_dir_name_len(eb, di);
name = kmalloc(name_len, GFP_NOFS);
if (!name) {
ret = -ENOMEM;
goto out;
}
read_extent_buffer(eb, name, (unsigned long)(di + 1),
name_len);
log_di = NULL;
if (log && dir_key->type == BTRFS_DIR_ITEM_KEY) {
log_di = btrfs_lookup_dir_item(trans, log, log_path,
dir_key->objectid,
name, name_len, 0);
} else if (log && dir_key->type == BTRFS_DIR_INDEX_KEY) {
log_di = btrfs_lookup_dir_index_item(trans, log,
log_path,
dir_key->objectid,
dir_key->offset,
name, name_len, 0);
}
if (!log_di || (IS_ERR(log_di) && PTR_ERR(log_di) == -ENOENT)) {
btrfs_dir_item_key_to_cpu(eb, di, &location);
btrfs_release_path(path);
btrfs_release_path(log_path);
inode = read_one_inode(root, location.objectid);
if (!inode) {
kfree(name);
return -EIO;
}
ret = link_to_fixup_dir(trans, root,
path, location.objectid);
if (ret) {
kfree(name);
iput(inode);
goto out;
}
inc_nlink(inode);
ret = btrfs_unlink_inode(trans, root, dir, inode,
name, name_len);
if (!ret)
ret = btrfs_run_delayed_items(trans, root);
kfree(name);
iput(inode);
if (ret)
goto out;
/* there might still be more names under this key
* check and repeat if required
*/
ret = btrfs_search_slot(NULL, root, dir_key, path,
0, 0);
if (ret == 0)
goto again;
ret = 0;
goto out;
} else if (IS_ERR(log_di)) {
kfree(name);
return PTR_ERR(log_di);
}
btrfs_release_path(log_path);
kfree(name);
ptr = (unsigned long)(di + 1);
ptr += name_len;
}
ret = 0;
out:
btrfs_release_path(path);
btrfs_release_path(log_path);
return ret;
}
static int replay_xattr_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
const u64 ino)
{
struct btrfs_key search_key;
struct btrfs_path *log_path;
int i;
int nritems;
int ret;
log_path = btrfs_alloc_path();
if (!log_path)
return -ENOMEM;
search_key.objectid = ino;
search_key.type = BTRFS_XATTR_ITEM_KEY;
search_key.offset = 0;
again:
ret = btrfs_search_slot(NULL, root, &search_key, path, 0, 0);
if (ret < 0)
goto out;
process_leaf:
nritems = btrfs_header_nritems(path->nodes[0]);
for (i = path->slots[0]; i < nritems; i++) {
struct btrfs_key key;
struct btrfs_dir_item *di;
struct btrfs_dir_item *log_di;
u32 total_size;
u32 cur;
btrfs_item_key_to_cpu(path->nodes[0], &key, i);
if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY) {
ret = 0;
goto out;
}
di = btrfs_item_ptr(path->nodes[0], i, struct btrfs_dir_item);
total_size = btrfs_item_size_nr(path->nodes[0], i);
cur = 0;
while (cur < total_size) {
u16 name_len = btrfs_dir_name_len(path->nodes[0], di);
u16 data_len = btrfs_dir_data_len(path->nodes[0], di);
u32 this_len = sizeof(*di) + name_len + data_len;
char *name;
name = kmalloc(name_len, GFP_NOFS);
if (!name) {
ret = -ENOMEM;
goto out;
}
read_extent_buffer(path->nodes[0], name,
(unsigned long)(di + 1), name_len);
log_di = btrfs_lookup_xattr(NULL, log, log_path, ino,
name, name_len, 0);
btrfs_release_path(log_path);
if (!log_di) {
/* Doesn't exist in log tree, so delete it. */
btrfs_release_path(path);
di = btrfs_lookup_xattr(trans, root, path, ino,
name, name_len, -1);
kfree(name);
if (IS_ERR(di)) {
ret = PTR_ERR(di);
goto out;
}
ASSERT(di);
ret = btrfs_delete_one_dir_name(trans, root,
path, di);
if (ret)
goto out;
btrfs_release_path(path);
search_key = key;
goto again;
}
kfree(name);
if (IS_ERR(log_di)) {
ret = PTR_ERR(log_di);
goto out;
}
cur += this_len;
di = (struct btrfs_dir_item *)((char *)di + this_len);
}
}
ret = btrfs_next_leaf(root, path);
if (ret > 0)
ret = 0;
else if (ret == 0)
goto process_leaf;
out:
btrfs_free_path(log_path);
btrfs_release_path(path);
return ret;
}
/*
* deletion replay happens before we copy any new directory items
* out of the log or out of backreferences from inodes. It
* scans the log to find ranges of keys that log is authoritative for,
* and then scans the directory to find items in those ranges that are
* not present in the log.
*
* Anything we don't find in the log is unlinked and removed from the
* directory.
*/
static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_root *log,
struct btrfs_path *path,
u64 dirid, int del_all)
{
u64 range_start;
u64 range_end;
int key_type = BTRFS_DIR_LOG_ITEM_KEY;
int ret = 0;
struct btrfs_key dir_key;
struct btrfs_key found_key;
struct btrfs_path *log_path;
struct inode *dir;
dir_key.objectid = dirid;
dir_key.type = BTRFS_DIR_ITEM_KEY;
log_path = btrfs_alloc_path();
if (!log_path)
return -ENOMEM;
dir = read_one_inode(root, dirid);
/* it isn't an error if the inode isn't there, that can happen
* because we replay the deletes before we copy in the inode item
* from the log
*/
if (!dir) {
btrfs_free_path(log_path);
return 0;
}
again:
range_start = 0;
range_end = 0;
while (1) {
if (del_all)
range_end = (u64)-1;
else {
ret = find_dir_range(log, path, dirid, key_type,
&range_start, &range_end);
if (ret != 0)
break;
}
dir_key.offset = range_start;
while (1) {
int nritems;
ret = btrfs_search_slot(NULL, root, &dir_key, path,
0, 0);
if (ret < 0)
goto out;
nritems = btrfs_header_nritems(path->nodes[0]);
if (path->slots[0] >= nritems) {
ret = btrfs_next_leaf(root, path);
if (ret)
break;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != dirid ||
found_key.type != dir_key.type)
goto next_type;
if (found_key.offset > range_end)
break;
ret = check_item_in_log(trans, root, log, path,
log_path, dir,
&found_key);
if (ret)
goto out;
if (found_key.offset == (u64)-1)
break;
dir_key.offset = found_key.offset + 1;
}
btrfs_release_path(path);
if (range_end == (u64)-1)
break;
range_start = range_end + 1;
}
next_type:
ret = 0;
if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
key_type = BTRFS_DIR_LOG_INDEX_KEY;
dir_key.type = BTRFS_DIR_INDEX_KEY;
btrfs_release_path(path);
goto again;
}
out:
btrfs_release_path(path);
btrfs_free_path(log_path);
iput(dir);
return ret;
}
/*
* the process_func used to replay items from the log tree. This
* gets called in two different stages. The first stage just looks
* for inodes and makes sure they are all copied into the subvolume.
*
* The second stage copies all the other item types from the log into
* the subvolume. The two stage approach is slower, but gets rid of
* lots of complexity around inodes referencing other inodes that exist
* only in the log (references come from either directory items or inode
* back refs).
*/
static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
struct walk_control *wc, u64 gen)
{
int nritems;
struct btrfs_path *path;
struct btrfs_root *root = wc->replay_dest;
struct btrfs_key key;
int level;
int i;
int ret;
ret = btrfs_read_buffer(eb, gen);
if (ret)
return ret;
level = btrfs_header_level(eb);
if (level != 0)
return 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
nritems = btrfs_header_nritems(eb);
for (i = 0; i < nritems; i++) {
btrfs_item_key_to_cpu(eb, &key, i);
/* inode keys are done during the first stage */
if (key.type == BTRFS_INODE_ITEM_KEY &&
wc->stage == LOG_WALK_REPLAY_INODES) {
struct btrfs_inode_item *inode_item;
u32 mode;
inode_item = btrfs_item_ptr(eb, i,
struct btrfs_inode_item);
ret = replay_xattr_deletes(wc->trans, root, log,
path, key.objectid);
if (ret)
break;
mode = btrfs_inode_mode(eb, inode_item);
if (S_ISDIR(mode)) {
ret = replay_dir_deletes(wc->trans,
root, log, path, key.objectid, 0);
if (ret)
break;
}
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
if (ret)
break;
/* for regular files, make sure corresponding
* orhpan item exist. extents past the new EOF
* will be truncated later by orphan cleanup.
*/
if (S_ISREG(mode)) {
ret = insert_orphan_item(wc->trans, root,
key.objectid);
if (ret)
break;
}
ret = link_to_fixup_dir(wc->trans, root,
path, key.objectid);
if (ret)
break;
}
if (key.type == BTRFS_DIR_INDEX_KEY &&
wc->stage == LOG_WALK_REPLAY_DIR_INDEX) {
ret = replay_one_dir_item(wc->trans, root, path,
eb, i, &key);
if (ret)
break;
}
if (wc->stage < LOG_WALK_REPLAY_ALL)
continue;
/* these keys are simply copied */
if (key.type == BTRFS_XATTR_ITEM_KEY) {
ret = overwrite_item(wc->trans, root, path,
eb, i, &key);
if (ret)
break;
} else if (key.type == BTRFS_INODE_REF_KEY ||
key.type == BTRFS_INODE_EXTREF_KEY) {
ret = add_inode_ref(wc->trans, root, log, path,
eb, i, &key);
if (ret && ret != -ENOENT)
break;
ret = 0;
} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
ret = replay_one_extent(wc->trans, root, path,
eb, i, &key);
if (ret)
break;
} else if (key.type == BTRFS_DIR_ITEM_KEY) {
ret = replay_one_dir_item(wc->trans, root, path,
eb, i, &key);
if (ret)
break;
}
}
btrfs_free_path(path);
return ret;
}
static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
u64 bytenr;
u64 ptr_gen;
struct extent_buffer *next;
struct extent_buffer *cur;
struct extent_buffer *parent;
u32 blocksize;
int ret = 0;
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
while (*level > 0) {
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
cur = path->nodes[*level];
WARN_ON(btrfs_header_level(cur) != *level);
if (path->slots[*level] >=
btrfs_header_nritems(cur))
break;
bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
blocksize = root->nodesize;
parent = path->nodes[*level];
root_owner = btrfs_header_owner(parent);
next = btrfs_find_create_tree_block(root, bytenr);
if (!next)
return -ENOMEM;
if (*level == 1) {
ret = wc->process_func(root, next, wc, ptr_gen);
if (ret) {
free_extent_buffer(next);
return ret;
}
path->slots[*level]++;
if (wc->free) {
ret = btrfs_read_buffer(next, ptr_gen);
if (ret) {
free_extent_buffer(next);
return ret;
}
if (trans) {
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, root->fs_info,
next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
}
WARN_ON(root_owner !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(root,
bytenr, blocksize);
if (ret) {
free_extent_buffer(next);
return ret;
}
}
free_extent_buffer(next);
continue;
}
ret = btrfs_read_buffer(next, ptr_gen);
if (ret) {
free_extent_buffer(next);
return ret;
}
WARN_ON(*level <= 0);
if (path->nodes[*level-1])
free_extent_buffer(path->nodes[*level-1]);
path->nodes[*level-1] = next;
*level = btrfs_header_level(next);
path->slots[*level] = 0;
cond_resched();
}
WARN_ON(*level < 0);
WARN_ON(*level >= BTRFS_MAX_LEVEL);
path->slots[*level] = btrfs_header_nritems(path->nodes[*level]);
cond_resched();
return 0;
}
static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct btrfs_path *path, int *level,
struct walk_control *wc)
{
u64 root_owner;
int i;
int slot;
int ret;
for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
slot = path->slots[i];
if (slot + 1 < btrfs_header_nritems(path->nodes[i])) {
path->slots[i]++;
*level = i;
WARN_ON(*level == 0);
return 0;
} else {
struct extent_buffer *parent;
if (path->nodes[*level] == root->node)
parent = path->nodes[*level];
else
parent = path->nodes[*level + 1];
root_owner = btrfs_header_owner(parent);
ret = wc->process_func(root, path->nodes[*level], wc,
btrfs_header_generation(path->nodes[*level]));
if (ret)
return ret;
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[*level];
if (trans) {
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, root->fs_info,
next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
}
WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(root,
path->nodes[*level]->start,
path->nodes[*level]->len);
if (ret)
return ret;
}
free_extent_buffer(path->nodes[*level]);
path->nodes[*level] = NULL;
*level = i + 1;
}
}
return 1;
}
/*
* drop the reference count on the tree rooted at 'snap'. This traverses
* the tree freeing any blocks that have a ref count of zero after being
* decremented.
*/
static int walk_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *log, struct walk_control *wc)
{
int ret = 0;
int wret;
int level;
struct btrfs_path *path;
int orig_level;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
level = btrfs_header_level(log->node);
orig_level = level;
path->nodes[level] = log->node;
extent_buffer_get(log->node);
path->slots[level] = 0;
while (1) {
wret = walk_down_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0) {
ret = wret;
goto out;
}
wret = walk_up_log_tree(trans, log, path, &level, wc);
if (wret > 0)
break;
if (wret < 0) {
ret = wret;
goto out;
}
}
/* was the root node processed? if not, catch it here */
if (path->nodes[orig_level]) {
ret = wc->process_func(log, path->nodes[orig_level], wc,
btrfs_header_generation(path->nodes[orig_level]));
if (ret)
goto out;
if (wc->free) {
struct extent_buffer *next;
next = path->nodes[orig_level];
if (trans) {
btrfs_tree_lock(next);
btrfs_set_lock_blocking(next);
clean_tree_block(trans, log->fs_info, next);
btrfs_wait_tree_block_writeback(next);
btrfs_tree_unlock(next);
}
WARN_ON(log->root_key.objectid !=
BTRFS_TREE_LOG_OBJECTID);
ret = btrfs_free_and_pin_reserved_extent(log, next->start,
next->len);
if (ret)
goto out;
}
}
out:
btrfs_free_path(path);
return ret;
}
/*
* helper function to update the item for a given subvolumes log root
* in the tree of log roots
*/
static int update_log_root(struct btrfs_trans_handle *trans,
struct btrfs_root *log)
{
int ret;
if (log->log_transid == 1) {
/* insert root item on the first sync */
ret = btrfs_insert_root(trans, log->fs_info->log_root_tree,
&log->root_key, &log->root_item);
} else {
ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
&log->root_key, &log->root_item);
}
return ret;
}
static void wait_log_commit(struct btrfs_root *root, int transid)
{
DEFINE_WAIT(wait);
int index = transid % 2;
/*
* we only allow two pending log transactions at a time,
* so we know that if ours is more than 2 older than the
* current transaction, we're done
*/
do {
prepare_to_wait(&root->log_commit_wait[index],
&wait, TASK_UNINTERRUPTIBLE);
mutex_unlock(&root->log_mutex);
if (root->log_transid_committed < transid &&
atomic_read(&root->log_commit[index]))
schedule();
finish_wait(&root->log_commit_wait[index], &wait);
mutex_lock(&root->log_mutex);
} while (root->log_transid_committed < transid &&
atomic_read(&root->log_commit[index]));
}
static void wait_for_writer(struct btrfs_root *root)
{
DEFINE_WAIT(wait);
while (atomic_read(&root->log_writers)) {
prepare_to_wait(&root->log_writer_wait,
&wait, TASK_UNINTERRUPTIBLE);
mutex_unlock(&root->log_mutex);
if (atomic_read(&root->log_writers))
schedule();
finish_wait(&root->log_writer_wait, &wait);
mutex_lock(&root->log_mutex);
}
}
static inline void btrfs_remove_log_ctx(struct btrfs_root *root,
struct btrfs_log_ctx *ctx)
{
if (!ctx)
return;
mutex_lock(&root->log_mutex);
list_del_init(&ctx->list);
mutex_unlock(&root->log_mutex);
}
/*
* Invoked in log mutex context, or be sure there is no other task which
* can access the list.
*/
static inline void btrfs_remove_all_log_ctxs(struct btrfs_root *root,
int index, int error)
{
struct btrfs_log_ctx *ctx;
if (!error) {
INIT_LIST_HEAD(&root->log_ctxs[index]);
return;
}
list_for_each_entry(ctx, &root->log_ctxs[index], list)
ctx->log_ret = error;
INIT_LIST_HEAD(&root->log_ctxs[index]);
}
/*
* btrfs_sync_log does sends a given tree log down to the disk and
* updates the super blocks to record it. When this call is done,
* you know that any inodes previously logged are safely on disk only
* if it returns 0.
*
* Any other return value means you need to call btrfs_commit_transaction.
* Some of the edge cases for fsyncing directories that have had unlinks
* or renames done in the past mean that sometimes the only safe
* fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
* that has happened.
*/
int btrfs_sync_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct btrfs_log_ctx *ctx)
{
int index1;
int index2;
int mark;
int ret;
struct btrfs_root *log = root->log_root;
struct btrfs_root *log_root_tree = root->fs_info->log_root_tree;
int log_transid = 0;
struct btrfs_log_ctx root_log_ctx;
struct blk_plug plug;
mutex_lock(&root->log_mutex);
log_transid = ctx->log_transid;
if (root->log_transid_committed >= log_transid) {
mutex_unlock(&root->log_mutex);
return ctx->log_ret;
}
index1 = log_transid % 2;
if (atomic_read(&root->log_commit[index1])) {
wait_log_commit(root, log_transid);
mutex_unlock(&root->log_mutex);
return ctx->log_ret;
}
ASSERT(log_transid == root->log_transid);
atomic_set(&root->log_commit[index1], 1);
/* wait for previous tree log sync to complete */
if (atomic_read(&root->log_commit[(index1 + 1) % 2]))
wait_log_commit(root, log_transid - 1);
while (1) {
int batch = atomic_read(&root->log_batch);
/* when we're on an ssd, just kick the log commit out */
if (!btrfs_test_opt(root, SSD) &&
test_bit(BTRFS_ROOT_MULTI_LOG_TASKS, &root->state)) {
mutex_unlock(&root->log_mutex);
schedule_timeout_uninterruptible(1);
mutex_lock(&root->log_mutex);
}
wait_for_writer(root);
if (batch == atomic_read(&root->log_batch))
break;
}
/* bail out if we need to do a full commit */
if (btrfs_need_log_full_commit(root->fs_info, trans)) {
ret = -EAGAIN;
btrfs_free_logged_extents(log, log_transid);
mutex_unlock(&root->log_mutex);
goto out;
}
if (log_transid % 2 == 0)
mark = EXTENT_DIRTY;
else
mark = EXTENT_NEW;
/* we start IO on all the marked extents here, but we don't actually
* wait for them until later.
*/
blk_start_plug(&plug);
ret = btrfs_write_marked_extents(log, &log->dirty_log_pages, mark);
if (ret) {
blk_finish_plug(&plug);
btrfs_abort_transaction(trans, root, ret);
btrfs_free_logged_extents(log, log_transid);
btrfs_set_log_full_commit(root->fs_info, trans);
mutex_unlock(&root->log_mutex);
goto out;
}
btrfs_set_root_node(&log->root_item, log->node);
root->log_transid++;
log->log_transid = root->log_transid;
root->log_start_pid = 0;
/*
* IO has been started, blocks of the log tree have WRITTEN flag set
* in their headers. new modifications of the log will be written to
* new positions. so it's safe to allow log writers to go in.
*/
mutex_unlock(&root->log_mutex);
btrfs_init_log_ctx(&root_log_ctx);
mutex_lock(&log_root_tree->log_mutex);
atomic_inc(&log_root_tree->log_batch);
atomic_inc(&log_root_tree->log_writers);
index2 = log_root_tree->log_transid % 2;
list_add_tail(&root_log_ctx.list, &log_root_tree->log_ctxs[index2]);
root_log_ctx.log_transid = log_root_tree->log_transid;
mutex_unlock(&log_root_tree->log_mutex);
ret = update_log_root(trans, log);
mutex_lock(&log_root_tree->log_mutex);
if (atomic_dec_and_test(&log_root_tree->log_writers)) {
/*
* Implicit memory barrier after atomic_dec_and_test
*/
if (waitqueue_active(&log_root_tree->log_writer_wait))
wake_up(&log_root_tree->log_writer_wait);
}
if (ret) {
if (!list_empty(&root_log_ctx.list))
list_del_init(&root_log_ctx.list);
blk_finish_plug(&plug);
btrfs_set_log_full_commit(root->fs_info, trans);
if (ret != -ENOSPC) {
btrfs_abort_transaction(trans, root, ret);
mutex_unlock(&log_root_tree->log_mutex);
goto out;
}
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
btrfs_free_logged_extents(log, log_transid);
mutex_unlock(&log_root_tree->log_mutex);
ret = -EAGAIN;
goto out;
}
if (log_root_tree->log_transid_committed >= root_log_ctx.log_transid) {
blk_finish_plug(&plug);
mutex_unlock(&log_root_tree->log_mutex);
ret = root_log_ctx.log_ret;
goto out;
}
index2 = root_log_ctx.log_transid % 2;
if (atomic_read(&log_root_tree->log_commit[index2])) {
blk_finish_plug(&plug);
ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages,
mark);
btrfs_wait_logged_extents(trans, log, log_transid);
wait_log_commit(log_root_tree,
root_log_ctx.log_transid);
mutex_unlock(&log_root_tree->log_mutex);
if (!ret)
ret = root_log_ctx.log_ret;
goto out;
}
ASSERT(root_log_ctx.log_transid == log_root_tree->log_transid);
atomic_set(&log_root_tree->log_commit[index2], 1);
if (atomic_read(&log_root_tree->log_commit[(index2 + 1) % 2])) {
wait_log_commit(log_root_tree,
root_log_ctx.log_transid - 1);
}
wait_for_writer(log_root_tree);
/*
* now that we've moved on to the tree of log tree roots,
* check the full commit flag again
*/
if (btrfs_need_log_full_commit(root->fs_info, trans)) {
blk_finish_plug(&plug);
btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
btrfs_free_logged_extents(log, log_transid);
mutex_unlock(&log_root_tree->log_mutex);
ret = -EAGAIN;
goto out_wake_log_root;
}
ret = btrfs_write_marked_extents(log_root_tree,
&log_root_tree->dirty_log_pages,
EXTENT_DIRTY | EXTENT_NEW);
blk_finish_plug(&plug);
if (ret) {
btrfs_set_log_full_commit(root->fs_info, trans);
btrfs_abort_transaction(trans, root, ret);
btrfs_free_logged_extents(log, log_transid);
mutex_unlock(&log_root_tree->log_mutex);
goto out_wake_log_root;
}
ret = btrfs_wait_marked_extents(log, &log->dirty_log_pages, mark);
if (!ret)
ret = btrfs_wait_marked_extents(log_root_tree,
&log_root_tree->dirty_log_pages,
EXTENT_NEW | EXTENT_DIRTY);
if (ret) {
btrfs_set_log_full_commit(root->fs_info, trans);
btrfs_free_logged_extents(log, log_transid);
mutex_unlock(&log_root_tree->log_mutex);
goto out_wake_log_root;
}
btrfs_wait_logged_extents(trans, log, log_transid);
btrfs_set_super_log_root(root->fs_info->super_for_commit,
log_root_tree->node->start);
btrfs_set_super_log_root_level(root->fs_info->super_for_commit,
btrfs_header_level(log_root_tree->node));
log_root_tree->log_transid++;
mutex_unlock(&log_root_tree->log_mutex);
/*
* nobody else is going to jump in and write the the ctree
* super here because the log_commit atomic below is protecting
* us. We must be called with a transaction handle pinning
* the running transaction open, so a full commit can't hop
* in and cause problems either.
*/
ret = write_ctree_super(trans, root->fs_info->tree_root, 1);
if (ret) {
btrfs_set_log_full_commit(root->fs_info, trans);
btrfs_abort_transaction(trans, root, ret);
goto out_wake_log_root;
}
mutex_lock(&root->log_mutex);
if (root->last_log_commit < log_transid)
root->last_log_commit = log_transid;
mutex_unlock(&root->log_mutex);
out_wake_log_root:
/*
* We needn't get log_mutex here because we are sure all
* the other tasks are blocked.
*/
btrfs_remove_all_log_ctxs(log_root_tree, index2, ret);
mutex_lock(&log_root_tree->log_mutex);
log_root_tree->log_transid_committed++;
atomic_set(&log_root_tree->log_commit[index2], 0);
mutex_unlock(&log_root_tree->log_mutex);
/*
* The barrier before waitqueue_active is implied by mutex_unlock
*/
if (waitqueue_active(&log_root_tree->log_commit_wait[index2]))
wake_up(&log_root_tree->log_commit_wait[index2]);
out:
/* See above. */
btrfs_remove_all_log_ctxs(root, index1, ret);
mutex_lock(&root->log_mutex);
root->log_transid_committed++;
atomic_set(&root->log_commit[index1], 0);
mutex_unlock(&root->log_mutex);
/*
* The barrier before waitqueue_active is implied by mutex_unlock
*/
if (waitqueue_active(&root->log_commit_wait[index1]))
wake_up(&root->log_commit_wait[index1]);
return ret;
}
static void free_log_tree(struct btrfs_trans_handle *trans,
struct btrfs_root *log)
{
int ret;
u64 start;
u64 end;
struct walk_control wc = {
.free = 1,
.process_func = process_one_buffer
};
ret = walk_log_tree(trans, log, &wc);
/* I don't think this can happen but just in case */
if (ret)
btrfs_abort_transaction(trans, log, ret);
while (1) {
ret = find_first_extent_bit(&log->dirty_log_pages,
0, &start, &end, EXTENT_DIRTY | EXTENT_NEW,
NULL);
if (ret)
break;
clear_extent_bits(&log->dirty_log_pages, start, end,
EXTENT_DIRTY | EXTENT_NEW, GFP_NOFS);
}
/*
* We may have short-circuited the log tree with the full commit logic
* and left ordered extents on our list, so clear these out to keep us
* from leaking inodes and memory.
*/
btrfs_free_logged_extents(log, 0);
btrfs_free_logged_extents(log, 1);
free_extent_buffer(log->node);
kfree(log);
}
/*
* free all the extents used by the tree log. This should be called
* at commit time of the full transaction
*/
int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
{
if (root->log_root) {
free_log_tree(trans, root->log_root);
root->log_root = NULL;
}
return 0;
}
int btrfs_free_log_root_tree(struct btrfs_trans_handle *trans,
struct btrfs_fs_info *fs_info)
{
if (fs_info->log_root_tree) {
free_log_tree(trans, fs_info->log_root_tree);
fs_info->log_root_tree = NULL;
}
return 0;
}
/*
* If both a file and directory are logged, and unlinks or renames are
* mixed in, we have a few interesting corners:
*
* create file X in dir Y
* link file X to X.link in dir Y
* fsync file X
* unlink file X but leave X.link
* fsync dir Y
*
* After a crash we would expect only X.link to exist. But file X
* didn't get fsync'd again so the log has back refs for X and X.link.
*
* We solve this by removing directory entries and inode backrefs from the
* log when a file that was logged in the current transaction is
* unlinked. Any later fsync will include the updated log entries, and
* we'll be able to reconstruct the proper directory items from backrefs.
*
* This optimizations allows us to avoid relogging the entire inode
* or the entire directory.
*/
int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *dir, u64 index)
{
struct btrfs_root *log;
struct btrfs_dir_item *di;
struct btrfs_path *path;
int ret;
int err = 0;
int bytes_del = 0;
u64 dir_ino = btrfs_ino(dir);
if (BTRFS_I(dir)->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
if (ret)
return 0;
mutex_lock(&BTRFS_I(dir)->log_mutex);
log = root->log_root;
path = btrfs_alloc_path();
if (!path) {
err = -ENOMEM;
goto out_unlock;
}
di = btrfs_lookup_dir_item(trans, log, path, dir_ino,
name, name_len, -1);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto fail;
}
if (di) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
if (ret) {
err = ret;
goto fail;
}
}
btrfs_release_path(path);
di = btrfs_lookup_dir_index_item(trans, log, path, dir_ino,
index, name, name_len, -1);
if (IS_ERR(di)) {
err = PTR_ERR(di);
goto fail;
}
if (di) {
ret = btrfs_delete_one_dir_name(trans, log, path, di);
bytes_del += name_len;
if (ret) {
err = ret;
goto fail;
}
}
/* update the directory size in the log to reflect the names
* we have removed
*/
if (bytes_del) {
struct btrfs_key key;
key.objectid = dir_ino;
key.offset = 0;
key.type = BTRFS_INODE_ITEM_KEY;
btrfs_release_path(path);
ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
if (ret < 0) {
err = ret;
goto fail;
}
if (ret == 0) {
struct btrfs_inode_item *item;
u64 i_size;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
i_size = btrfs_inode_size(path->nodes[0], item);
if (i_size > bytes_del)
i_size -= bytes_del;
else
i_size = 0;
btrfs_set_inode_size(path->nodes[0], item, i_size);
btrfs_mark_buffer_dirty(path->nodes[0]);
} else
ret = 0;
btrfs_release_path(path);
}
fail:
btrfs_free_path(path);
out_unlock:
mutex_unlock(&BTRFS_I(dir)->log_mutex);
if (ret == -ENOSPC) {
btrfs_set_log_full_commit(root->fs_info, trans);
ret = 0;
} else if (ret < 0)
btrfs_abort_transaction(trans, root, ret);
btrfs_end_log_trans(root);
return err;
}
/* see comments for btrfs_del_dir_entries_in_log */
int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
const char *name, int name_len,
struct inode *inode, u64 dirid)
{
struct btrfs_root *log;
u64 index;
int ret;
if (BTRFS_I(inode)->logged_trans < trans->transid)
return 0;
ret = join_running_log_trans(root);
if (ret)
return 0;
log = root->log_root;
mutex_lock(&BTRFS_I(inode)->log_mutex);
ret = btrfs_del_inode_ref(trans, log, name, name_len, btrfs_ino(inode),
dirid, &index);
mutex_unlock(&BTRFS_I(inode)->log_mutex);
if (ret == -ENOSPC) {
btrfs_set_log_full_commit(root->fs_info, trans);
ret = 0;
} else if (ret < 0 && ret != -ENOENT)
btrfs_abort_transaction(trans, root, ret);
btrfs_end_log_trans(root);
return ret;
}
/*
* creates a range item in the log for 'dirid'. first_offset and
* last_offset tell us which parts of the key space the log should
* be considered authoritative for.
*/
static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
int key_type, u64 dirid,
u64 first_offset, u64 last_offset)
{
int ret;
struct btrfs_key key;
struct btrfs_dir_log_item *item;
key.objectid = dirid;
key.offset = first_offset;
if (key_type == BTRFS_DIR_ITEM_KEY)
key.type = BTRFS_DIR_LOG_ITEM_KEY;
else
key.type = BTRFS_DIR_LOG_INDEX_KEY;
ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
if (ret)
return ret;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_dir_log_item);
btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
btrfs_mark_buffer_dirty(path->nodes[0]);
btrfs_release_path(path);
return 0;
}
/*
* log all the items included in the current transaction for a given
* directory. This also creates the range items in the log tree required
* to replay anything deleted before the fsync
*/
static noinline int log_dir_items(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path, int key_type,
struct btrfs_log_ctx *ctx,
u64 min_offset, u64 *last_offset_ret)
{
struct btrfs_key min_key;
struct btrfs_root *log = root->log_root;
struct extent_buffer *src;
int err = 0;
int ret;
int i;
int nritems;
u64 first_offset = min_offset;
u64 last_offset = (u64)-1;
u64 ino = btrfs_ino(inode);
log = root->log_root;
min_key.objectid = ino;
min_key.type = key_type;
min_key.offset = min_offset;
ret = btrfs_search_forward(root, &min_key, path, trans->transid);
/*
* we didn't find anything from this transaction, see if there
* is anything at all
*/
if (ret != 0 || min_key.objectid != ino || min_key.type != key_type) {
min_key.objectid = ino;
min_key.type = key_type;
min_key.offset = (u64)-1;
btrfs_release_path(path);
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (ret < 0) {
btrfs_release_path(path);
return ret;
}
ret = btrfs_previous_item(root, path, ino, key_type);
/* if ret == 0 there are items for this type,
* create a range to tell us the last key of this type.
* otherwise, there are no items in this directory after
* *min_offset, and we create a range to indicate that.
*/
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp,
path->slots[0]);
if (key_type == tmp.type)
first_offset = max(min_offset, tmp.offset) + 1;
}
goto done;
}
/* go backward to find any previous key */
ret = btrfs_previous_item(root, path, ino, key_type);
if (ret == 0) {
struct btrfs_key tmp;
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (key_type == tmp.type) {
first_offset = tmp.offset;
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
if (ret) {
err = ret;
goto done;
}
}
}
btrfs_release_path(path);
/* find the first key from this transaction again */
ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
if (WARN_ON(ret != 0))
goto done;
/*
* we have a block from this transaction, log every item in it
* from our directory
*/
while (1) {
struct btrfs_key tmp;
src = path->nodes[0];
nritems = btrfs_header_nritems(src);
for (i = path->slots[0]; i < nritems; i++) {
struct btrfs_dir_item *di;
btrfs_item_key_to_cpu(src, &min_key, i);
if (min_key.objectid != ino || min_key.type != key_type)
goto done;
ret = overwrite_item(trans, log, dst_path, src, i,
&min_key);
if (ret) {
err = ret;
goto done;
}
/*
* We must make sure that when we log a directory entry,
* the corresponding inode, after log replay, has a
* matching link count. For example:
*
* touch foo
* mkdir mydir
* sync
* ln foo mydir/bar
* xfs_io -c "fsync" mydir
* <crash>
* <mount fs and log replay>
*
* Would result in a fsync log that when replayed, our
* file inode would have a link count of 1, but we get
* two directory entries pointing to the same inode.
* After removing one of the names, it would not be
* possible to remove the other name, which resulted
* always in stale file handle errors, and would not
* be possible to rmdir the parent directory, since
* its i_size could never decrement to the value
* BTRFS_EMPTY_DIR_SIZE, resulting in -ENOTEMPTY errors.
*/
di = btrfs_item_ptr(src, i, struct btrfs_dir_item);
btrfs_dir_item_key_to_cpu(src, di, &tmp);
if (ctx &&
(btrfs_dir_transid(src, di) == trans->transid ||
btrfs_dir_type(src, di) == BTRFS_FT_DIR) &&
tmp.type != BTRFS_ROOT_ITEM_KEY)
ctx->log_new_dentries = true;
}
path->slots[0] = nritems;
/*
* look ahead to the next item and see if it is also
* from this directory and from this transaction
*/
ret = btrfs_next_leaf(root, path);
if (ret == 1) {
last_offset = (u64)-1;
goto done;
}
btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
if (tmp.objectid != ino || tmp.type != key_type) {
last_offset = (u64)-1;
goto done;
}
if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
ret = overwrite_item(trans, log, dst_path,
path->nodes[0], path->slots[0],
&tmp);
if (ret)
err = ret;
else
last_offset = tmp.offset;
goto done;
}
}
done:
btrfs_release_path(path);
btrfs_release_path(dst_path);
if (err == 0) {
*last_offset_ret = last_offset;
/*
* insert the log range keys to indicate where the log
* is valid
*/
ret = insert_dir_log_key(trans, log, path, key_type,
ino, first_offset, last_offset);
if (ret)
err = ret;
}
return err;
}
/*
* logging directories is very similar to logging inodes, We find all the items
* from the current transaction and write them to the log.
*
* The recovery code scans the directory in the subvolume, and if it finds a
* key in the range logged that is not present in the log tree, then it means
* that dir entry was unlinked during the transaction.
*
* In order for that scan to work, we must include one key smaller than
* the smallest logged by this transaction and one key larger than the largest
* key logged by this transaction.
*/
static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path,
struct btrfs_log_ctx *ctx)
{
u64 min_key;
u64 max_key;
int ret;
int key_type = BTRFS_DIR_ITEM_KEY;
again:
min_key = 0;
max_key = 0;
while (1) {
ret = log_dir_items(trans, root, inode, path,
dst_path, key_type, ctx, min_key,
&max_key);
if (ret)
return ret;
if (max_key == (u64)-1)
break;
min_key = max_key + 1;
}
if (key_type == BTRFS_DIR_ITEM_KEY) {
key_type = BTRFS_DIR_INDEX_KEY;
goto again;
}
return 0;
}
/*
* a helper function to drop items from the log before we relog an
* inode. max_key_type indicates the highest item type to remove.
* This cannot be run for file data extents because it does not
* free the extents they point to.
*/
static int drop_objectid_items(struct btrfs_trans_handle *trans,
struct btrfs_root *log,
struct btrfs_path *path,
u64 objectid, int max_key_type)
{
int ret;
struct btrfs_key key;
struct btrfs_key found_key;
int start_slot;
key.objectid = objectid;
key.type = max_key_type;
key.offset = (u64)-1;
while (1) {
ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
BUG_ON(ret == 0); /* Logic error */
if (ret < 0)
break;
if (path->slots[0] == 0)
break;
path->slots[0]--;
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
if (found_key.objectid != objectid)
break;
found_key.offset = 0;
found_key.type = 0;
ret = btrfs_bin_search(path->nodes[0], &found_key, 0,
&start_slot);
ret = btrfs_del_items(trans, log, path, start_slot,
path->slots[0] - start_slot + 1);
/*
* If start slot isn't 0 then we don't need to re-search, we've
* found the last guy with the objectid in this tree.
*/
if (ret || start_slot != 0)
break;
btrfs_release_path(path);
}
btrfs_release_path(path);
if (ret > 0)
ret = 0;
return ret;
}
static void fill_inode_item(struct btrfs_trans_handle *trans,
struct extent_buffer *leaf,
struct btrfs_inode_item *item,
struct inode *inode, int log_inode_only,
u64 logged_isize)
{
struct btrfs_map_token token;
btrfs_init_map_token(&token);
if (log_inode_only) {
/* set the generation to zero so the recover code
* can tell the difference between an logging
* just to say 'this inode exists' and a logging
* to say 'update this inode with these values'
*/
btrfs_set_token_inode_generation(leaf, item, 0, &token);
btrfs_set_token_inode_size(leaf, item, logged_isize, &token);
} else {
btrfs_set_token_inode_generation(leaf, item,
BTRFS_I(inode)->generation,
&token);
btrfs_set_token_inode_size(leaf, item, inode->i_size, &token);
}
btrfs_set_token_inode_uid(leaf, item, i_uid_read(inode), &token);
btrfs_set_token_inode_gid(leaf, item, i_gid_read(inode), &token);
btrfs_set_token_inode_mode(leaf, item, inode->i_mode, &token);
btrfs_set_token_inode_nlink(leaf, item, inode->i_nlink, &token);
btrfs_set_token_timespec_sec(leaf, &item->atime,
inode->i_atime.tv_sec, &token);
btrfs_set_token_timespec_nsec(leaf, &item->atime,
inode->i_atime.tv_nsec, &token);
btrfs_set_token_timespec_sec(leaf, &item->mtime,
inode->i_mtime.tv_sec, &token);
btrfs_set_token_timespec_nsec(leaf, &item->mtime,
inode->i_mtime.tv_nsec, &token);
btrfs_set_token_timespec_sec(leaf, &item->ctime,
inode->i_ctime.tv_sec, &token);
btrfs_set_token_timespec_nsec(leaf, &item->ctime,
inode->i_ctime.tv_nsec, &token);
btrfs_set_token_inode_nbytes(leaf, item, inode_get_bytes(inode),
&token);
btrfs_set_token_inode_sequence(leaf, item, inode->i_version, &token);
btrfs_set_token_inode_transid(leaf, item, trans->transid, &token);
btrfs_set_token_inode_rdev(leaf, item, inode->i_rdev, &token);
btrfs_set_token_inode_flags(leaf, item, BTRFS_I(inode)->flags, &token);
btrfs_set_token_inode_block_group(leaf, item, 0, &token);
}
static int log_inode_item(struct btrfs_trans_handle *trans,
struct btrfs_root *log, struct btrfs_path *path,
struct inode *inode)
{
struct btrfs_inode_item *inode_item;
int ret;
ret = btrfs_insert_empty_item(trans, log, path,
&BTRFS_I(inode)->location,
sizeof(*inode_item));
if (ret && ret != -EEXIST)
return ret;
inode_item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
fill_inode_item(trans, path->nodes[0], inode_item, inode, 0, 0);
btrfs_release_path(path);
return 0;
}
static noinline int copy_items(struct btrfs_trans_handle *trans,
struct inode *inode,
struct btrfs_path *dst_path,
struct btrfs_path *src_path, u64 *last_extent,
int start_slot, int nr, int inode_only,
u64 logged_isize)
{
unsigned long src_offset;
unsigned long dst_offset;
struct btrfs_root *log = BTRFS_I(inode)->root->log_root;
struct btrfs_file_extent_item *extent;
struct btrfs_inode_item *inode_item;
struct extent_buffer *src = src_path->nodes[0];
struct btrfs_key first_key, last_key, key;
int ret;
struct btrfs_key *ins_keys;
u32 *ins_sizes;
char *ins_data;
int i;
struct list_head ordered_sums;
int skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
bool has_extents = false;
bool need_find_last_extent = true;
bool done = false;
INIT_LIST_HEAD(&ordered_sums);
ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
nr * sizeof(u32), GFP_NOFS);
if (!ins_data)
return -ENOMEM;
first_key.objectid = (u64)-1;
ins_sizes = (u32 *)ins_data;
ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
for (i = 0; i < nr; i++) {
ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
}
ret = btrfs_insert_empty_items(trans, log, dst_path,
ins_keys, ins_sizes, nr);
if (ret) {
kfree(ins_data);
return ret;
}
for (i = 0; i < nr; i++, dst_path->slots[0]++) {
dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
dst_path->slots[0]);
src_offset = btrfs_item_ptr_offset(src, start_slot + i);
if ((i == (nr - 1)))
last_key = ins_keys[i];
if (ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
inode_item = btrfs_item_ptr(dst_path->nodes[0],
dst_path->slots[0],
struct btrfs_inode_item);
fill_inode_item(trans, dst_path->nodes[0], inode_item,
inode, inode_only == LOG_INODE_EXISTS,
logged_isize);
} else {
copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
src_offset, ins_sizes[i]);
}
/*
* We set need_find_last_extent here in case we know we were
* processing other items and then walk into the first extent in
* the inode. If we don't hit an extent then nothing changes,
* we'll do the last search the next time around.
*/
if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY) {
has_extents = true;
if (first_key.objectid == (u64)-1)
first_key = ins_keys[i];
} else {
need_find_last_extent = false;
}
/* take a reference on file data extents so that truncates
* or deletes of this inode don't have to relog the inode
* again
*/
if (ins_keys[i].type == BTRFS_EXTENT_DATA_KEY &&
!skip_csum) {
int found_type;
extent = btrfs_item_ptr(src, start_slot + i,
struct btrfs_file_extent_item);
if (btrfs_file_extent_generation(src, extent) < trans->transid)
continue;
found_type = btrfs_file_extent_type(src, extent);
if (found_type == BTRFS_FILE_EXTENT_REG) {
u64 ds, dl, cs, cl;
ds = btrfs_file_extent_disk_bytenr(src,
extent);
/* ds == 0 is a hole */
if (ds == 0)
continue;
dl = btrfs_file_extent_disk_num_bytes(src,
extent);
cs = btrfs_file_extent_offset(src, extent);
cl = btrfs_file_extent_num_bytes(src,
extent);
if (btrfs_file_extent_compression(src,
extent)) {
cs = 0;
cl = dl;
}
ret = btrfs_lookup_csums_range(
log->fs_info->csum_root,
ds + cs, ds + cs + cl - 1,
&ordered_sums, 0);
if (ret) {
btrfs_release_path(dst_path);
kfree(ins_data);
return ret;
}
}
}
}
btrfs_mark_buffer_dirty(dst_path->nodes[0]);
btrfs_release_path(dst_path);
kfree(ins_data);
/*
* we have to do this after the loop above to avoid changing the
* log tree while trying to change the log tree.
*/
ret = 0;
while (!list_empty(&ordered_sums)) {
struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
struct btrfs_ordered_sum,
list);
if (!ret)
ret = btrfs_csum_file_blocks(trans, log, sums);
list_del(&sums->list);
kfree(sums);
}
if (!has_extents)
return ret;
if (need_find_last_extent && *last_extent == first_key.offset) {
/*
* We don't have any leafs between our current one and the one
* we processed before that can have file extent items for our
* inode (and have a generation number smaller than our current
* transaction id).
*/
need_find_last_extent = false;
}
/*
* Because we use btrfs_search_forward we could skip leaves that were
* not modified and then assume *last_extent is valid when it really
* isn't. So back up to the previous leaf and read the end of the last
* extent before we go and fill in holes.
*/
if (need_find_last_extent) {
u64 len;
ret = btrfs_prev_leaf(BTRFS_I(inode)->root, src_path);
if (ret < 0)
return ret;
if (ret)
goto fill_holes;
if (src_path->slots[0])
src_path->slots[0]--;
src = src_path->nodes[0];
btrfs_item_key_to_cpu(src, &key, src_path->slots[0]);
if (key.objectid != btrfs_ino(inode) ||
key.type != BTRFS_EXTENT_DATA_KEY)
goto fill_holes;
extent = btrfs_item_ptr(src, src_path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(src, extent) ==
BTRFS_FILE_EXTENT_INLINE) {
len = btrfs_file_extent_inline_len(src,
src_path->slots[0],
extent);
*last_extent = ALIGN(key.offset + len,
log->sectorsize);
} else {
len = btrfs_file_extent_num_bytes(src, extent);
*last_extent = key.offset + len;
}
}
fill_holes:
/* So we did prev_leaf, now we need to move to the next leaf, but a few
* things could have happened
*
* 1) A merge could have happened, so we could currently be on a leaf
* that holds what we were copying in the first place.
* 2) A split could have happened, and now not all of the items we want
* are on the same leaf.
*
* So we need to adjust how we search for holes, we need to drop the
* path and re-search for the first extent key we found, and then walk
* forward until we hit the last one we copied.
*/
if (need_find_last_extent) {
/* btrfs_prev_leaf could return 1 without releasing the path */
btrfs_release_path(src_path);
ret = btrfs_search_slot(NULL, BTRFS_I(inode)->root, &first_key,
src_path, 0, 0);
if (ret < 0)
return ret;
ASSERT(ret == 0);
src = src_path->nodes[0];
i = src_path->slots[0];
} else {
i = start_slot;
}
/*
* Ok so here we need to go through and fill in any holes we may have
* to make sure that holes are punched for those areas in case they had
* extents previously.
*/
while (!done) {
u64 offset, len;
u64 extent_end;
if (i >= btrfs_header_nritems(src_path->nodes[0])) {
ret = btrfs_next_leaf(BTRFS_I(inode)->root, src_path);
if (ret < 0)
return ret;
ASSERT(ret == 0);
src = src_path->nodes[0];
i = 0;
}
btrfs_item_key_to_cpu(src, &key, i);
if (!btrfs_comp_cpu_keys(&key, &last_key))
done = true;
if (key.objectid != btrfs_ino(inode) ||
key.type != BTRFS_EXTENT_DATA_KEY) {
i++;
continue;
}
extent = btrfs_item_ptr(src, i, struct btrfs_file_extent_item);
if (btrfs_file_extent_type(src, extent) ==
BTRFS_FILE_EXTENT_INLINE) {
len = btrfs_file_extent_inline_len(src, i, extent);
extent_end = ALIGN(key.offset + len, log->sectorsize);
} else {
len = btrfs_file_extent_num_bytes(src, extent);
extent_end = key.offset + len;
}
i++;
if (*last_extent == key.offset) {
*last_extent = extent_end;
continue;
}
offset = *last_extent;
len = key.offset - *last_extent;
ret = btrfs_insert_file_extent(trans, log, btrfs_ino(inode),
offset, 0, 0, len, 0, len, 0,
0, 0);
if (ret)
break;
*last_extent = extent_end;
}
/*
* Need to let the callers know we dropped the path so they should
* re-search.
*/
if (!ret && need_find_last_extent)
ret = 1;
return ret;
}
static int extent_cmp(void *priv, struct list_head *a, struct list_head *b)
{
struct extent_map *em1, *em2;
em1 = list_entry(a, struct extent_map, list);
em2 = list_entry(b, struct extent_map, list);
if (em1->start < em2->start)
return -1;
else if (em1->start > em2->start)
return 1;
return 0;
}
static int wait_ordered_extents(struct btrfs_trans_handle *trans,
struct inode *inode,
struct btrfs_root *root,
const struct extent_map *em,
const struct list_head *logged_list,
bool *ordered_io_error)
{
struct btrfs_ordered_extent *ordered;
struct btrfs_root *log = root->log_root;
u64 mod_start = em->mod_start;
u64 mod_len = em->mod_len;
const bool skip_csum = BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM;
u64 csum_offset;
u64 csum_len;
LIST_HEAD(ordered_sums);
int ret = 0;
*ordered_io_error = false;
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags) ||
em->block_start == EXTENT_MAP_HOLE)
return 0;
/*
* Wait far any ordered extent that covers our extent map. If it
* finishes without an error, first check and see if our csums are on
* our outstanding ordered extents.
*/
list_for_each_entry(ordered, logged_list, log_list) {
struct btrfs_ordered_sum *sum;
if (!mod_len)
break;
if (ordered->file_offset + ordered->len <= mod_start ||
mod_start + mod_len <= ordered->file_offset)
continue;
if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
!test_bit(BTRFS_ORDERED_IOERR, &ordered->flags) &&
!test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
const u64 start = ordered->file_offset;
const u64 end = ordered->file_offset + ordered->len - 1;
WARN_ON(ordered->inode != inode);
filemap_fdatawrite_range(inode->i_mapping, start, end);
}
wait_event(ordered->wait,
(test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) ||
test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)));
if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) {
/*
* Clear the AS_EIO/AS_ENOSPC flags from the inode's
* i_mapping flags, so that the next fsync won't get
* an outdated io error too.
*/
btrfs_inode_check_errors(inode);
*ordered_io_error = true;
break;
}
/*
* We are going to copy all the csums on this ordered extent, so
* go ahead and adjust mod_start and mod_len in case this
* ordered extent has already been logged.
*/
if (ordered->file_offset > mod_start) {
if (ordered->file_offset + ordered->len >=
mod_start + mod_len)
mod_len = ordered->file_offset - mod_start;
/*
* If we have this case
*
* |--------- logged extent ---------|
* |----- ordered extent ----|
*
* Just don't mess with mod_start and mod_len, we'll
* just end up logging more csums than we need and it
* will be ok.
*/
} else {
if (ordered->file_offset + ordered->len <
mod_start + mod_len) {
mod_len = (mod_start + mod_len) -
(ordered->file_offset + ordered->len);
mod_start = ordered->file_offset +
ordered->len;
} else {
mod_len = 0;
}
}
if (skip_csum)
continue;
/*
* To keep us from looping for the above case of an ordered
* extent that falls inside of the logged extent.
*/
if (test_and_set_bit(BTRFS_ORDERED_LOGGED_CSUM,
&ordered->flags))
continue;
list_for_each_entry(sum, &ordered->list, list) {
ret = btrfs_csum_file_blocks(trans, log, sum);
if (ret)
break;
}
}
if (*ordered_io_error || !mod_len || ret || skip_csum)
return ret;
if (em->compress_type) {
csum_offset = 0;
csum_len = max(em->block_len, em->orig_block_len);
} else {
csum_offset = mod_start - em->start;
csum_len = mod_len;
}
/* block start is already adjusted for the file extent offset. */
ret = btrfs_lookup_csums_range(log->fs_info->csum_root,
em->block_start + csum_offset,
em->block_start + csum_offset +
csum_len - 1, &ordered_sums, 0);
if (ret)
return ret;
while (!list_empty(&ordered_sums)) {
struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
struct btrfs_ordered_sum,
list);
if (!ret)
ret = btrfs_csum_file_blocks(trans, log, sums);
list_del(&sums->list);
kfree(sums);
}
return ret;
}
static int log_one_extent(struct btrfs_trans_handle *trans,
struct inode *inode, struct btrfs_root *root,
const struct extent_map *em,
struct btrfs_path *path,
const struct list_head *logged_list,
struct btrfs_log_ctx *ctx)
{
struct btrfs_root *log = root->log_root;
struct btrfs_file_extent_item *fi;
struct extent_buffer *leaf;
struct btrfs_map_token token;
struct btrfs_key key;
u64 extent_offset = em->start - em->orig_start;
u64 block_len;
int ret;
int extent_inserted = 0;
bool ordered_io_err = false;
ret = wait_ordered_extents(trans, inode, root, em, logged_list,
&ordered_io_err);
if (ret)
return ret;
if (ordered_io_err) {
ctx->io_err = -EIO;
return 0;
}
btrfs_init_map_token(&token);
ret = __btrfs_drop_extents(trans, log, inode, path, em->start,
em->start + em->len, NULL, 0, 1,
sizeof(*fi), &extent_inserted);
if (ret)
return ret;
if (!extent_inserted) {
key.objectid = btrfs_ino(inode);
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = em->start;
ret = btrfs_insert_empty_item(trans, log, path, &key,
sizeof(*fi));
if (ret)
return ret;
}
leaf = path->nodes[0];
fi = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
btrfs_set_token_file_extent_generation(leaf, fi, trans->transid,
&token);
if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
btrfs_set_token_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_PREALLOC,
&token);
else
btrfs_set_token_file_extent_type(leaf, fi,
BTRFS_FILE_EXTENT_REG,
&token);
block_len = max(em->block_len, em->orig_block_len);
if (em->compress_type != BTRFS_COMPRESS_NONE) {
btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
em->block_start,
&token);
btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
&token);
} else if (em->block_start < EXTENT_MAP_LAST_BYTE) {
btrfs_set_token_file_extent_disk_bytenr(leaf, fi,
em->block_start -
extent_offset, &token);
btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, block_len,
&token);
} else {
btrfs_set_token_file_extent_disk_bytenr(leaf, fi, 0, &token);
btrfs_set_token_file_extent_disk_num_bytes(leaf, fi, 0,
&token);
}
btrfs_set_token_file_extent_offset(leaf, fi, extent_offset, &token);
btrfs_set_token_file_extent_num_bytes(leaf, fi, em->len, &token);
btrfs_set_token_file_extent_ram_bytes(leaf, fi, em->ram_bytes, &token);
btrfs_set_token_file_extent_compression(leaf, fi, em->compress_type,
&token);
btrfs_set_token_file_extent_encryption(leaf, fi, 0, &token);
btrfs_set_token_file_extent_other_encoding(leaf, fi, 0, &token);
btrfs_mark_buffer_dirty(leaf);
btrfs_release_path(path);
return ret;
}
static int btrfs_log_changed_extents(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
struct btrfs_path *path,
struct list_head *logged_list,
struct btrfs_log_ctx *ctx,
const u64 start,
const u64 end)
{
struct extent_map *em, *n;
struct list_head extents;
struct extent_map_tree *tree = &BTRFS_I(inode)->extent_tree;
u64 test_gen;
int ret = 0;
int num = 0;
INIT_LIST_HEAD(&extents);
write_lock(&tree->lock);
test_gen = root->fs_info->last_trans_committed;
list_for_each_entry_safe(em, n, &tree->modified_extents, list) {
list_del_init(&em->list);
/*
* Just an arbitrary number, this can be really CPU intensive
* once we start getting a lot of extents, and really once we
* have a bunch of extents we just want to commit since it will
* be faster.
*/
if (++num > 32768) {
list_del_init(&tree->modified_extents);
ret = -EFBIG;
goto process;
}
if (em->generation <= test_gen)
continue;
/* Need a ref to keep it from getting evicted from cache */
atomic_inc(&em->refs);
set_bit(EXTENT_FLAG_LOGGING, &em->flags);
list_add_tail(&em->list, &extents);
num++;
}
list_sort(NULL, &extents, extent_cmp);
/*
* Collect any new ordered extents within the range. This is to
* prevent logging file extent items without waiting for the disk
* location they point to being written. We do this only to deal
* with races against concurrent lockless direct IO writes.
*/
btrfs_get_logged_extents(inode, logged_list, start, end);
process:
while (!list_empty(&extents)) {
em = list_entry(extents.next, struct extent_map, list);
list_del_init(&em->list);
/*
* If we had an error we just need to delete everybody from our
* private list.
*/
if (ret) {
clear_em_logging(tree, em);
free_extent_map(em);
continue;
}
write_unlock(&tree->lock);
ret = log_one_extent(trans, inode, root, em, path, logged_list,
ctx);
write_lock(&tree->lock);
clear_em_logging(tree, em);
free_extent_map(em);
}
WARN_ON(!list_empty(&extents));
write_unlock(&tree->lock);
btrfs_release_path(path);
return ret;
}
static int logged_inode_size(struct btrfs_root *log, struct inode *inode,
struct btrfs_path *path, u64 *size_ret)
{
struct btrfs_key key;
int ret;
key.objectid = btrfs_ino(inode);
key.type = BTRFS_INODE_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, log, &key, path, 0, 0);
if (ret < 0) {
return ret;
} else if (ret > 0) {
*size_ret = 0;
} else {
struct btrfs_inode_item *item;
item = btrfs_item_ptr(path->nodes[0], path->slots[0],
struct btrfs_inode_item);
*size_ret = btrfs_inode_size(path->nodes[0], item);
}
btrfs_release_path(path);
return 0;
}
/*
* At the moment we always log all xattrs. This is to figure out at log replay
* time which xattrs must have their deletion replayed. If a xattr is missing
* in the log tree and exists in the fs/subvol tree, we delete it. This is
* because if a xattr is deleted, the inode is fsynced and a power failure
* happens, causing the log to be replayed the next time the fs is mounted,
* we want the xattr to not exist anymore (same behaviour as other filesystems
* with a journal, ext3/4, xfs, f2fs, etc).
*/
static int btrfs_log_all_xattrs(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
struct btrfs_path *path,
struct btrfs_path *dst_path)
{
int ret;
struct btrfs_key key;
const u64 ino = btrfs_ino(inode);
int ins_nr = 0;
int start_slot = 0;
key.objectid = ino;
key.type = BTRFS_XATTR_ITEM_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
return ret;
while (true) {
int slot = path->slots[0];
struct extent_buffer *leaf = path->nodes[0];
int nritems = btrfs_header_nritems(leaf);
if (slot >= nritems) {
if (ins_nr > 0) {
u64 last_extent = 0;
ret = copy_items(trans, inode, dst_path, path,
&last_extent, start_slot,
ins_nr, 1, 0);
/* can't be 1, extent items aren't processed */
ASSERT(ret <= 0);
if (ret < 0)
return ret;
ins_nr = 0;
}
ret = btrfs_next_leaf(root, path);
if (ret < 0)
return ret;
else if (ret > 0)
break;
continue;
}
btrfs_item_key_to_cpu(leaf, &key, slot);
if (key.objectid != ino || key.type != BTRFS_XATTR_ITEM_KEY)
break;
if (ins_nr == 0)
start_slot = slot;
ins_nr++;
path->slots[0]++;
cond_resched();
}
if (ins_nr > 0) {
u64 last_extent = 0;
ret = copy_items(trans, inode, dst_path, path,
&last_extent, start_slot,
ins_nr, 1, 0);
/* can't be 1, extent items aren't processed */
ASSERT(ret <= 0);
if (ret < 0)
return ret;
}
return 0;
}
/*
* If the no holes feature is enabled we need to make sure any hole between the
* last extent and the i_size of our inode is explicitly marked in the log. This
* is to make sure that doing something like:
*
* 1) create file with 128Kb of data
* 2) truncate file to 64Kb
* 3) truncate file to 256Kb
* 4) fsync file
* 5) <crash/power failure>
* 6) mount fs and trigger log replay
*
* Will give us a file with a size of 256Kb, the first 64Kb of data match what
* the file had in its first 64Kb of data at step 1 and the last 192Kb of the
* file correspond to a hole. The presence of explicit holes in a log tree is
* what guarantees that log replay will remove/adjust file extent items in the
* fs/subvol tree.
*
* Here we do not need to care about holes between extents, that is already done
* by copy_items(). We also only need to do this in the full sync path, where we
* lookup for extents from the fs/subvol tree only. In the fast path case, we
* lookup the list of modified extent maps and if any represents a hole, we
* insert a corresponding extent representing a hole in the log tree.
*/
static int btrfs_log_trailing_hole(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *inode,
struct btrfs_path *path)
{
int ret;
struct btrfs_key key;
u64 hole_start;
u64 hole_size;
struct extent_buffer *leaf;
struct btrfs_root *log = root->log_root;
const u64 ino = btrfs_ino(inode);
const u64 i_size = i_size_read(inode);
if (!btrfs_fs_incompat(root->fs_info, NO_HOLES))
return 0;
key.objectid = ino;
key.type = BTRFS_EXTENT_DATA_KEY;
key.offset = (u64)-1;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
ASSERT(ret != 0);
if (ret < 0)
return ret;
ASSERT(path->slots[0] > 0);
path->slots[0]--;
leaf = path->nodes[0];
btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
if (key.objectid != ino || key.type != BTRFS_EXTENT_DATA_KEY) {
/* inode does not have any extents */
hole_start = 0;
hole_size = i_size;
} else {
struct btrfs_file_extent_item *extent;
u64 len;
/*
* If there's an extent beyond i_size, an explicit hole was
* already inserted by copy_items().
*/
if (key.offset >= i_size)
return 0;
extent = btrfs_item_ptr(leaf, path->slots[0],
struct btrfs_file_extent_item);
if (btrfs_file_extent_type(leaf, extent) ==
BTRFS_FILE_EXTENT_INLINE) {
len = btrfs_file_extent_inline_len(leaf,
path->slots[0],
extent);
ASSERT(len == i_size);
return 0;
}
len = btrfs_file_extent_num_bytes(leaf, extent);
/* Last extent goes beyond i_size, no need to log a hole. */
if (key.offset + len > i_size)
return 0;
hole_start = key.offset + len;
hole_size = i_size - hole_start;
}
btrfs_release_path(path);
/* Last extent ends at i_size. */
if (hole_size == 0)
return 0;
hole_size = ALIGN(hole_size, root->sectorsize);
ret = btrfs_insert_file_extent(trans, log, ino, hole_start, 0, 0,
hole_size, 0, hole_size, 0, 0, 0);
return ret;
}
/*
* When we are logging a new inode X, check if it doesn't have a reference that
* matches the reference from some other inode Y created in a past transaction
* and that was renamed in the current transaction. If we don't do this, then at
* log replay time we can lose inode Y (and all its files if it's a directory):
*
* mkdir /mnt/x
* echo "hello world" > /mnt/x/foobar
* sync
* mv /mnt/x /mnt/y
* mkdir /mnt/x # or touch /mnt/x
* xfs_io -c fsync /mnt/x
* <power fail>
* mount fs, trigger log replay
*
* After the log replay procedure, we would lose the first directory and all its
* files (file foobar).
* For the case where inode Y is not a directory we simply end up losing it:
*
* echo "123" > /mnt/foo
* sync
* mv /mnt/foo /mnt/bar
* echo "abc" > /mnt/foo
* xfs_io -c fsync /mnt/foo
* <power fail>
*
* We also need this for cases where a snapshot entry is replaced by some other
* entry (file or directory) otherwise we end up with an unreplayable log due to
* attempts to delete the snapshot entry (entry of type BTRFS_ROOT_ITEM_KEY) as
* if it were a regular entry:
*
* mkdir /mnt/x
* btrfs subvolume snapshot /mnt /mnt/x/snap
* btrfs subvolume delete /mnt/x/snap
* rmdir /mnt/x
* mkdir /mnt/x
* fsync /mnt/x or fsync some new file inside it
* <power fail>
*
* The snapshot delete, rmdir of x, mkdir of a new x and the fsync all happen in
* the same transaction.
*/
static int btrfs_check_ref_name_override(struct extent_buffer *eb,
const int slot,
const struct btrfs_key *key,
struct inode *inode)
{
int ret;
struct btrfs_path *search_path;
char *name = NULL;
u32 name_len = 0;
u32 item_size = btrfs_item_size_nr(eb, slot);
u32 cur_offset = 0;
unsigned long ptr = btrfs_item_ptr_offset(eb, slot);
search_path = btrfs_alloc_path();
if (!search_path)
return -ENOMEM;
search_path->search_commit_root = 1;
search_path->skip_locking = 1;
while (cur_offset < item_size) {
u64 parent;
u32 this_name_len;
u32 this_len;
unsigned long name_ptr;
struct btrfs_dir_item *di;
if (key->type == BTRFS_INODE_REF_KEY) {
struct btrfs_inode_ref *iref;
iref = (struct btrfs_inode_ref *)(ptr + cur_offset);
parent = key->offset;
this_name_len = btrfs_inode_ref_name_len(eb, iref);
name_ptr = (unsigned long)(iref + 1);
this_len = sizeof(*iref) + this_name_len;
} else {
struct btrfs_inode_extref *extref;
extref = (struct btrfs_inode_extref *)(ptr +
cur_offset);
parent = btrfs_inode_extref_parent(eb, extref);
this_name_len = btrfs_inode_extref_name_len(eb, extref);
name_ptr = (unsigned long)&extref->name;
this_len = sizeof(*extref) + this_name_len;
}
if (this_name_len > name_len) {
char *new_name;
new_name = krealloc(name, this_name_len, GFP_NOFS);
if (!new_name) {
ret = -ENOMEM;
goto out;
}
name_len = this_name_len;
name = new_name;
}
read_extent_buffer(eb, name, name_ptr, this_name_len);
di = btrfs_lookup_dir_item(NULL, BTRFS_I(inode)->root,
search_path, parent,
name, this_name_len, 0);
if (di && !IS_ERR(di)) {
ret = 1;
goto out;
} else if (IS_ERR(di)) {
ret = PTR_ERR(di);
goto out;
}
btrfs_release_path(search_path);
cur_offset += this_len;
}
ret = 0;
out:
btrfs_free_path(search_path);
kfree(name);
return ret;
}
/* log a single inode in the tree log.
* At least one parent directory for this inode must exist in the tree
* or be logged already.
*
* Any items from this inode changed by the current transaction are copied
* to the log tree. An extra reference is taken on any extents in this
* file, allowing us to avoid a whole pile of corner cases around logging
* blocks that have been removed from the tree.
*
* See LOG_INODE_ALL and related defines for a description of what inode_only
* does.
*
* This handles both files and directories.
*/
static int btrfs_log_inode(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
int inode_only,
const loff_t start,
const loff_t end,
struct btrfs_log_ctx *ctx)
{
struct btrfs_path *path;
struct btrfs_path *dst_path;
struct btrfs_key min_key;
struct btrfs_key max_key;
struct btrfs_root *log = root->log_root;
struct extent_buffer *src = NULL;
LIST_HEAD(logged_list);
u64 last_extent = 0;
int err = 0;
int ret;
int nritems;
int ins_start_slot = 0;
int ins_nr;
bool fast_search = false;
u64 ino = btrfs_ino(inode);
struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
u64 logged_isize = 0;
bool need_log_inode_item = true;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
dst_path = btrfs_alloc_path();
if (!dst_path) {
btrfs_free_path(path);
return -ENOMEM;
}
min_key.objectid = ino;
min_key.type = BTRFS_INODE_ITEM_KEY;
min_key.offset = 0;
max_key.objectid = ino;
/* today the code can only do partial logging of directories */
if (S_ISDIR(inode->i_mode) ||
(!test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags) &&
inode_only == LOG_INODE_EXISTS))
max_key.type = BTRFS_XATTR_ITEM_KEY;
else
max_key.type = (u8)-1;
max_key.offset = (u64)-1;
/*
* Only run delayed items if we are a dir or a new file.
* Otherwise commit the delayed inode only, which is needed in
* order for the log replay code to mark inodes for link count
* fixup (create temporary BTRFS_TREE_LOG_FIXUP_OBJECTID items).
*/
if (S_ISDIR(inode->i_mode) ||
BTRFS_I(inode)->generation > root->fs_info->last_trans_committed)
ret = btrfs_commit_inode_delayed_items(trans, inode);
else
ret = btrfs_commit_inode_delayed_inode(inode);
if (ret) {
btrfs_free_path(path);
btrfs_free_path(dst_path);
return ret;
}
mutex_lock(&BTRFS_I(inode)->log_mutex);
/*
* Collect ordered extents only if we are logging data. This is to
* ensure a subsequent request to log this inode in LOG_INODE_ALL mode
* will process the ordered extents if they still exists at the time,
* because when we collect them we test and set for the flag
* BTRFS_ORDERED_LOGGED to prevent multiple log requests to process the
* same ordered extents. The consequence for the LOG_INODE_ALL log mode
* not processing the ordered extents is that we end up logging the
* corresponding file extent items, based on the extent maps in the
* inode's extent_map_tree's modified_list, without logging the
* respective checksums (since the may still be only attached to the
* ordered extents and have not been inserted in the csum tree by
* btrfs_finish_ordered_io() yet).
*/
if (inode_only == LOG_INODE_ALL)
btrfs_get_logged_extents(inode, &logged_list, start, end);
/*
* a brute force approach to making sure we get the most uptodate
* copies of everything.
*/
if (S_ISDIR(inode->i_mode)) {
int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
if (inode_only == LOG_INODE_EXISTS)
max_key_type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path, ino, max_key_type);
} else {
if (inode_only == LOG_INODE_EXISTS) {
/*
* Make sure the new inode item we write to the log has
* the same isize as the current one (if it exists).
* This is necessary to prevent data loss after log
* replay, and also to prevent doing a wrong expanding
* truncate - for e.g. create file, write 4K into offset
* 0, fsync, write 4K into offset 4096, add hard link,
* fsync some other file (to sync log), power fail - if
* we use the inode's current i_size, after log replay
* we get a 8Kb file, with the last 4Kb extent as a hole
* (zeroes), as if an expanding truncate happened,
* instead of getting a file of 4Kb only.
*/
err = logged_inode_size(log, inode, path,
&logged_isize);
if (err)
goto out_unlock;
}
if (test_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags)) {
if (inode_only == LOG_INODE_EXISTS) {
max_key.type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path, ino,
max_key.type);
} else {
clear_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
&BTRFS_I(inode)->runtime_flags);
clear_bit(BTRFS_INODE_COPY_EVERYTHING,
&BTRFS_I(inode)->runtime_flags);
while(1) {
ret = btrfs_truncate_inode_items(trans,
log, inode, 0, 0);
if (ret != -EAGAIN)
break;
}
}
} else if (test_and_clear_bit(BTRFS_INODE_COPY_EVERYTHING,
&BTRFS_I(inode)->runtime_flags) ||
inode_only == LOG_INODE_EXISTS) {
if (inode_only == LOG_INODE_ALL)
fast_search = true;
max_key.type = BTRFS_XATTR_ITEM_KEY;
ret = drop_objectid_items(trans, log, path, ino,
max_key.type);
} else {
if (inode_only == LOG_INODE_ALL)
fast_search = true;
goto log_extents;
}
}
if (ret) {
err = ret;
goto out_unlock;
}
while (1) {
ins_nr = 0;
ret = btrfs_search_forward(root, &min_key,
path, trans->transid);
if (ret != 0)
break;
again:
/* note, ins_nr might be > 0 here, cleanup outside the loop */
if (min_key.objectid != ino)
break;
if (min_key.type > max_key.type)
break;
if (min_key.type == BTRFS_INODE_ITEM_KEY)
need_log_inode_item = false;
if ((min_key.type == BTRFS_INODE_REF_KEY ||
min_key.type == BTRFS_INODE_EXTREF_KEY) &&
BTRFS_I(inode)->generation == trans->transid) {
ret = btrfs_check_ref_name_override(path->nodes[0],
path->slots[0],
&min_key, inode);
if (ret < 0) {
err = ret;
goto out_unlock;
} else if (ret > 0) {
err = 1;
btrfs_set_log_full_commit(root->fs_info, trans);
goto out_unlock;
}
}
/* Skip xattrs, we log them later with btrfs_log_all_xattrs() */
if (min_key.type == BTRFS_XATTR_ITEM_KEY) {
if (ins_nr == 0)
goto next_slot;
ret = copy_items(trans, inode, dst_path, path,
&last_extent, ins_start_slot,
ins_nr, inode_only, logged_isize);
if (ret < 0) {
err = ret;
goto out_unlock;
}
ins_nr = 0;
if (ret) {
btrfs_release_path(path);
continue;
}
goto next_slot;
}
src = path->nodes[0];
if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
ins_nr++;
goto next_slot;
} else if (!ins_nr) {
ins_start_slot = path->slots[0];
ins_nr = 1;
goto next_slot;
}
ret = copy_items(trans, inode, dst_path, path, &last_extent,
ins_start_slot, ins_nr, inode_only,
logged_isize);
if (ret < 0) {
err = ret;
goto out_unlock;
}
if (ret) {
ins_nr = 0;
btrfs_release_path(path);
continue;
}
ins_nr = 1;
ins_start_slot = path->slots[0];
next_slot:
nritems = btrfs_header_nritems(path->nodes[0]);
path->slots[0]++;
if (path->slots[0] < nritems) {
btrfs_item_key_to_cpu(path->nodes[0], &min_key,
path->slots[0]);
goto again;
}
if (ins_nr) {
ret = copy_items(trans, inode, dst_path, path,
&last_extent, ins_start_slot,
ins_nr, inode_only, logged_isize);
if (ret < 0) {
err = ret;
goto out_unlock;
}
ret = 0;
ins_nr = 0;
}
btrfs_release_path(path);
if (min_key.offset < (u64)-1) {
min_key.offset++;
} else if (min_key.type < max_key.type) {
min_key.type++;
min_key.offset = 0;
} else {
break;
}
}
if (ins_nr) {
ret = copy_items(trans, inode, dst_path, path, &last_extent,
ins_start_slot, ins_nr, inode_only,
logged_isize);
if (ret < 0) {
err = ret;
goto out_unlock;
}
ret = 0;
ins_nr = 0;
}
btrfs_release_path(path);
btrfs_release_path(dst_path);
err = btrfs_log_all_xattrs(trans, root, inode, path, dst_path);
if (err)
goto out_unlock;
if (max_key.type >= BTRFS_EXTENT_DATA_KEY && !fast_search) {
btrfs_release_path(path);
btrfs_release_path(dst_path);
err = btrfs_log_trailing_hole(trans, root, inode, path);
if (err)
goto out_unlock;
}
log_extents:
btrfs_release_path(path);
btrfs_release_path(dst_path);
if (need_log_inode_item) {
err = log_inode_item(trans, log, dst_path, inode);
if (err)
goto out_unlock;
}
if (fast_search) {
/*
* Some ordered extents started by fsync might have completed
* before we collected the ordered extents in logged_list, which
* means they're gone, not in our logged_list nor in the inode's
* ordered tree. We want the application/user space to know an
* error happened while attempting to persist file data so that
* it can take proper action. If such error happened, we leave
* without writing to the log tree and the fsync must report the
* file data write error and not commit the current transaction.
*/
err = btrfs_inode_check_errors(inode);
if (err) {
ctx->io_err = err;
goto out_unlock;
}
ret = btrfs_log_changed_extents(trans, root, inode, dst_path,
&logged_list, ctx, start, end);
if (ret) {
err = ret;
goto out_unlock;
}
} else if (inode_only == LOG_INODE_ALL) {
struct extent_map *em, *n;
write_lock(&em_tree->lock);
/*
* We can't just remove every em if we're called for a ranged
* fsync - that is, one that doesn't cover the whole possible
* file range (0 to LLONG_MAX). This is because we can have
* em's that fall outside the range we're logging and therefore
* their ordered operations haven't completed yet
* (btrfs_finish_ordered_io() not invoked yet). This means we
* didn't get their respective file extent item in the fs/subvol
* tree yet, and need to let the next fast fsync (one which
* consults the list of modified extent maps) find the em so
* that it logs a matching file extent item and waits for the
* respective ordered operation to complete (if it's still
* running).
*
* Removing every em outside the range we're logging would make
* the next fast fsync not log their matching file extent items,
* therefore making us lose data after a log replay.
*/
list_for_each_entry_safe(em, n, &em_tree->modified_extents,
list) {
const u64 mod_end = em->mod_start + em->mod_len - 1;
if (em->mod_start >= start && mod_end <= end)
list_del_init(&em->list);
}
write_unlock(&em_tree->lock);
}
if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
ret = log_directory_changes(trans, root, inode, path, dst_path,
ctx);
if (ret) {
err = ret;
goto out_unlock;
}
}
spin_lock(&BTRFS_I(inode)->lock);
BTRFS_I(inode)->logged_trans = trans->transid;
BTRFS_I(inode)->last_log_commit = BTRFS_I(inode)->last_sub_trans;
spin_unlock(&BTRFS_I(inode)->lock);
out_unlock:
if (unlikely(err))
btrfs_put_logged_extents(&logged_list);
else
btrfs_submit_logged_extents(&logged_list, log);
mutex_unlock(&BTRFS_I(inode)->log_mutex);
btrfs_free_path(path);
btrfs_free_path(dst_path);
return err;
}
/*
* Check if we must fallback to a transaction commit when logging an inode.
* This must be called after logging the inode and is used only in the context
* when fsyncing an inode requires the need to log some other inode - in which
* case we can't lock the i_mutex of each other inode we need to log as that
* can lead to deadlocks with concurrent fsync against other inodes (as we can
* log inodes up or down in the hierarchy) or rename operations for example. So
* we take the log_mutex of the inode after we have logged it and then check for
* its last_unlink_trans value - this is safe because any task setting
* last_unlink_trans must take the log_mutex and it must do this before it does
* the actual unlink operation, so if we do this check before a concurrent task
* sets last_unlink_trans it means we've logged a consistent version/state of
* all the inode items, otherwise we are not sure and must do a transaction
* commit (the concurrent task migth have only updated last_unlink_trans before
* we logged the inode or it might have also done the unlink).
*/
static bool btrfs_must_commit_transaction(struct btrfs_trans_handle *trans,
struct inode *inode)
{
struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
bool ret = false;
mutex_lock(&BTRFS_I(inode)->log_mutex);
if (BTRFS_I(inode)->last_unlink_trans > fs_info->last_trans_committed) {
/*
* Make sure any commits to the log are forced to be full
* commits.
*/
btrfs_set_log_full_commit(fs_info, trans);
ret = true;
}
mutex_unlock(&BTRFS_I(inode)->log_mutex);
return ret;
}
/*
* follow the dentry parent pointers up the chain and see if any
* of the directories in it require a full commit before they can
* be logged. Returns zero if nothing special needs to be done or 1 if
* a full commit is required.
*/
static noinline int check_parent_dirs_for_sync(struct btrfs_trans_handle *trans,
struct inode *inode,
struct dentry *parent,
struct super_block *sb,
u64 last_committed)
{
int ret = 0;
struct dentry *old_parent = NULL;
struct inode *orig_inode = inode;
/*
* for regular files, if its inode is already on disk, we don't
* have to worry about the parents at all. This is because
* we can use the last_unlink_trans field to record renames
* and other fun in this file.
*/
if (S_ISREG(inode->i_mode) &&
BTRFS_I(inode)->generation <= last_committed &&
BTRFS_I(inode)->last_unlink_trans <= last_committed)
goto out;
if (!S_ISDIR(inode->i_mode)) {
if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
goto out;
inode = d_inode(parent);
}
while (1) {
/*
* If we are logging a directory then we start with our inode,
* not our parents inode, so we need to skipp setting the
* logged_trans so that further down in the log code we don't
* think this inode has already been logged.
*/
if (inode != orig_inode)
BTRFS_I(inode)->logged_trans = trans->transid;
smp_mb();
if (btrfs_must_commit_transaction(trans, inode)) {
ret = 1;
break;
}
if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
break;
if (IS_ROOT(parent))
break;
parent = dget_parent(parent);
dput(old_parent);
old_parent = parent;
inode = d_inode(parent);
}
dput(old_parent);
out:
return ret;
}
struct btrfs_dir_list {
u64 ino;
struct list_head list;
};
/*
* Log the inodes of the new dentries of a directory. See log_dir_items() for
* details about the why it is needed.
* This is a recursive operation - if an existing dentry corresponds to a
* directory, that directory's new entries are logged too (same behaviour as
* ext3/4, xfs, f2fs, reiserfs, nilfs2). Note that when logging the inodes
* the dentries point to we do not lock their i_mutex, otherwise lockdep
* complains about the following circular lock dependency / possible deadlock:
*
* CPU0 CPU1
* ---- ----
* lock(&type->i_mutex_dir_key#3/2);
* lock(sb_internal#2);
* lock(&type->i_mutex_dir_key#3/2);
* lock(&sb->s_type->i_mutex_key#14);
*
* Where sb_internal is the lock (a counter that works as a lock) acquired by
* sb_start_intwrite() in btrfs_start_transaction().
* Not locking i_mutex of the inodes is still safe because:
*
* 1) For regular files we log with a mode of LOG_INODE_EXISTS. It's possible
* that while logging the inode new references (names) are added or removed
* from the inode, leaving the logged inode item with a link count that does
* not match the number of logged inode reference items. This is fine because
* at log replay time we compute the real number of links and correct the
* link count in the inode item (see replay_one_buffer() and
* link_to_fixup_dir());
*
* 2) For directories we log with a mode of LOG_INODE_ALL. It's possible that
* while logging the inode's items new items with keys BTRFS_DIR_ITEM_KEY and
* BTRFS_DIR_INDEX_KEY are added to fs/subvol tree and the logged inode item
* has a size that doesn't match the sum of the lengths of all the logged
* names. This does not result in a problem because if a dir_item key is
* logged but its matching dir_index key is not logged, at log replay time we
* don't use it to replay the respective name (see replay_one_name()). On the
* other hand if only the dir_index key ends up being logged, the respective
* name is added to the fs/subvol tree with both the dir_item and dir_index
* keys created (see replay_one_name()).
* The directory's inode item with a wrong i_size is not a problem as well,
* since we don't use it at log replay time to set the i_size in the inode
* item of the fs/subvol tree (see overwrite_item()).
*/
static int log_new_dir_dentries(struct btrfs_trans_handle *trans,
struct btrfs_root *root,
struct inode *start_inode,
struct btrfs_log_ctx *ctx)
{
struct btrfs_root *log = root->log_root;
struct btrfs_path *path;
LIST_HEAD(dir_list);
struct btrfs_dir_list *dir_elem;
int ret = 0;
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
dir_elem = kmalloc(sizeof(*dir_elem), GFP_NOFS);
if (!dir_elem) {
btrfs_free_path(path);
return -ENOMEM;
}
dir_elem->ino = btrfs_ino(start_inode);
list_add_tail(&dir_elem->list, &dir_list);
while (!list_empty(&dir_list)) {
struct extent_buffer *leaf;
struct btrfs_key min_key;
int nritems;
int i;
dir_elem = list_first_entry(&dir_list, struct btrfs_dir_list,
list);
if (ret)
goto next_dir_inode;
min_key.objectid = dir_elem->ino;
min_key.type = BTRFS_DIR_ITEM_KEY;
min_key.offset = 0;
again:
btrfs_release_path(path);
ret = btrfs_search_forward(log, &min_key, path, trans->transid);
if (ret < 0) {
goto next_dir_inode;
} else if (ret > 0) {
ret = 0;
goto next_dir_inode;
}
process_leaf:
leaf = path->nodes[0];
nritems = btrfs_header_nritems(leaf);
for (i = path->slots[0]; i < nritems; i++) {
struct btrfs_dir_item *di;
struct btrfs_key di_key;
struct inode *di_inode;
struct btrfs_dir_list *new_dir_elem;
int log_mode = LOG_INODE_EXISTS;
int type;
btrfs_item_key_to_cpu(leaf, &min_key, i);
if (min_key.objectid != dir_elem->ino ||
min_key.type != BTRFS_DIR_ITEM_KEY)
goto next_dir_inode;
di = btrfs_item_ptr(leaf, i, struct btrfs_dir_item);
type = btrfs_dir_type(leaf, di);
if (btrfs_dir_transid(leaf, di) < trans->transid &&
type != BTRFS_FT_DIR)
continue;
btrfs_dir_item_key_to_cpu(leaf, di, &di_key);
if (di_key.type == BTRFS_ROOT_ITEM_KEY)
continue;
di_inode = btrfs_iget(root->fs_info->sb, &di_key,
root, NULL);
if (IS_ERR(di_inode)) {
ret = PTR_ERR(di_inode);
goto next_dir_inode;
}
if (btrfs_inode_in_log(di_inode, trans->transid)) {
iput(di_inode);
continue;
}
ctx->log_new_dentries = false;
if (type == BTRFS_FT_DIR)
log_mode = LOG_INODE_ALL;
btrfs_release_path(path);
ret = btrfs_log_inode(trans, root, di_inode,
log_mode, 0, LLONG_MAX, ctx);
if (!ret &&
btrfs_must_commit_transaction(trans, di_inode))
ret = 1;
iput(di_inode);
if (ret)
goto next_dir_inode;
if (ctx->log_new_dentries) {
new_dir_elem = kmalloc(sizeof(*new_dir_elem),
GFP_NOFS);
if (!new_dir_elem) {
ret = -ENOMEM;
goto next_dir_inode;
}
new_dir_elem->ino = di_key.objectid;
list_add_tail(&new_dir_elem->list, &dir_list);
}
break;
}
if (i == nritems) {
ret = btrfs_next_leaf(log, path);
if (ret < 0) {
goto next_dir_inode;
} else if (ret > 0) {
ret = 0;
goto next_dir_inode;
}
goto process_leaf;
}
if (min_key.offset < (u64)-1) {
min_key.offset++;
goto again;
}
next_dir_inode:
list_del(&dir_elem->list);
kfree(dir_elem);
}
btrfs_free_path(path);
return ret;
}
static int btrfs_log_all_parents(struct btrfs_trans_handle *trans,
struct inode *inode,
struct btrfs_log_ctx *ctx)
{
int ret;
struct btrfs_path *path;
struct btrfs_key key;
struct btrfs_root *root = BTRFS_I(inode)->root;
const u64 ino = btrfs_ino(inode);
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
path->skip_locking = 1;
path->search_commit_root = 1;
key.objectid = ino;
key.type = BTRFS_INODE_REF_KEY;
key.offset = 0;
ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
if (ret < 0)
goto out;
while (true) {
struct extent_buffer *leaf = path->nodes[0];
int slot = path->slots[0];
u32 cur_offset = 0;
u32 item_size;
unsigned long ptr;
if (slot >= btrfs_header_nritems(leaf)) {
ret = btrfs_next_leaf(root, path);
if (ret < 0)
goto out;
else if (ret > 0)
break;
continue;
}
btrfs_item_key_to_cpu(leaf, &key, slot);
/* BTRFS_INODE_EXTREF_KEY is BTRFS_INODE_REF_KEY + 1 */
if (key.objectid != ino || key.type > BTRFS_INODE_EXTREF_KEY)
break;
item_size = btrfs_item_size_nr(leaf, slot);
ptr = btrfs_item_ptr_offset(leaf, slot);
while (cur_offset < item_size) {
struct btrfs_key inode_key;
struct inode *dir_inode;
inode_key.type = BTRFS_INODE_ITEM_KEY;
inode_key.offset = 0;
if (key.type == BTRFS_INODE_EXTREF_KEY) {
struct btrfs_inode_extref *extref;
extref = (struct btrfs_inode_extref *)
(ptr + cur_offset);
inode_key.objectid = btrfs_inode_extref_parent(
leaf, extref);
cur_offset += sizeof(*extref);
cur_offset += btrfs_inode_extref_name_len(leaf,
extref);
} else {
inode_key.objectid = key.offset;
cur_offset = item_size;
}
dir_inode = btrfs_iget(root->fs_info->sb, &inode_key,
root, NULL);
/* If parent inode was deleted, skip it. */
if (IS_ERR(dir_inode))
continue;
ret = btrfs_log_inode(trans, root, dir_inode,
LOG_INODE_ALL, 0, LLONG_MAX, ctx);
if (!ret &&
btrfs_must_commit_transaction(trans, dir_inode))
ret = 1;
iput(dir_inode);
if (ret)
goto out;
}
path->slots[0]++;
}
ret = 0;
out:
btrfs_free_path(path);
return ret;
}
/*
* helper function around btrfs_log_inode to make sure newly created
* parent directories also end up in the log. A minimal inode and backref
* only logging is done of any parent directories that are older than
* the last committed transaction
*/
static int btrfs_log_inode_parent(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct inode *inode,
struct dentry *parent,
const loff_t start,
const loff_t end,
int exists_only,
struct btrfs_log_ctx *ctx)
{
int inode_only = exists_only ? LOG_INODE_EXISTS : LOG_INODE_ALL;
struct super_block *sb;
struct dentry *old_parent = NULL;
int ret = 0;
u64 last_committed = root->fs_info->last_trans_committed;
bool log_dentries = false;
struct inode *orig_inode = inode;
sb = inode->i_sb;
if (btrfs_test_opt(root, NOTREELOG)) {
ret = 1;
goto end_no_trans;
}
/*
* The prev transaction commit doesn't complete, we need do
* full commit by ourselves.
*/
if (root->fs_info->last_trans_log_full_commit >
root->fs_info->last_trans_committed) {
ret = 1;
goto end_no_trans;
}
if (root != BTRFS_I(inode)->root ||
btrfs_root_refs(&root->root_item) == 0) {
ret = 1;
goto end_no_trans;
}
ret = check_parent_dirs_for_sync(trans, inode, parent,
sb, last_committed);
if (ret)
goto end_no_trans;
if (btrfs_inode_in_log(inode, trans->transid)) {
ret = BTRFS_NO_LOG_SYNC;
goto end_no_trans;
}
ret = start_log_trans(trans, root, ctx);
if (ret)
goto end_no_trans;
ret = btrfs_log_inode(trans, root, inode, inode_only, start, end, ctx);
if (ret)
goto end_trans;
/*
* for regular files, if its inode is already on disk, we don't
* have to worry about the parents at all. This is because
* we can use the last_unlink_trans field to record renames
* and other fun in this file.
*/
if (S_ISREG(inode->i_mode) &&
BTRFS_I(inode)->generation <= last_committed &&
BTRFS_I(inode)->last_unlink_trans <= last_committed) {
ret = 0;
goto end_trans;
}
if (S_ISDIR(inode->i_mode) && ctx && ctx->log_new_dentries)
log_dentries = true;
/*
* On unlink we must make sure all our current and old parent directores
* inodes are fully logged. This is to prevent leaving dangling
* directory index entries in directories that were our parents but are
* not anymore. Not doing this results in old parent directory being
* impossible to delete after log replay (rmdir will always fail with
* error -ENOTEMPTY).
*
* Example 1:
*
* mkdir testdir
* touch testdir/foo
* ln testdir/foo testdir/bar
* sync
* unlink testdir/bar
* xfs_io -c fsync testdir/foo
* <power failure>
* mount fs, triggers log replay
*
* If we don't log the parent directory (testdir), after log replay the
* directory still has an entry pointing to the file inode using the bar
* name, but a matching BTRFS_INODE_[REF|EXTREF]_KEY does not exist and
* the file inode has a link count of 1.
*
* Example 2:
*
* mkdir testdir
* touch foo
* ln foo testdir/foo2
* ln foo testdir/foo3
* sync
* unlink testdir/foo3
* xfs_io -c fsync foo
* <power failure>
* mount fs, triggers log replay
*
* Similar as the first example, after log replay the parent directory
* testdir still has an entry pointing to the inode file with name foo3
* but the file inode does not have a matching BTRFS_INODE_REF_KEY item
* and has a link count of 2.
*/
if (BTRFS_I(inode)->last_unlink_trans > last_committed) {
ret = btrfs_log_all_parents(trans, orig_inode, ctx);
if (ret)
goto end_trans;
}
while (1) {
if (!parent || d_really_is_negative(parent) || sb != d_inode(parent)->i_sb)
break;
inode = d_inode(parent);
if (root != BTRFS_I(inode)->root)
break;
if (BTRFS_I(inode)->generation > last_committed) {
ret = btrfs_log_inode(trans, root, inode,
LOG_INODE_EXISTS,
0, LLONG_MAX, ctx);
if (ret)
goto end_trans;
}
if (IS_ROOT(parent))
break;
parent = dget_parent(parent);
dput(old_parent);
old_parent = parent;
}
if (log_dentries)
ret = log_new_dir_dentries(trans, root, orig_inode, ctx);
else
ret = 0;
end_trans:
dput(old_parent);
if (ret < 0) {
btrfs_set_log_full_commit(root->fs_info, trans);
ret = 1;
}
if (ret)
btrfs_remove_log_ctx(root, ctx);
btrfs_end_log_trans(root);
end_no_trans:
return ret;
}
/*
* it is not safe to log dentry if the chunk root has added new
* chunks. This returns 0 if the dentry was logged, and 1 otherwise.
* If this returns 1, you must commit the transaction to safely get your
* data on disk.
*/
int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
struct btrfs_root *root, struct dentry *dentry,
const loff_t start,
const loff_t end,
struct btrfs_log_ctx *ctx)
{
struct dentry *parent = dget_parent(dentry);
int ret;
ret = btrfs_log_inode_parent(trans, root, d_inode(dentry), parent,
start, end, 0, ctx);
dput(parent);
return ret;
}
/*
* should be called during mount to recover any replay any log trees
* from the FS
*/
int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
{
int ret;
struct btrfs_path *path;
struct btrfs_trans_handle *trans;
struct btrfs_key key;
struct btrfs_key found_key;
struct btrfs_key tmp_key;
struct btrfs_root *log;
struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
struct walk_control wc = {
.process_func = process_one_buffer,
.stage = 0,
};
path = btrfs_alloc_path();
if (!path)
return -ENOMEM;
fs_info->log_root_recovering = 1;
trans = btrfs_start_transaction(fs_info->tree_root, 0);
if (IS_ERR(trans)) {
ret = PTR_ERR(trans);
goto error;
}
wc.trans = trans;
wc.pin = 1;
ret = walk_log_tree(trans, log_root_tree, &wc);
if (ret) {
btrfs_std_error(fs_info, ret, "Failed to pin buffers while "
"recovering log root tree.");
goto error;
}
again:
key.objectid = BTRFS_TREE_LOG_OBJECTID;
key.offset = (u64)-1;
key.type = BTRFS_ROOT_ITEM_KEY;
while (1) {
ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
if (ret < 0) {
btrfs_std_error(fs_info, ret,
"Couldn't find tree log root.");
goto error;
}
if (ret > 0) {
if (path->slots[0] == 0)
break;
path->slots[0]--;
}
btrfs_item_key_to_cpu(path->nodes[0], &found_key,
path->slots[0]);
btrfs_release_path(path);
if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
break;
log = btrfs_read_fs_root(log_root_tree, &found_key);
if (IS_ERR(log)) {
ret = PTR_ERR(log);
btrfs_std_error(fs_info, ret,
"Couldn't read tree log root.");
goto error;
}
tmp_key.objectid = found_key.offset;
tmp_key.type = BTRFS_ROOT_ITEM_KEY;
tmp_key.offset = (u64)-1;
wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
if (IS_ERR(wc.replay_dest)) {
ret = PTR_ERR(wc.replay_dest);
free_extent_buffer(log->node);
free_extent_buffer(log->commit_root);
kfree(log);
btrfs_std_error(fs_info, ret, "Couldn't read target root "
"for tree log recovery.");
goto error;
}
wc.replay_dest->log_root = log;
btrfs_record_root_in_trans(trans, wc.replay_dest);
ret = walk_log_tree(trans, log, &wc);
if (!ret && wc.stage == LOG_WALK_REPLAY_ALL) {
ret = fixup_inode_link_counts(trans, wc.replay_dest,
path);
}
key.offset = found_key.offset - 1;
wc.replay_dest->log_root = NULL;
free_extent_buffer(log->node);
free_extent_buffer(log->commit_root);
kfree(log);
if (ret)
goto error;
if (found_key.offset == 0)
break;
}
btrfs_release_path(path);
/* step one is to pin it all, step two is to replay just inodes */
if (wc.pin) {
wc.pin = 0;
wc.process_func = replay_one_buffer;
wc.stage = LOG_WALK_REPLAY_INODES;
goto again;
}
/* step three is to replay everything */
if (wc.stage < LOG_WALK_REPLAY_ALL) {
wc.stage++;
goto again;
}
btrfs_free_path(path);
/* step 4: commit the transaction, which also unpins the blocks */
ret = btrfs_commit_transaction(trans, fs_info->tree_root);
if (ret)
return ret;
free_extent_buffer(log_root_tree->node);
log_root_tree->log_root = NULL;
fs_info->log_root_recovering = 0;
kfree(log_root_tree);
return 0;
error:
if (wc.trans)
btrfs_end_transaction(wc.trans, fs_info->tree_root);
btrfs_free_path(path);
return ret;
}
/*
* there are some corner cases where we want to force a full
* commit instead of allowing a directory to be logged.
*
* They revolve around files there were unlinked from the directory, and
* this function updates the parent directory so that a full commit is
* properly done if it is fsync'd later after the unlinks are done.
*
* Must be called before the unlink operations (updates to the subvolume tree,
* inodes, etc) are done.
*/
void btrfs_record_unlink_dir(struct btrfs_trans_handle *trans,
struct inode *dir, struct inode *inode,
int for_rename)
{
/*
* when we're logging a file, if it hasn't been renamed
* or unlinked, and its inode is fully committed on disk,
* we don't have to worry about walking up the directory chain
* to log its parents.
*
* So, we use the last_unlink_trans field to put this transid
* into the file. When the file is logged we check it and
* don't log the parents if the file is fully on disk.
*/
if (S_ISREG(inode->i_mode)) {
mutex_lock(&BTRFS_I(inode)->log_mutex);
BTRFS_I(inode)->last_unlink_trans = trans->transid;
mutex_unlock(&BTRFS_I(inode)->log_mutex);
}
/*
* if this directory was already logged any new
* names for this file/dir will get recorded
*/
smp_mb();
if (BTRFS_I(dir)->logged_trans == trans->transid)
return;
/*
* if the inode we're about to unlink was logged,
* the log will be properly updated for any new names
*/
if (BTRFS_I(inode)->logged_trans == trans->transid)
return;
/*
* when renaming files across directories, if the directory
* there we're unlinking from gets fsync'd later on, there's
* no way to find the destination directory later and fsync it
* properly. So, we have to be conservative and force commits
* so the new name gets discovered.
*/
if (for_rename)
goto record;
/* we can safely do the unlink without any special recording */
return;
record:
mutex_lock(&BTRFS_I(dir)->log_mutex);
BTRFS_I(dir)->last_unlink_trans = trans->transid;
mutex_unlock(&BTRFS_I(dir)->log_mutex);
}
/*
* Make sure that if someone attempts to fsync the parent directory of a deleted
* snapshot, it ends up triggering a transaction commit. This is to guarantee
* that after replaying the log tree of the parent directory's root we will not
* see the snapshot anymore and at log replay time we will not see any log tree
* corresponding to the deleted snapshot's root, which could lead to replaying
* it after replaying the log tree of the parent directory (which would replay
* the snapshot delete operation).
*
* Must be called before the actual snapshot destroy operation (updates to the
* parent root and tree of tree roots trees, etc) are done.
*/
void btrfs_record_snapshot_destroy(struct btrfs_trans_handle *trans,
struct inode *dir)
{
mutex_lock(&BTRFS_I(dir)->log_mutex);
BTRFS_I(dir)->last_unlink_trans = trans->transid;
mutex_unlock(&BTRFS_I(dir)->log_mutex);
}
/*
* Call this after adding a new name for a file and it will properly
* update the log to reflect the new name.
*
* It will return zero if all goes well, and it will return 1 if a
* full transaction commit is required.
*/
int btrfs_log_new_name(struct btrfs_trans_handle *trans,
struct inode *inode, struct inode *old_dir,
struct dentry *parent)
{
struct btrfs_root * root = BTRFS_I(inode)->root;
/*
* this will force the logging code to walk the dentry chain
* up for the file
*/
if (S_ISREG(inode->i_mode))
BTRFS_I(inode)->last_unlink_trans = trans->transid;
/*
* if this inode hasn't been logged and directory we're renaming it
* from hasn't been logged, we don't need to log it
*/
if (BTRFS_I(inode)->logged_trans <=
root->fs_info->last_trans_committed &&
(!old_dir || BTRFS_I(old_dir)->logged_trans <=
root->fs_info->last_trans_committed))
return 0;
return btrfs_log_inode_parent(trans, root, inode, parent, 0,
LLONG_MAX, 1, NULL);
}