OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdkfd/kfd_chardev.c

3398 lines
86 KiB
C

// SPDX-License-Identifier: GPL-2.0 OR MIT
/*
* Copyright 2014-2022 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*/
#include <linux/device.h>
#include <linux/export.h>
#include <linux/err.h>
#include <linux/fs.h>
#include <linux/file.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/uaccess.h>
#include <linux/compat.h>
#include <uapi/linux/kfd_ioctl.h>
#include <linux/time.h>
#include <linux/mm.h>
#include <linux/mman.h>
#include <linux/ptrace.h>
#include <linux/dma-buf.h>
#include <linux/fdtable.h>
#include <linux/processor.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_svm.h"
#include "amdgpu_amdkfd.h"
#include "kfd_smi_events.h"
#include "amdgpu_dma_buf.h"
#include "kfd_debug.h"
static long kfd_ioctl(struct file *, unsigned int, unsigned long);
static int kfd_open(struct inode *, struct file *);
static int kfd_release(struct inode *, struct file *);
static int kfd_mmap(struct file *, struct vm_area_struct *);
static const char kfd_dev_name[] = "kfd";
static const struct file_operations kfd_fops = {
.owner = THIS_MODULE,
.unlocked_ioctl = kfd_ioctl,
.compat_ioctl = compat_ptr_ioctl,
.open = kfd_open,
.release = kfd_release,
.mmap = kfd_mmap,
};
static int kfd_char_dev_major = -1;
static struct class *kfd_class;
struct device *kfd_device;
static inline struct kfd_process_device *kfd_lock_pdd_by_id(struct kfd_process *p, __u32 gpu_id)
{
struct kfd_process_device *pdd;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, gpu_id);
if (pdd)
return pdd;
mutex_unlock(&p->mutex);
return NULL;
}
static inline void kfd_unlock_pdd(struct kfd_process_device *pdd)
{
mutex_unlock(&pdd->process->mutex);
}
int kfd_chardev_init(void)
{
int err = 0;
kfd_char_dev_major = register_chrdev(0, kfd_dev_name, &kfd_fops);
err = kfd_char_dev_major;
if (err < 0)
goto err_register_chrdev;
kfd_class = class_create(kfd_dev_name);
err = PTR_ERR(kfd_class);
if (IS_ERR(kfd_class))
goto err_class_create;
kfd_device = device_create(kfd_class, NULL,
MKDEV(kfd_char_dev_major, 0),
NULL, kfd_dev_name);
err = PTR_ERR(kfd_device);
if (IS_ERR(kfd_device))
goto err_device_create;
return 0;
err_device_create:
class_destroy(kfd_class);
err_class_create:
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
err_register_chrdev:
return err;
}
void kfd_chardev_exit(void)
{
device_destroy(kfd_class, MKDEV(kfd_char_dev_major, 0));
class_destroy(kfd_class);
unregister_chrdev(kfd_char_dev_major, kfd_dev_name);
kfd_device = NULL;
}
static int kfd_open(struct inode *inode, struct file *filep)
{
struct kfd_process *process;
bool is_32bit_user_mode;
if (iminor(inode) != 0)
return -ENODEV;
is_32bit_user_mode = in_compat_syscall();
if (is_32bit_user_mode) {
dev_warn(kfd_device,
"Process %d (32-bit) failed to open /dev/kfd\n"
"32-bit processes are not supported by amdkfd\n",
current->pid);
return -EPERM;
}
process = kfd_create_process(current);
if (IS_ERR(process))
return PTR_ERR(process);
if (kfd_process_init_cwsr_apu(process, filep)) {
kfd_unref_process(process);
return -EFAULT;
}
/* filep now owns the reference returned by kfd_create_process */
filep->private_data = process;
dev_dbg(kfd_device, "process %d opened, compat mode (32 bit) - %d\n",
process->pasid, process->is_32bit_user_mode);
return 0;
}
static int kfd_release(struct inode *inode, struct file *filep)
{
struct kfd_process *process = filep->private_data;
if (process)
kfd_unref_process(process);
return 0;
}
static int kfd_ioctl_get_version(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_get_version_args *args = data;
args->major_version = KFD_IOCTL_MAJOR_VERSION;
args->minor_version = KFD_IOCTL_MINOR_VERSION;
return 0;
}
static int set_queue_properties_from_user(struct queue_properties *q_properties,
struct kfd_ioctl_create_queue_args *args)
{
/*
* Repurpose queue percentage to accommodate new features:
* bit 0-7: queue percentage
* bit 8-15: pm4_target_xcc
*/
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
return -EINVAL;
}
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
return -EINVAL;
}
if ((args->ring_base_address) &&
(!access_ok((const void __user *) args->ring_base_address,
sizeof(uint64_t)))) {
pr_err("Can't access ring base address\n");
return -EFAULT;
}
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
pr_err("Ring size must be a power of 2 or 0\n");
return -EINVAL;
}
if (!access_ok((const void __user *) args->read_pointer_address,
sizeof(uint32_t))) {
pr_err("Can't access read pointer\n");
return -EFAULT;
}
if (!access_ok((const void __user *) args->write_pointer_address,
sizeof(uint32_t))) {
pr_err("Can't access write pointer\n");
return -EFAULT;
}
if (args->eop_buffer_address &&
!access_ok((const void __user *) args->eop_buffer_address,
sizeof(uint32_t))) {
pr_debug("Can't access eop buffer");
return -EFAULT;
}
if (args->ctx_save_restore_address &&
!access_ok((const void __user *) args->ctx_save_restore_address,
sizeof(uint32_t))) {
pr_debug("Can't access ctx save restore buffer");
return -EFAULT;
}
q_properties->is_interop = false;
q_properties->is_gws = false;
q_properties->queue_percent = args->queue_percentage & 0xFF;
/* bit 8-15 are repurposed to be PM4 target XCC */
q_properties->pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
q_properties->priority = args->queue_priority;
q_properties->queue_address = args->ring_base_address;
q_properties->queue_size = args->ring_size;
q_properties->read_ptr = (uint32_t *) args->read_pointer_address;
q_properties->write_ptr = (uint32_t *) args->write_pointer_address;
q_properties->eop_ring_buffer_address = args->eop_buffer_address;
q_properties->eop_ring_buffer_size = args->eop_buffer_size;
q_properties->ctx_save_restore_area_address =
args->ctx_save_restore_address;
q_properties->ctx_save_restore_area_size = args->ctx_save_restore_size;
q_properties->ctl_stack_size = args->ctl_stack_size;
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE ||
args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
q_properties->type = KFD_QUEUE_TYPE_COMPUTE;
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA)
q_properties->type = KFD_QUEUE_TYPE_SDMA;
else if (args->queue_type == KFD_IOC_QUEUE_TYPE_SDMA_XGMI)
q_properties->type = KFD_QUEUE_TYPE_SDMA_XGMI;
else
return -ENOTSUPP;
if (args->queue_type == KFD_IOC_QUEUE_TYPE_COMPUTE_AQL)
q_properties->format = KFD_QUEUE_FORMAT_AQL;
else
q_properties->format = KFD_QUEUE_FORMAT_PM4;
pr_debug("Queue Percentage: %d, %d\n",
q_properties->queue_percent, args->queue_percentage);
pr_debug("Queue Priority: %d, %d\n",
q_properties->priority, args->queue_priority);
pr_debug("Queue Address: 0x%llX, 0x%llX\n",
q_properties->queue_address, args->ring_base_address);
pr_debug("Queue Size: 0x%llX, %u\n",
q_properties->queue_size, args->ring_size);
pr_debug("Queue r/w Pointers: %px, %px\n",
q_properties->read_ptr,
q_properties->write_ptr);
pr_debug("Queue Format: %d\n", q_properties->format);
pr_debug("Queue EOP: 0x%llX\n", q_properties->eop_ring_buffer_address);
pr_debug("Queue CTX save area: 0x%llX\n",
q_properties->ctx_save_restore_area_address);
return 0;
}
static int kfd_ioctl_create_queue(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_create_queue_args *args = data;
struct kfd_node *dev;
int err = 0;
unsigned int queue_id;
struct kfd_process_device *pdd;
struct queue_properties q_properties;
uint32_t doorbell_offset_in_process = 0;
struct amdgpu_bo *wptr_bo = NULL;
memset(&q_properties, 0, sizeof(struct queue_properties));
pr_debug("Creating queue ioctl\n");
err = set_queue_properties_from_user(&q_properties, args);
if (err)
return err;
pr_debug("Looking for gpu id 0x%x\n", args->gpu_id);
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
err = -EINVAL;
goto err_pdd;
}
dev = pdd->dev;
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto err_bind_process;
}
if (!pdd->doorbell_index &&
kfd_alloc_process_doorbells(dev->kfd, &pdd->doorbell_index) < 0) {
err = -ENOMEM;
goto err_alloc_doorbells;
}
/* Starting with GFX11, wptr BOs must be mapped to GART for MES to determine work
* on unmapped queues for usermode queue oversubscription (no aggregated doorbell)
*/
if (dev->kfd->shared_resources.enable_mes &&
((dev->adev->mes.sched_version & AMDGPU_MES_API_VERSION_MASK)
>> AMDGPU_MES_API_VERSION_SHIFT) >= 2) {
struct amdgpu_bo_va_mapping *wptr_mapping;
struct amdgpu_vm *wptr_vm;
wptr_vm = drm_priv_to_vm(pdd->drm_priv);
err = amdgpu_bo_reserve(wptr_vm->root.bo, false);
if (err)
goto err_wptr_map_gart;
wptr_mapping = amdgpu_vm_bo_lookup_mapping(
wptr_vm, args->write_pointer_address >> PAGE_SHIFT);
amdgpu_bo_unreserve(wptr_vm->root.bo);
if (!wptr_mapping) {
pr_err("Failed to lookup wptr bo\n");
err = -EINVAL;
goto err_wptr_map_gart;
}
wptr_bo = wptr_mapping->bo_va->base.bo;
if (wptr_bo->tbo.base.size > PAGE_SIZE) {
pr_err("Requested GART mapping for wptr bo larger than one page\n");
err = -EINVAL;
goto err_wptr_map_gart;
}
err = amdgpu_amdkfd_map_gtt_bo_to_gart(dev->adev, wptr_bo);
if (err) {
pr_err("Failed to map wptr bo to GART\n");
goto err_wptr_map_gart;
}
}
pr_debug("Creating queue for PASID 0x%x on gpu 0x%x\n",
p->pasid,
dev->id);
err = pqm_create_queue(&p->pqm, dev, filep, &q_properties, &queue_id, wptr_bo,
NULL, NULL, NULL, &doorbell_offset_in_process);
if (err != 0)
goto err_create_queue;
args->queue_id = queue_id;
/* Return gpu_id as doorbell offset for mmap usage */
args->doorbell_offset = KFD_MMAP_TYPE_DOORBELL;
args->doorbell_offset |= KFD_MMAP_GPU_ID(args->gpu_id);
if (KFD_IS_SOC15(dev))
/* On SOC15 ASICs, include the doorbell offset within the
* process doorbell frame, which is 2 pages.
*/
args->doorbell_offset |= doorbell_offset_in_process;
mutex_unlock(&p->mutex);
pr_debug("Queue id %d was created successfully\n", args->queue_id);
pr_debug("Ring buffer address == 0x%016llX\n",
args->ring_base_address);
pr_debug("Read ptr address == 0x%016llX\n",
args->read_pointer_address);
pr_debug("Write ptr address == 0x%016llX\n",
args->write_pointer_address);
kfd_dbg_ev_raise(KFD_EC_MASK(EC_QUEUE_NEW), p, dev, queue_id, false, NULL, 0);
return 0;
err_create_queue:
if (wptr_bo)
amdgpu_amdkfd_free_gtt_mem(dev->adev, wptr_bo);
err_wptr_map_gart:
err_alloc_doorbells:
err_bind_process:
err_pdd:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_destroy_queue(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
struct kfd_ioctl_destroy_queue_args *args = data;
pr_debug("Destroying queue id %d for pasid 0x%x\n",
args->queue_id,
p->pasid);
mutex_lock(&p->mutex);
retval = pqm_destroy_queue(&p->pqm, args->queue_id);
mutex_unlock(&p->mutex);
return retval;
}
static int kfd_ioctl_update_queue(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
struct kfd_ioctl_update_queue_args *args = data;
struct queue_properties properties;
/*
* Repurpose queue percentage to accommodate new features:
* bit 0-7: queue percentage
* bit 8-15: pm4_target_xcc
*/
if ((args->queue_percentage & 0xFF) > KFD_MAX_QUEUE_PERCENTAGE) {
pr_err("Queue percentage must be between 0 to KFD_MAX_QUEUE_PERCENTAGE\n");
return -EINVAL;
}
if (args->queue_priority > KFD_MAX_QUEUE_PRIORITY) {
pr_err("Queue priority must be between 0 to KFD_MAX_QUEUE_PRIORITY\n");
return -EINVAL;
}
if ((args->ring_base_address) &&
(!access_ok((const void __user *) args->ring_base_address,
sizeof(uint64_t)))) {
pr_err("Can't access ring base address\n");
return -EFAULT;
}
if (!is_power_of_2(args->ring_size) && (args->ring_size != 0)) {
pr_err("Ring size must be a power of 2 or 0\n");
return -EINVAL;
}
properties.queue_address = args->ring_base_address;
properties.queue_size = args->ring_size;
properties.queue_percent = args->queue_percentage & 0xFF;
/* bit 8-15 are repurposed to be PM4 target XCC */
properties.pm4_target_xcc = (args->queue_percentage >> 8) & 0xFF;
properties.priority = args->queue_priority;
pr_debug("Updating queue id %d for pasid 0x%x\n",
args->queue_id, p->pasid);
mutex_lock(&p->mutex);
retval = pqm_update_queue_properties(&p->pqm, args->queue_id, &properties);
mutex_unlock(&p->mutex);
return retval;
}
static int kfd_ioctl_set_cu_mask(struct file *filp, struct kfd_process *p,
void *data)
{
int retval;
const int max_num_cus = 1024;
struct kfd_ioctl_set_cu_mask_args *args = data;
struct mqd_update_info minfo = {0};
uint32_t __user *cu_mask_ptr = (uint32_t __user *)args->cu_mask_ptr;
size_t cu_mask_size = sizeof(uint32_t) * (args->num_cu_mask / 32);
if ((args->num_cu_mask % 32) != 0) {
pr_debug("num_cu_mask 0x%x must be a multiple of 32",
args->num_cu_mask);
return -EINVAL;
}
minfo.cu_mask.count = args->num_cu_mask;
if (minfo.cu_mask.count == 0) {
pr_debug("CU mask cannot be 0");
return -EINVAL;
}
/* To prevent an unreasonably large CU mask size, set an arbitrary
* limit of max_num_cus bits. We can then just drop any CU mask bits
* past max_num_cus bits and just use the first max_num_cus bits.
*/
if (minfo.cu_mask.count > max_num_cus) {
pr_debug("CU mask cannot be greater than 1024 bits");
minfo.cu_mask.count = max_num_cus;
cu_mask_size = sizeof(uint32_t) * (max_num_cus/32);
}
minfo.cu_mask.ptr = kzalloc(cu_mask_size, GFP_KERNEL);
if (!minfo.cu_mask.ptr)
return -ENOMEM;
retval = copy_from_user(minfo.cu_mask.ptr, cu_mask_ptr, cu_mask_size);
if (retval) {
pr_debug("Could not copy CU mask from userspace");
retval = -EFAULT;
goto out;
}
mutex_lock(&p->mutex);
retval = pqm_update_mqd(&p->pqm, args->queue_id, &minfo);
mutex_unlock(&p->mutex);
out:
kfree(minfo.cu_mask.ptr);
return retval;
}
static int kfd_ioctl_get_queue_wave_state(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_queue_wave_state_args *args = data;
int r;
mutex_lock(&p->mutex);
r = pqm_get_wave_state(&p->pqm, args->queue_id,
(void __user *)args->ctl_stack_address,
&args->ctl_stack_used_size,
&args->save_area_used_size);
mutex_unlock(&p->mutex);
return r;
}
static int kfd_ioctl_set_memory_policy(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_memory_policy_args *args = data;
int err = 0;
struct kfd_process_device *pdd;
enum cache_policy default_policy, alternate_policy;
if (args->default_policy != KFD_IOC_CACHE_POLICY_COHERENT
&& args->default_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
return -EINVAL;
}
if (args->alternate_policy != KFD_IOC_CACHE_POLICY_COHERENT
&& args->alternate_policy != KFD_IOC_CACHE_POLICY_NONCOHERENT) {
return -EINVAL;
}
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
pr_debug("Could not find gpu id 0x%x\n", args->gpu_id);
err = -EINVAL;
goto err_pdd;
}
pdd = kfd_bind_process_to_device(pdd->dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto out;
}
default_policy = (args->default_policy == KFD_IOC_CACHE_POLICY_COHERENT)
? cache_policy_coherent : cache_policy_noncoherent;
alternate_policy =
(args->alternate_policy == KFD_IOC_CACHE_POLICY_COHERENT)
? cache_policy_coherent : cache_policy_noncoherent;
if (!pdd->dev->dqm->ops.set_cache_memory_policy(pdd->dev->dqm,
&pdd->qpd,
default_policy,
alternate_policy,
(void __user *)args->alternate_aperture_base,
args->alternate_aperture_size))
err = -EINVAL;
out:
err_pdd:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_set_trap_handler(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_trap_handler_args *args = data;
int err = 0;
struct kfd_process_device *pdd;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
err = -EINVAL;
goto err_pdd;
}
pdd = kfd_bind_process_to_device(pdd->dev, p);
if (IS_ERR(pdd)) {
err = -ESRCH;
goto out;
}
kfd_process_set_trap_handler(&pdd->qpd, args->tba_addr, args->tma_addr);
out:
err_pdd:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_dbg_register(struct file *filep,
struct kfd_process *p, void *data)
{
return -EPERM;
}
static int kfd_ioctl_dbg_unregister(struct file *filep,
struct kfd_process *p, void *data)
{
return -EPERM;
}
static int kfd_ioctl_dbg_address_watch(struct file *filep,
struct kfd_process *p, void *data)
{
return -EPERM;
}
/* Parse and generate fixed size data structure for wave control */
static int kfd_ioctl_dbg_wave_control(struct file *filep,
struct kfd_process *p, void *data)
{
return -EPERM;
}
static int kfd_ioctl_get_clock_counters(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_clock_counters_args *args = data;
struct kfd_process_device *pdd;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
mutex_unlock(&p->mutex);
if (pdd)
/* Reading GPU clock counter from KGD */
args->gpu_clock_counter = amdgpu_amdkfd_get_gpu_clock_counter(pdd->dev->adev);
else
/* Node without GPU resource */
args->gpu_clock_counter = 0;
/* No access to rdtsc. Using raw monotonic time */
args->cpu_clock_counter = ktime_get_raw_ns();
args->system_clock_counter = ktime_get_boottime_ns();
/* Since the counter is in nano-seconds we use 1GHz frequency */
args->system_clock_freq = 1000000000;
return 0;
}
static int kfd_ioctl_get_process_apertures(struct file *filp,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_process_apertures_args *args = data;
struct kfd_process_device_apertures *pAperture;
int i;
dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
args->num_of_nodes = 0;
mutex_lock(&p->mutex);
/* Run over all pdd of the process */
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
pAperture =
&args->process_apertures[args->num_of_nodes];
pAperture->gpu_id = pdd->dev->id;
pAperture->lds_base = pdd->lds_base;
pAperture->lds_limit = pdd->lds_limit;
pAperture->gpuvm_base = pdd->gpuvm_base;
pAperture->gpuvm_limit = pdd->gpuvm_limit;
pAperture->scratch_base = pdd->scratch_base;
pAperture->scratch_limit = pdd->scratch_limit;
dev_dbg(kfd_device,
"node id %u\n", args->num_of_nodes);
dev_dbg(kfd_device,
"gpu id %u\n", pdd->dev->id);
dev_dbg(kfd_device,
"lds_base %llX\n", pdd->lds_base);
dev_dbg(kfd_device,
"lds_limit %llX\n", pdd->lds_limit);
dev_dbg(kfd_device,
"gpuvm_base %llX\n", pdd->gpuvm_base);
dev_dbg(kfd_device,
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
dev_dbg(kfd_device,
"scratch_base %llX\n", pdd->scratch_base);
dev_dbg(kfd_device,
"scratch_limit %llX\n", pdd->scratch_limit);
if (++args->num_of_nodes >= NUM_OF_SUPPORTED_GPUS)
break;
}
mutex_unlock(&p->mutex);
return 0;
}
static int kfd_ioctl_get_process_apertures_new(struct file *filp,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_process_apertures_new_args *args = data;
struct kfd_process_device_apertures *pa;
int ret;
int i;
dev_dbg(kfd_device, "get apertures for PASID 0x%x", p->pasid);
if (args->num_of_nodes == 0) {
/* Return number of nodes, so that user space can alloacate
* sufficient memory
*/
mutex_lock(&p->mutex);
args->num_of_nodes = p->n_pdds;
goto out_unlock;
}
/* Fill in process-aperture information for all available
* nodes, but not more than args->num_of_nodes as that is
* the amount of memory allocated by user
*/
pa = kzalloc((sizeof(struct kfd_process_device_apertures) *
args->num_of_nodes), GFP_KERNEL);
if (!pa)
return -ENOMEM;
mutex_lock(&p->mutex);
if (!p->n_pdds) {
args->num_of_nodes = 0;
kfree(pa);
goto out_unlock;
}
/* Run over all pdd of the process */
for (i = 0; i < min(p->n_pdds, args->num_of_nodes); i++) {
struct kfd_process_device *pdd = p->pdds[i];
pa[i].gpu_id = pdd->dev->id;
pa[i].lds_base = pdd->lds_base;
pa[i].lds_limit = pdd->lds_limit;
pa[i].gpuvm_base = pdd->gpuvm_base;
pa[i].gpuvm_limit = pdd->gpuvm_limit;
pa[i].scratch_base = pdd->scratch_base;
pa[i].scratch_limit = pdd->scratch_limit;
dev_dbg(kfd_device,
"gpu id %u\n", pdd->dev->id);
dev_dbg(kfd_device,
"lds_base %llX\n", pdd->lds_base);
dev_dbg(kfd_device,
"lds_limit %llX\n", pdd->lds_limit);
dev_dbg(kfd_device,
"gpuvm_base %llX\n", pdd->gpuvm_base);
dev_dbg(kfd_device,
"gpuvm_limit %llX\n", pdd->gpuvm_limit);
dev_dbg(kfd_device,
"scratch_base %llX\n", pdd->scratch_base);
dev_dbg(kfd_device,
"scratch_limit %llX\n", pdd->scratch_limit);
}
mutex_unlock(&p->mutex);
args->num_of_nodes = i;
ret = copy_to_user(
(void __user *)args->kfd_process_device_apertures_ptr,
pa,
(i * sizeof(struct kfd_process_device_apertures)));
kfree(pa);
return ret ? -EFAULT : 0;
out_unlock:
mutex_unlock(&p->mutex);
return 0;
}
static int kfd_ioctl_create_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_create_event_args *args = data;
int err;
/* For dGPUs the event page is allocated in user mode. The
* handle is passed to KFD with the first call to this IOCTL
* through the event_page_offset field.
*/
if (args->event_page_offset) {
mutex_lock(&p->mutex);
err = kfd_kmap_event_page(p, args->event_page_offset);
mutex_unlock(&p->mutex);
if (err)
return err;
}
err = kfd_event_create(filp, p, args->event_type,
args->auto_reset != 0, args->node_id,
&args->event_id, &args->event_trigger_data,
&args->event_page_offset,
&args->event_slot_index);
pr_debug("Created event (id:0x%08x) (%s)\n", args->event_id, __func__);
return err;
}
static int kfd_ioctl_destroy_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_destroy_event_args *args = data;
return kfd_event_destroy(p, args->event_id);
}
static int kfd_ioctl_set_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_set_event_args *args = data;
return kfd_set_event(p, args->event_id);
}
static int kfd_ioctl_reset_event(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_reset_event_args *args = data;
return kfd_reset_event(p, args->event_id);
}
static int kfd_ioctl_wait_events(struct file *filp, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_wait_events_args *args = data;
return kfd_wait_on_events(p, args->num_events,
(void __user *)args->events_ptr,
(args->wait_for_all != 0),
&args->timeout, &args->wait_result);
}
static int kfd_ioctl_set_scratch_backing_va(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_scratch_backing_va_args *args = data;
struct kfd_process_device *pdd;
struct kfd_node *dev;
long err;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
err = -EINVAL;
goto err_pdd;
}
dev = pdd->dev;
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto bind_process_to_device_fail;
}
pdd->qpd.sh_hidden_private_base = args->va_addr;
mutex_unlock(&p->mutex);
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS &&
pdd->qpd.vmid != 0 && dev->kfd2kgd->set_scratch_backing_va)
dev->kfd2kgd->set_scratch_backing_va(
dev->adev, args->va_addr, pdd->qpd.vmid);
return 0;
bind_process_to_device_fail:
err_pdd:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_get_tile_config(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_tile_config_args *args = data;
struct kfd_process_device *pdd;
struct tile_config config;
int err = 0;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
mutex_unlock(&p->mutex);
if (!pdd)
return -EINVAL;
amdgpu_amdkfd_get_tile_config(pdd->dev->adev, &config);
args->gb_addr_config = config.gb_addr_config;
args->num_banks = config.num_banks;
args->num_ranks = config.num_ranks;
if (args->num_tile_configs > config.num_tile_configs)
args->num_tile_configs = config.num_tile_configs;
err = copy_to_user((void __user *)args->tile_config_ptr,
config.tile_config_ptr,
args->num_tile_configs * sizeof(uint32_t));
if (err) {
args->num_tile_configs = 0;
return -EFAULT;
}
if (args->num_macro_tile_configs > config.num_macro_tile_configs)
args->num_macro_tile_configs =
config.num_macro_tile_configs;
err = copy_to_user((void __user *)args->macro_tile_config_ptr,
config.macro_tile_config_ptr,
args->num_macro_tile_configs * sizeof(uint32_t));
if (err) {
args->num_macro_tile_configs = 0;
return -EFAULT;
}
return 0;
}
static int kfd_ioctl_acquire_vm(struct file *filep, struct kfd_process *p,
void *data)
{
struct kfd_ioctl_acquire_vm_args *args = data;
struct kfd_process_device *pdd;
struct file *drm_file;
int ret;
drm_file = fget(args->drm_fd);
if (!drm_file)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
ret = -EINVAL;
goto err_pdd;
}
if (pdd->drm_file) {
ret = pdd->drm_file == drm_file ? 0 : -EBUSY;
goto err_drm_file;
}
ret = kfd_process_device_init_vm(pdd, drm_file);
if (ret)
goto err_unlock;
/* On success, the PDD keeps the drm_file reference */
mutex_unlock(&p->mutex);
return 0;
err_unlock:
err_pdd:
err_drm_file:
mutex_unlock(&p->mutex);
fput(drm_file);
return ret;
}
bool kfd_dev_is_large_bar(struct kfd_node *dev)
{
if (debug_largebar) {
pr_debug("Simulate large-bar allocation on non large-bar machine\n");
return true;
}
if (dev->kfd->use_iommu_v2)
return false;
if (dev->local_mem_info.local_mem_size_private == 0 &&
dev->local_mem_info.local_mem_size_public > 0)
return true;
if (dev->local_mem_info.local_mem_size_public == 0 &&
dev->kfd->adev->gmc.is_app_apu) {
pr_debug("APP APU, Consider like a large bar system\n");
return true;
}
return false;
}
static int kfd_ioctl_get_available_memory(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_available_memory_args *args = data;
struct kfd_process_device *pdd = kfd_lock_pdd_by_id(p, args->gpu_id);
if (!pdd)
return -EINVAL;
args->available = amdgpu_amdkfd_get_available_memory(pdd->dev->adev,
pdd->dev->node_id);
kfd_unlock_pdd(pdd);
return 0;
}
static int kfd_ioctl_alloc_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_alloc_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
struct kfd_node *dev;
int idr_handle;
long err;
uint64_t offset = args->mmap_offset;
uint32_t flags = args->flags;
if (args->size == 0)
return -EINVAL;
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
/* Flush pending deferred work to avoid racing with deferred actions
* from previous memory map changes (e.g. munmap).
*/
svm_range_list_lock_and_flush_work(&p->svms, current->mm);
mutex_lock(&p->svms.lock);
mmap_write_unlock(current->mm);
if (interval_tree_iter_first(&p->svms.objects,
args->va_addr >> PAGE_SHIFT,
(args->va_addr + args->size - 1) >> PAGE_SHIFT)) {
pr_err("Address: 0x%llx already allocated by SVM\n",
args->va_addr);
mutex_unlock(&p->svms.lock);
return -EADDRINUSE;
}
/* When register user buffer check if it has been registered by svm by
* buffer cpu virtual address.
*/
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) &&
interval_tree_iter_first(&p->svms.objects,
args->mmap_offset >> PAGE_SHIFT,
(args->mmap_offset + args->size - 1) >> PAGE_SHIFT)) {
pr_err("User Buffer Address: 0x%llx already allocated by SVM\n",
args->mmap_offset);
mutex_unlock(&p->svms.lock);
return -EADDRINUSE;
}
mutex_unlock(&p->svms.lock);
#endif
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
err = -EINVAL;
goto err_pdd;
}
dev = pdd->dev;
if ((flags & KFD_IOC_ALLOC_MEM_FLAGS_PUBLIC) &&
(flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) &&
!kfd_dev_is_large_bar(dev)) {
pr_err("Alloc host visible vram on small bar is not allowed\n");
err = -EINVAL;
goto err_large_bar;
}
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto err_unlock;
}
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
if (args->size != kfd_doorbell_process_slice(dev->kfd)) {
err = -EINVAL;
goto err_unlock;
}
offset = kfd_get_process_doorbells(pdd);
if (!offset) {
err = -ENOMEM;
goto err_unlock;
}
} else if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
if (args->size != PAGE_SIZE) {
err = -EINVAL;
goto err_unlock;
}
offset = dev->adev->rmmio_remap.bus_addr;
if (!offset) {
err = -ENOMEM;
goto err_unlock;
}
}
err = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(
dev->adev, args->va_addr, args->size,
pdd->drm_priv, (struct kgd_mem **) &mem, &offset,
flags, false);
if (err)
goto err_unlock;
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
if (idr_handle < 0) {
err = -EFAULT;
goto err_free;
}
/* Update the VRAM usage count */
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
uint64_t size = args->size;
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_AQL_QUEUE_MEM)
size >>= 1;
WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + PAGE_ALIGN(size));
}
mutex_unlock(&p->mutex);
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
args->mmap_offset = offset;
/* MMIO is mapped through kfd device
* Generate a kfd mmap offset
*/
if (flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
args->mmap_offset = KFD_MMAP_TYPE_MMIO
| KFD_MMAP_GPU_ID(args->gpu_id);
return 0;
err_free:
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(dev->adev, (struct kgd_mem *)mem,
pdd->drm_priv, NULL);
err_unlock:
err_pdd:
err_large_bar:
mutex_unlock(&p->mutex);
return err;
}
static int kfd_ioctl_free_memory_of_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_free_memory_of_gpu_args *args = data;
struct kfd_process_device *pdd;
void *mem;
int ret;
uint64_t size = 0;
mutex_lock(&p->mutex);
/*
* Safeguard to prevent user space from freeing signal BO.
* It will be freed at process termination.
*/
if (p->signal_handle && (p->signal_handle == args->handle)) {
pr_err("Free signal BO is not allowed\n");
ret = -EPERM;
goto err_unlock;
}
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
if (!pdd) {
pr_err("Process device data doesn't exist\n");
ret = -EINVAL;
goto err_pdd;
}
mem = kfd_process_device_translate_handle(
pdd, GET_IDR_HANDLE(args->handle));
if (!mem) {
ret = -EINVAL;
goto err_unlock;
}
ret = amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev,
(struct kgd_mem *)mem, pdd->drm_priv, &size);
/* If freeing the buffer failed, leave the handle in place for
* clean-up during process tear-down.
*/
if (!ret)
kfd_process_device_remove_obj_handle(
pdd, GET_IDR_HANDLE(args->handle));
WRITE_ONCE(pdd->vram_usage, pdd->vram_usage - size);
err_unlock:
err_pdd:
mutex_unlock(&p->mutex);
return ret;
}
static int kfd_ioctl_map_memory_to_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_map_memory_to_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
struct kfd_node *dev;
long err = 0;
int i;
uint32_t *devices_arr = NULL;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
if (!pdd) {
err = -EINVAL;
goto get_process_device_data_failed;
}
dev = pdd->dev;
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
err = PTR_ERR(pdd);
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
if (!peer_pdd) {
pr_debug("Getting device by id failed for 0x%x\n",
devices_arr[i]);
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
peer_pdd = kfd_bind_process_to_device(peer_pdd->dev, p);
if (IS_ERR(peer_pdd)) {
err = PTR_ERR(peer_pdd);
goto get_mem_obj_from_handle_failed;
}
err = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(
peer_pdd->dev->adev, (struct kgd_mem *)mem,
peer_pdd->drm_priv);
if (err) {
struct pci_dev *pdev = peer_pdd->dev->adev->pdev;
dev_err(dev->adev->dev,
"Failed to map peer:%04x:%02x:%02x.%d mem_domain:%d\n",
pci_domain_nr(pdev->bus),
pdev->bus->number,
PCI_SLOT(pdev->devfn),
PCI_FUNC(pdev->devfn),
((struct kgd_mem *)mem)->domain);
goto map_memory_to_gpu_failed;
}
args->n_success = i+1;
}
err = amdgpu_amdkfd_gpuvm_sync_memory(dev->adev, (struct kgd_mem *) mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
mutex_unlock(&p->mutex);
/* Flush TLBs after waiting for the page table updates to complete */
for (i = 0; i < args->n_devices; i++) {
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
if (WARN_ON_ONCE(!peer_pdd))
continue;
kfd_flush_tlb(peer_pdd, TLB_FLUSH_LEGACY);
}
kfree(devices_arr);
return err;
get_process_device_data_failed:
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
map_memory_to_gpu_failed:
sync_memory_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
kfree(devices_arr);
return err;
}
static int kfd_ioctl_unmap_memory_from_gpu(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_unmap_memory_from_gpu_args *args = data;
struct kfd_process_device *pdd, *peer_pdd;
void *mem;
long err = 0;
uint32_t *devices_arr = NULL, i;
bool flush_tlb;
if (!args->n_devices) {
pr_debug("Device IDs array empty\n");
return -EINVAL;
}
if (args->n_success > args->n_devices) {
pr_debug("n_success exceeds n_devices\n");
return -EINVAL;
}
devices_arr = kmalloc_array(args->n_devices, sizeof(*devices_arr),
GFP_KERNEL);
if (!devices_arr)
return -ENOMEM;
err = copy_from_user(devices_arr,
(void __user *)args->device_ids_array_ptr,
args->n_devices * sizeof(*devices_arr));
if (err != 0) {
err = -EFAULT;
goto copy_from_user_failed;
}
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, GET_GPU_ID(args->handle));
if (!pdd) {
err = -EINVAL;
goto bind_process_to_device_failed;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
err = -ENOMEM;
goto get_mem_obj_from_handle_failed;
}
for (i = args->n_success; i < args->n_devices; i++) {
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
if (!peer_pdd) {
err = -EINVAL;
goto get_mem_obj_from_handle_failed;
}
err = amdgpu_amdkfd_gpuvm_unmap_memory_from_gpu(
peer_pdd->dev->adev, (struct kgd_mem *)mem, peer_pdd->drm_priv);
if (err) {
pr_err("Failed to unmap from gpu %d/%d\n",
i, args->n_devices);
goto unmap_memory_from_gpu_failed;
}
args->n_success = i+1;
}
flush_tlb = kfd_flush_tlb_after_unmap(pdd->dev->kfd);
if (flush_tlb) {
err = amdgpu_amdkfd_gpuvm_sync_memory(pdd->dev->adev,
(struct kgd_mem *) mem, true);
if (err) {
pr_debug("Sync memory failed, wait interrupted by user signal\n");
goto sync_memory_failed;
}
}
mutex_unlock(&p->mutex);
if (flush_tlb) {
/* Flush TLBs after waiting for the page table updates to complete */
for (i = 0; i < args->n_devices; i++) {
peer_pdd = kfd_process_device_data_by_id(p, devices_arr[i]);
if (WARN_ON_ONCE(!peer_pdd))
continue;
kfd_flush_tlb(peer_pdd, TLB_FLUSH_HEAVYWEIGHT);
}
}
kfree(devices_arr);
return 0;
bind_process_to_device_failed:
get_mem_obj_from_handle_failed:
unmap_memory_from_gpu_failed:
sync_memory_failed:
mutex_unlock(&p->mutex);
copy_from_user_failed:
kfree(devices_arr);
return err;
}
static int kfd_ioctl_alloc_queue_gws(struct file *filep,
struct kfd_process *p, void *data)
{
int retval;
struct kfd_ioctl_alloc_queue_gws_args *args = data;
struct queue *q;
struct kfd_node *dev;
mutex_lock(&p->mutex);
q = pqm_get_user_queue(&p->pqm, args->queue_id);
if (q) {
dev = q->device;
} else {
retval = -EINVAL;
goto out_unlock;
}
if (!dev->gws) {
retval = -ENODEV;
goto out_unlock;
}
if (dev->dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) {
retval = -ENODEV;
goto out_unlock;
}
if (!kfd_dbg_has_gws_support(dev) && p->debug_trap_enabled) {
retval = -EBUSY;
goto out_unlock;
}
retval = pqm_set_gws(&p->pqm, args->queue_id, args->num_gws ? dev->gws : NULL);
mutex_unlock(&p->mutex);
args->first_gws = 0;
return retval;
out_unlock:
mutex_unlock(&p->mutex);
return retval;
}
static int kfd_ioctl_get_dmabuf_info(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_get_dmabuf_info_args *args = data;
struct kfd_node *dev = NULL;
struct amdgpu_device *dmabuf_adev;
void *metadata_buffer = NULL;
uint32_t flags;
int8_t xcp_id;
unsigned int i;
int r;
/* Find a KFD GPU device that supports the get_dmabuf_info query */
for (i = 0; kfd_topology_enum_kfd_devices(i, &dev) == 0; i++)
if (dev)
break;
if (!dev)
return -EINVAL;
if (args->metadata_ptr) {
metadata_buffer = kzalloc(args->metadata_size, GFP_KERNEL);
if (!metadata_buffer)
return -ENOMEM;
}
/* Get dmabuf info from KGD */
r = amdgpu_amdkfd_get_dmabuf_info(dev->adev, args->dmabuf_fd,
&dmabuf_adev, &args->size,
metadata_buffer, args->metadata_size,
&args->metadata_size, &flags, &xcp_id);
if (r)
goto exit;
if (xcp_id >= 0)
args->gpu_id = dmabuf_adev->kfd.dev->nodes[xcp_id]->id;
else
args->gpu_id = dmabuf_adev->kfd.dev->nodes[0]->id;
args->flags = flags;
/* Copy metadata buffer to user mode */
if (metadata_buffer) {
r = copy_to_user((void __user *)args->metadata_ptr,
metadata_buffer, args->metadata_size);
if (r != 0)
r = -EFAULT;
}
exit:
kfree(metadata_buffer);
return r;
}
static int kfd_ioctl_import_dmabuf(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_import_dmabuf_args *args = data;
struct kfd_process_device *pdd;
struct dma_buf *dmabuf;
int idr_handle;
uint64_t size;
void *mem;
int r;
dmabuf = dma_buf_get(args->dmabuf_fd);
if (IS_ERR(dmabuf))
return PTR_ERR(dmabuf);
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpu_id);
if (!pdd) {
r = -EINVAL;
goto err_unlock;
}
pdd = kfd_bind_process_to_device(pdd->dev, p);
if (IS_ERR(pdd)) {
r = PTR_ERR(pdd);
goto err_unlock;
}
r = amdgpu_amdkfd_gpuvm_import_dmabuf(pdd->dev->adev, dmabuf,
args->va_addr, pdd->drm_priv,
(struct kgd_mem **)&mem, &size,
NULL);
if (r)
goto err_unlock;
idr_handle = kfd_process_device_create_obj_handle(pdd, mem);
if (idr_handle < 0) {
r = -EFAULT;
goto err_free;
}
mutex_unlock(&p->mutex);
dma_buf_put(dmabuf);
args->handle = MAKE_HANDLE(args->gpu_id, idr_handle);
return 0;
err_free:
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, (struct kgd_mem *)mem,
pdd->drm_priv, NULL);
err_unlock:
mutex_unlock(&p->mutex);
dma_buf_put(dmabuf);
return r;
}
static int kfd_ioctl_export_dmabuf(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_export_dmabuf_args *args = data;
struct kfd_process_device *pdd;
struct dma_buf *dmabuf;
struct kfd_node *dev;
void *mem;
int ret = 0;
dev = kfd_device_by_id(GET_GPU_ID(args->handle));
if (!dev)
return -EINVAL;
mutex_lock(&p->mutex);
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
ret = -EINVAL;
goto err_unlock;
}
mem = kfd_process_device_translate_handle(pdd,
GET_IDR_HANDLE(args->handle));
if (!mem) {
ret = -EINVAL;
goto err_unlock;
}
ret = amdgpu_amdkfd_gpuvm_export_dmabuf(mem, &dmabuf);
mutex_unlock(&p->mutex);
if (ret)
goto err_out;
ret = dma_buf_fd(dmabuf, args->flags);
if (ret < 0) {
dma_buf_put(dmabuf);
goto err_out;
}
/* dma_buf_fd assigns the reference count to the fd, no need to
* put the reference here.
*/
args->dmabuf_fd = ret;
return 0;
err_unlock:
mutex_unlock(&p->mutex);
err_out:
return ret;
}
/* Handle requests for watching SMI events */
static int kfd_ioctl_smi_events(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_smi_events_args *args = data;
struct kfd_process_device *pdd;
mutex_lock(&p->mutex);
pdd = kfd_process_device_data_by_id(p, args->gpuid);
mutex_unlock(&p->mutex);
if (!pdd)
return -EINVAL;
return kfd_smi_event_open(pdd->dev, &args->anon_fd);
}
#if IS_ENABLED(CONFIG_HSA_AMD_SVM)
static int kfd_ioctl_set_xnack_mode(struct file *filep,
struct kfd_process *p, void *data)
{
struct kfd_ioctl_set_xnack_mode_args *args = data;
int r = 0;
mutex_lock(&p->mutex);
if (args->xnack_enabled >= 0) {
if (!list_empty(&p->pqm.queues)) {
pr_debug("Process has user queues running\n");
r = -EBUSY;
goto out_unlock;
}
if (p->xnack_enabled == args->xnack_enabled)
goto out_unlock;
if (args->xnack_enabled && !kfd_process_xnack_mode(p, true)) {
r = -EPERM;
goto out_unlock;
}
r = svm_range_switch_xnack_reserve_mem(p, args->xnack_enabled);
} else {
args->xnack_enabled = p->xnack_enabled;
}
out_unlock:
mutex_unlock(&p->mutex);
return r;
}
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
{
struct kfd_ioctl_svm_args *args = data;
int r = 0;
pr_debug("start 0x%llx size 0x%llx op 0x%x nattr 0x%x\n",
args->start_addr, args->size, args->op, args->nattr);
if ((args->start_addr & ~PAGE_MASK) || (args->size & ~PAGE_MASK))
return -EINVAL;
if (!args->start_addr || !args->size)
return -EINVAL;
r = svm_ioctl(p, args->op, args->start_addr, args->size, args->nattr,
args->attrs);
return r;
}
#else
static int kfd_ioctl_set_xnack_mode(struct file *filep,
struct kfd_process *p, void *data)
{
return -EPERM;
}
static int kfd_ioctl_svm(struct file *filep, struct kfd_process *p, void *data)
{
return -EPERM;
}
#endif
static int criu_checkpoint_process(struct kfd_process *p,
uint8_t __user *user_priv_data,
uint64_t *priv_offset)
{
struct kfd_criu_process_priv_data process_priv;
int ret;
memset(&process_priv, 0, sizeof(process_priv));
process_priv.version = KFD_CRIU_PRIV_VERSION;
/* For CR, we don't consider negative xnack mode which is used for
* querying without changing it, here 0 simply means disabled and 1
* means enabled so retry for finding a valid PTE.
*/
process_priv.xnack_mode = p->xnack_enabled ? 1 : 0;
ret = copy_to_user(user_priv_data + *priv_offset,
&process_priv, sizeof(process_priv));
if (ret) {
pr_err("Failed to copy process information to user\n");
ret = -EFAULT;
}
*priv_offset += sizeof(process_priv);
return ret;
}
static int criu_checkpoint_devices(struct kfd_process *p,
uint32_t num_devices,
uint8_t __user *user_addr,
uint8_t __user *user_priv_data,
uint64_t *priv_offset)
{
struct kfd_criu_device_priv_data *device_priv = NULL;
struct kfd_criu_device_bucket *device_buckets = NULL;
int ret = 0, i;
device_buckets = kvzalloc(num_devices * sizeof(*device_buckets), GFP_KERNEL);
if (!device_buckets) {
ret = -ENOMEM;
goto exit;
}
device_priv = kvzalloc(num_devices * sizeof(*device_priv), GFP_KERNEL);
if (!device_priv) {
ret = -ENOMEM;
goto exit;
}
for (i = 0; i < num_devices; i++) {
struct kfd_process_device *pdd = p->pdds[i];
device_buckets[i].user_gpu_id = pdd->user_gpu_id;
device_buckets[i].actual_gpu_id = pdd->dev->id;
/*
* priv_data does not contain useful information for now and is reserved for
* future use, so we do not set its contents.
*/
}
ret = copy_to_user(user_addr, device_buckets, num_devices * sizeof(*device_buckets));
if (ret) {
pr_err("Failed to copy device information to user\n");
ret = -EFAULT;
goto exit;
}
ret = copy_to_user(user_priv_data + *priv_offset,
device_priv,
num_devices * sizeof(*device_priv));
if (ret) {
pr_err("Failed to copy device information to user\n");
ret = -EFAULT;
}
*priv_offset += num_devices * sizeof(*device_priv);
exit:
kvfree(device_buckets);
kvfree(device_priv);
return ret;
}
static uint32_t get_process_num_bos(struct kfd_process *p)
{
uint32_t num_of_bos = 0;
int i;
/* Run over all PDDs of the process */
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
void *mem;
int id;
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
struct kgd_mem *kgd_mem = (struct kgd_mem *)mem;
if ((uint64_t)kgd_mem->va > pdd->gpuvm_base)
num_of_bos++;
}
}
return num_of_bos;
}
static int criu_get_prime_handle(struct drm_gem_object *gobj, int flags,
u32 *shared_fd)
{
struct dma_buf *dmabuf;
int ret;
dmabuf = amdgpu_gem_prime_export(gobj, flags);
if (IS_ERR(dmabuf)) {
ret = PTR_ERR(dmabuf);
pr_err("dmabuf export failed for the BO\n");
return ret;
}
ret = dma_buf_fd(dmabuf, flags);
if (ret < 0) {
pr_err("dmabuf create fd failed, ret:%d\n", ret);
goto out_free_dmabuf;
}
*shared_fd = ret;
return 0;
out_free_dmabuf:
dma_buf_put(dmabuf);
return ret;
}
static int criu_checkpoint_bos(struct kfd_process *p,
uint32_t num_bos,
uint8_t __user *user_bos,
uint8_t __user *user_priv_data,
uint64_t *priv_offset)
{
struct kfd_criu_bo_bucket *bo_buckets;
struct kfd_criu_bo_priv_data *bo_privs;
int ret = 0, pdd_index, bo_index = 0, id;
void *mem;
bo_buckets = kvzalloc(num_bos * sizeof(*bo_buckets), GFP_KERNEL);
if (!bo_buckets)
return -ENOMEM;
bo_privs = kvzalloc(num_bos * sizeof(*bo_privs), GFP_KERNEL);
if (!bo_privs) {
ret = -ENOMEM;
goto exit;
}
for (pdd_index = 0; pdd_index < p->n_pdds; pdd_index++) {
struct kfd_process_device *pdd = p->pdds[pdd_index];
struct amdgpu_bo *dumper_bo;
struct kgd_mem *kgd_mem;
idr_for_each_entry(&pdd->alloc_idr, mem, id) {
struct kfd_criu_bo_bucket *bo_bucket;
struct kfd_criu_bo_priv_data *bo_priv;
int i, dev_idx = 0;
if (!mem) {
ret = -ENOMEM;
goto exit;
}
kgd_mem = (struct kgd_mem *)mem;
dumper_bo = kgd_mem->bo;
if ((uint64_t)kgd_mem->va <= pdd->gpuvm_base)
continue;
bo_bucket = &bo_buckets[bo_index];
bo_priv = &bo_privs[bo_index];
bo_bucket->gpu_id = pdd->user_gpu_id;
bo_bucket->addr = (uint64_t)kgd_mem->va;
bo_bucket->size = amdgpu_bo_size(dumper_bo);
bo_bucket->alloc_flags = (uint32_t)kgd_mem->alloc_flags;
bo_priv->idr_handle = id;
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
ret = amdgpu_ttm_tt_get_userptr(&dumper_bo->tbo,
&bo_priv->user_addr);
if (ret) {
pr_err("Failed to obtain user address for user-pointer bo\n");
goto exit;
}
}
if (bo_bucket->alloc_flags
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
ret = criu_get_prime_handle(&dumper_bo->tbo.base,
bo_bucket->alloc_flags &
KFD_IOC_ALLOC_MEM_FLAGS_WRITABLE ? DRM_RDWR : 0,
&bo_bucket->dmabuf_fd);
if (ret)
goto exit;
} else {
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
}
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
bo_bucket->offset = KFD_MMAP_TYPE_DOORBELL |
KFD_MMAP_GPU_ID(pdd->dev->id);
else if (bo_bucket->alloc_flags &
KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP)
bo_bucket->offset = KFD_MMAP_TYPE_MMIO |
KFD_MMAP_GPU_ID(pdd->dev->id);
else
bo_bucket->offset = amdgpu_bo_mmap_offset(dumper_bo);
for (i = 0; i < p->n_pdds; i++) {
if (amdgpu_amdkfd_bo_mapped_to_dev(p->pdds[i]->dev->adev, kgd_mem))
bo_priv->mapped_gpuids[dev_idx++] = p->pdds[i]->user_gpu_id;
}
pr_debug("bo_size = 0x%llx, bo_addr = 0x%llx bo_offset = 0x%llx\n"
"gpu_id = 0x%x alloc_flags = 0x%x idr_handle = 0x%x",
bo_bucket->size,
bo_bucket->addr,
bo_bucket->offset,
bo_bucket->gpu_id,
bo_bucket->alloc_flags,
bo_priv->idr_handle);
bo_index++;
}
}
ret = copy_to_user(user_bos, bo_buckets, num_bos * sizeof(*bo_buckets));
if (ret) {
pr_err("Failed to copy BO information to user\n");
ret = -EFAULT;
goto exit;
}
ret = copy_to_user(user_priv_data + *priv_offset, bo_privs, num_bos * sizeof(*bo_privs));
if (ret) {
pr_err("Failed to copy BO priv information to user\n");
ret = -EFAULT;
goto exit;
}
*priv_offset += num_bos * sizeof(*bo_privs);
exit:
while (ret && bo_index--) {
if (bo_buckets[bo_index].alloc_flags
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
close_fd(bo_buckets[bo_index].dmabuf_fd);
}
kvfree(bo_buckets);
kvfree(bo_privs);
return ret;
}
static int criu_get_process_object_info(struct kfd_process *p,
uint32_t *num_devices,
uint32_t *num_bos,
uint32_t *num_objects,
uint64_t *objs_priv_size)
{
uint64_t queues_priv_data_size, svm_priv_data_size, priv_size;
uint32_t num_queues, num_events, num_svm_ranges;
int ret;
*num_devices = p->n_pdds;
*num_bos = get_process_num_bos(p);
ret = kfd_process_get_queue_info(p, &num_queues, &queues_priv_data_size);
if (ret)
return ret;
num_events = kfd_get_num_events(p);
ret = svm_range_get_info(p, &num_svm_ranges, &svm_priv_data_size);
if (ret)
return ret;
*num_objects = num_queues + num_events + num_svm_ranges;
if (objs_priv_size) {
priv_size = sizeof(struct kfd_criu_process_priv_data);
priv_size += *num_devices * sizeof(struct kfd_criu_device_priv_data);
priv_size += *num_bos * sizeof(struct kfd_criu_bo_priv_data);
priv_size += queues_priv_data_size;
priv_size += num_events * sizeof(struct kfd_criu_event_priv_data);
priv_size += svm_priv_data_size;
*objs_priv_size = priv_size;
}
return 0;
}
static int criu_checkpoint(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args)
{
int ret;
uint32_t num_devices, num_bos, num_objects;
uint64_t priv_size, priv_offset = 0, bo_priv_offset;
if (!args->devices || !args->bos || !args->priv_data)
return -EINVAL;
mutex_lock(&p->mutex);
if (!p->n_pdds) {
pr_err("No pdd for given process\n");
ret = -ENODEV;
goto exit_unlock;
}
/* Confirm all process queues are evicted */
if (!p->queues_paused) {
pr_err("Cannot dump process when queues are not in evicted state\n");
/* CRIU plugin did not call op PROCESS_INFO before checkpointing */
ret = -EINVAL;
goto exit_unlock;
}
ret = criu_get_process_object_info(p, &num_devices, &num_bos, &num_objects, &priv_size);
if (ret)
goto exit_unlock;
if (num_devices != args->num_devices ||
num_bos != args->num_bos ||
num_objects != args->num_objects ||
priv_size != args->priv_data_size) {
ret = -EINVAL;
goto exit_unlock;
}
/* each function will store private data inside priv_data and adjust priv_offset */
ret = criu_checkpoint_process(p, (uint8_t __user *)args->priv_data, &priv_offset);
if (ret)
goto exit_unlock;
ret = criu_checkpoint_devices(p, num_devices, (uint8_t __user *)args->devices,
(uint8_t __user *)args->priv_data, &priv_offset);
if (ret)
goto exit_unlock;
/* Leave room for BOs in the private data. They need to be restored
* before events, but we checkpoint them last to simplify the error
* handling.
*/
bo_priv_offset = priv_offset;
priv_offset += num_bos * sizeof(struct kfd_criu_bo_priv_data);
if (num_objects) {
ret = kfd_criu_checkpoint_queues(p, (uint8_t __user *)args->priv_data,
&priv_offset);
if (ret)
goto exit_unlock;
ret = kfd_criu_checkpoint_events(p, (uint8_t __user *)args->priv_data,
&priv_offset);
if (ret)
goto exit_unlock;
ret = kfd_criu_checkpoint_svm(p, (uint8_t __user *)args->priv_data, &priv_offset);
if (ret)
goto exit_unlock;
}
/* This must be the last thing in this function that can fail.
* Otherwise we leak dmabuf file descriptors.
*/
ret = criu_checkpoint_bos(p, num_bos, (uint8_t __user *)args->bos,
(uint8_t __user *)args->priv_data, &bo_priv_offset);
exit_unlock:
mutex_unlock(&p->mutex);
if (ret)
pr_err("Failed to dump CRIU ret:%d\n", ret);
else
pr_debug("CRIU dump ret:%d\n", ret);
return ret;
}
static int criu_restore_process(struct kfd_process *p,
struct kfd_ioctl_criu_args *args,
uint64_t *priv_offset,
uint64_t max_priv_data_size)
{
int ret = 0;
struct kfd_criu_process_priv_data process_priv;
if (*priv_offset + sizeof(process_priv) > max_priv_data_size)
return -EINVAL;
ret = copy_from_user(&process_priv,
(void __user *)(args->priv_data + *priv_offset),
sizeof(process_priv));
if (ret) {
pr_err("Failed to copy process private information from user\n");
ret = -EFAULT;
goto exit;
}
*priv_offset += sizeof(process_priv);
if (process_priv.version != KFD_CRIU_PRIV_VERSION) {
pr_err("Invalid CRIU API version (checkpointed:%d current:%d)\n",
process_priv.version, KFD_CRIU_PRIV_VERSION);
return -EINVAL;
}
pr_debug("Setting XNACK mode\n");
if (process_priv.xnack_mode && !kfd_process_xnack_mode(p, true)) {
pr_err("xnack mode cannot be set\n");
ret = -EPERM;
goto exit;
} else {
pr_debug("set xnack mode: %d\n", process_priv.xnack_mode);
p->xnack_enabled = process_priv.xnack_mode;
}
exit:
return ret;
}
static int criu_restore_devices(struct kfd_process *p,
struct kfd_ioctl_criu_args *args,
uint64_t *priv_offset,
uint64_t max_priv_data_size)
{
struct kfd_criu_device_bucket *device_buckets;
struct kfd_criu_device_priv_data *device_privs;
int ret = 0;
uint32_t i;
if (args->num_devices != p->n_pdds)
return -EINVAL;
if (*priv_offset + (args->num_devices * sizeof(*device_privs)) > max_priv_data_size)
return -EINVAL;
device_buckets = kmalloc_array(args->num_devices, sizeof(*device_buckets), GFP_KERNEL);
if (!device_buckets)
return -ENOMEM;
ret = copy_from_user(device_buckets, (void __user *)args->devices,
args->num_devices * sizeof(*device_buckets));
if (ret) {
pr_err("Failed to copy devices buckets from user\n");
ret = -EFAULT;
goto exit;
}
for (i = 0; i < args->num_devices; i++) {
struct kfd_node *dev;
struct kfd_process_device *pdd;
struct file *drm_file;
/* device private data is not currently used */
if (!device_buckets[i].user_gpu_id) {
pr_err("Invalid user gpu_id\n");
ret = -EINVAL;
goto exit;
}
dev = kfd_device_by_id(device_buckets[i].actual_gpu_id);
if (!dev) {
pr_err("Failed to find device with gpu_id = %x\n",
device_buckets[i].actual_gpu_id);
ret = -EINVAL;
goto exit;
}
pdd = kfd_get_process_device_data(dev, p);
if (!pdd) {
pr_err("Failed to get pdd for gpu_id = %x\n",
device_buckets[i].actual_gpu_id);
ret = -EINVAL;
goto exit;
}
pdd->user_gpu_id = device_buckets[i].user_gpu_id;
drm_file = fget(device_buckets[i].drm_fd);
if (!drm_file) {
pr_err("Invalid render node file descriptor sent from plugin (%d)\n",
device_buckets[i].drm_fd);
ret = -EINVAL;
goto exit;
}
if (pdd->drm_file) {
ret = -EINVAL;
goto exit;
}
/* create the vm using render nodes for kfd pdd */
if (kfd_process_device_init_vm(pdd, drm_file)) {
pr_err("could not init vm for given pdd\n");
/* On success, the PDD keeps the drm_file reference */
fput(drm_file);
ret = -EINVAL;
goto exit;
}
/*
* pdd now already has the vm bound to render node so below api won't create a new
* exclusive kfd mapping but use existing one with renderDXXX but is still needed
* for iommu v2 binding and runtime pm.
*/
pdd = kfd_bind_process_to_device(dev, p);
if (IS_ERR(pdd)) {
ret = PTR_ERR(pdd);
goto exit;
}
if (!pdd->doorbell_index &&
kfd_alloc_process_doorbells(pdd->dev->kfd, &pdd->doorbell_index) < 0) {
ret = -ENOMEM;
goto exit;
}
}
/*
* We are not copying device private data from user as we are not using the data for now,
* but we still adjust for its private data.
*/
*priv_offset += args->num_devices * sizeof(*device_privs);
exit:
kfree(device_buckets);
return ret;
}
static int criu_restore_memory_of_gpu(struct kfd_process_device *pdd,
struct kfd_criu_bo_bucket *bo_bucket,
struct kfd_criu_bo_priv_data *bo_priv,
struct kgd_mem **kgd_mem)
{
int idr_handle;
int ret;
const bool criu_resume = true;
u64 offset;
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL) {
if (bo_bucket->size !=
kfd_doorbell_process_slice(pdd->dev->kfd))
return -EINVAL;
offset = kfd_get_process_doorbells(pdd);
if (!offset)
return -ENOMEM;
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
/* MMIO BOs need remapped bus address */
if (bo_bucket->size != PAGE_SIZE) {
pr_err("Invalid page size\n");
return -EINVAL;
}
offset = pdd->dev->adev->rmmio_remap.bus_addr;
if (!offset) {
pr_err("amdgpu_amdkfd_get_mmio_remap_phys_addr failed\n");
return -ENOMEM;
}
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_USERPTR) {
offset = bo_priv->user_addr;
}
/* Create the BO */
ret = amdgpu_amdkfd_gpuvm_alloc_memory_of_gpu(pdd->dev->adev, bo_bucket->addr,
bo_bucket->size, pdd->drm_priv, kgd_mem,
&offset, bo_bucket->alloc_flags, criu_resume);
if (ret) {
pr_err("Could not create the BO\n");
return ret;
}
pr_debug("New BO created: size:0x%llx addr:0x%llx offset:0x%llx\n",
bo_bucket->size, bo_bucket->addr, offset);
/* Restore previous IDR handle */
pr_debug("Restoring old IDR handle for the BO");
idr_handle = idr_alloc(&pdd->alloc_idr, *kgd_mem, bo_priv->idr_handle,
bo_priv->idr_handle + 1, GFP_KERNEL);
if (idr_handle < 0) {
pr_err("Could not allocate idr\n");
amdgpu_amdkfd_gpuvm_free_memory_of_gpu(pdd->dev->adev, *kgd_mem, pdd->drm_priv,
NULL);
return -ENOMEM;
}
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_DOORBELL)
bo_bucket->restored_offset = KFD_MMAP_TYPE_DOORBELL | KFD_MMAP_GPU_ID(pdd->dev->id);
if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_MMIO_REMAP) {
bo_bucket->restored_offset = KFD_MMAP_TYPE_MMIO | KFD_MMAP_GPU_ID(pdd->dev->id);
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_GTT) {
bo_bucket->restored_offset = offset;
} else if (bo_bucket->alloc_flags & KFD_IOC_ALLOC_MEM_FLAGS_VRAM) {
bo_bucket->restored_offset = offset;
/* Update the VRAM usage count */
WRITE_ONCE(pdd->vram_usage, pdd->vram_usage + bo_bucket->size);
}
return 0;
}
static int criu_restore_bo(struct kfd_process *p,
struct kfd_criu_bo_bucket *bo_bucket,
struct kfd_criu_bo_priv_data *bo_priv)
{
struct kfd_process_device *pdd;
struct kgd_mem *kgd_mem;
int ret;
int j;
pr_debug("Restoring BO size:0x%llx addr:0x%llx gpu_id:0x%x flags:0x%x idr_handle:0x%x\n",
bo_bucket->size, bo_bucket->addr, bo_bucket->gpu_id, bo_bucket->alloc_flags,
bo_priv->idr_handle);
pdd = kfd_process_device_data_by_id(p, bo_bucket->gpu_id);
if (!pdd) {
pr_err("Failed to get pdd\n");
return -ENODEV;
}
ret = criu_restore_memory_of_gpu(pdd, bo_bucket, bo_priv, &kgd_mem);
if (ret)
return ret;
/* now map these BOs to GPU/s */
for (j = 0; j < p->n_pdds; j++) {
struct kfd_node *peer;
struct kfd_process_device *peer_pdd;
if (!bo_priv->mapped_gpuids[j])
break;
peer_pdd = kfd_process_device_data_by_id(p, bo_priv->mapped_gpuids[j]);
if (!peer_pdd)
return -EINVAL;
peer = peer_pdd->dev;
peer_pdd = kfd_bind_process_to_device(peer, p);
if (IS_ERR(peer_pdd))
return PTR_ERR(peer_pdd);
ret = amdgpu_amdkfd_gpuvm_map_memory_to_gpu(peer->adev, kgd_mem,
peer_pdd->drm_priv);
if (ret) {
pr_err("Failed to map to gpu %d/%d\n", j, p->n_pdds);
return ret;
}
}
pr_debug("map memory was successful for the BO\n");
/* create the dmabuf object and export the bo */
if (bo_bucket->alloc_flags
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT)) {
ret = criu_get_prime_handle(&kgd_mem->bo->tbo.base, DRM_RDWR,
&bo_bucket->dmabuf_fd);
if (ret)
return ret;
} else {
bo_bucket->dmabuf_fd = KFD_INVALID_FD;
}
return 0;
}
static int criu_restore_bos(struct kfd_process *p,
struct kfd_ioctl_criu_args *args,
uint64_t *priv_offset,
uint64_t max_priv_data_size)
{
struct kfd_criu_bo_bucket *bo_buckets = NULL;
struct kfd_criu_bo_priv_data *bo_privs = NULL;
int ret = 0;
uint32_t i = 0;
if (*priv_offset + (args->num_bos * sizeof(*bo_privs)) > max_priv_data_size)
return -EINVAL;
/* Prevent MMU notifications until stage-4 IOCTL (CRIU_RESUME) is received */
amdgpu_amdkfd_block_mmu_notifications(p->kgd_process_info);
bo_buckets = kvmalloc_array(args->num_bos, sizeof(*bo_buckets), GFP_KERNEL);
if (!bo_buckets)
return -ENOMEM;
ret = copy_from_user(bo_buckets, (void __user *)args->bos,
args->num_bos * sizeof(*bo_buckets));
if (ret) {
pr_err("Failed to copy BOs information from user\n");
ret = -EFAULT;
goto exit;
}
bo_privs = kvmalloc_array(args->num_bos, sizeof(*bo_privs), GFP_KERNEL);
if (!bo_privs) {
ret = -ENOMEM;
goto exit;
}
ret = copy_from_user(bo_privs, (void __user *)args->priv_data + *priv_offset,
args->num_bos * sizeof(*bo_privs));
if (ret) {
pr_err("Failed to copy BOs information from user\n");
ret = -EFAULT;
goto exit;
}
*priv_offset += args->num_bos * sizeof(*bo_privs);
/* Create and map new BOs */
for (; i < args->num_bos; i++) {
ret = criu_restore_bo(p, &bo_buckets[i], &bo_privs[i]);
if (ret) {
pr_debug("Failed to restore BO[%d] ret%d\n", i, ret);
goto exit;
}
} /* done */
/* Copy only the buckets back so user can read bo_buckets[N].restored_offset */
ret = copy_to_user((void __user *)args->bos,
bo_buckets,
(args->num_bos * sizeof(*bo_buckets)));
if (ret)
ret = -EFAULT;
exit:
while (ret && i--) {
if (bo_buckets[i].alloc_flags
& (KFD_IOC_ALLOC_MEM_FLAGS_VRAM | KFD_IOC_ALLOC_MEM_FLAGS_GTT))
close_fd(bo_buckets[i].dmabuf_fd);
}
kvfree(bo_buckets);
kvfree(bo_privs);
return ret;
}
static int criu_restore_objects(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args,
uint64_t *priv_offset,
uint64_t max_priv_data_size)
{
int ret = 0;
uint32_t i;
BUILD_BUG_ON(offsetof(struct kfd_criu_queue_priv_data, object_type));
BUILD_BUG_ON(offsetof(struct kfd_criu_event_priv_data, object_type));
BUILD_BUG_ON(offsetof(struct kfd_criu_svm_range_priv_data, object_type));
for (i = 0; i < args->num_objects; i++) {
uint32_t object_type;
if (*priv_offset + sizeof(object_type) > max_priv_data_size) {
pr_err("Invalid private data size\n");
return -EINVAL;
}
ret = get_user(object_type, (uint32_t __user *)(args->priv_data + *priv_offset));
if (ret) {
pr_err("Failed to copy private information from user\n");
goto exit;
}
switch (object_type) {
case KFD_CRIU_OBJECT_TYPE_QUEUE:
ret = kfd_criu_restore_queue(p, (uint8_t __user *)args->priv_data,
priv_offset, max_priv_data_size);
if (ret)
goto exit;
break;
case KFD_CRIU_OBJECT_TYPE_EVENT:
ret = kfd_criu_restore_event(filep, p, (uint8_t __user *)args->priv_data,
priv_offset, max_priv_data_size);
if (ret)
goto exit;
break;
case KFD_CRIU_OBJECT_TYPE_SVM_RANGE:
ret = kfd_criu_restore_svm(p, (uint8_t __user *)args->priv_data,
priv_offset, max_priv_data_size);
if (ret)
goto exit;
break;
default:
pr_err("Invalid object type:%u at index:%d\n", object_type, i);
ret = -EINVAL;
goto exit;
}
}
exit:
return ret;
}
static int criu_restore(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args)
{
uint64_t priv_offset = 0;
int ret = 0;
pr_debug("CRIU restore (num_devices:%u num_bos:%u num_objects:%u priv_data_size:%llu)\n",
args->num_devices, args->num_bos, args->num_objects, args->priv_data_size);
if (!args->bos || !args->devices || !args->priv_data || !args->priv_data_size ||
!args->num_devices || !args->num_bos)
return -EINVAL;
mutex_lock(&p->mutex);
/*
* Set the process to evicted state to avoid running any new queues before all the memory
* mappings are ready.
*/
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_RESTORE);
if (ret)
goto exit_unlock;
/* Each function will adjust priv_offset based on how many bytes they consumed */
ret = criu_restore_process(p, args, &priv_offset, args->priv_data_size);
if (ret)
goto exit_unlock;
ret = criu_restore_devices(p, args, &priv_offset, args->priv_data_size);
if (ret)
goto exit_unlock;
ret = criu_restore_bos(p, args, &priv_offset, args->priv_data_size);
if (ret)
goto exit_unlock;
ret = criu_restore_objects(filep, p, args, &priv_offset, args->priv_data_size);
if (ret)
goto exit_unlock;
if (priv_offset != args->priv_data_size) {
pr_err("Invalid private data size\n");
ret = -EINVAL;
}
exit_unlock:
mutex_unlock(&p->mutex);
if (ret)
pr_err("Failed to restore CRIU ret:%d\n", ret);
else
pr_debug("CRIU restore successful\n");
return ret;
}
static int criu_unpause(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args)
{
int ret;
mutex_lock(&p->mutex);
if (!p->queues_paused) {
mutex_unlock(&p->mutex);
return -EINVAL;
}
ret = kfd_process_restore_queues(p);
if (ret)
pr_err("Failed to unpause queues ret:%d\n", ret);
else
p->queues_paused = false;
mutex_unlock(&p->mutex);
return ret;
}
static int criu_resume(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args)
{
struct kfd_process *target = NULL;
struct pid *pid = NULL;
int ret = 0;
pr_debug("Inside %s, target pid for criu restore: %d\n", __func__,
args->pid);
pid = find_get_pid(args->pid);
if (!pid) {
pr_err("Cannot find pid info for %i\n", args->pid);
return -ESRCH;
}
pr_debug("calling kfd_lookup_process_by_pid\n");
target = kfd_lookup_process_by_pid(pid);
put_pid(pid);
if (!target) {
pr_debug("Cannot find process info for %i\n", args->pid);
return -ESRCH;
}
mutex_lock(&target->mutex);
ret = kfd_criu_resume_svm(target);
if (ret) {
pr_err("kfd_criu_resume_svm failed for %i\n", args->pid);
goto exit;
}
ret = amdgpu_amdkfd_criu_resume(target->kgd_process_info);
if (ret)
pr_err("amdgpu_amdkfd_criu_resume failed for %i\n", args->pid);
exit:
mutex_unlock(&target->mutex);
kfd_unref_process(target);
return ret;
}
static int criu_process_info(struct file *filep,
struct kfd_process *p,
struct kfd_ioctl_criu_args *args)
{
int ret = 0;
mutex_lock(&p->mutex);
if (!p->n_pdds) {
pr_err("No pdd for given process\n");
ret = -ENODEV;
goto err_unlock;
}
ret = kfd_process_evict_queues(p, KFD_QUEUE_EVICTION_CRIU_CHECKPOINT);
if (ret)
goto err_unlock;
p->queues_paused = true;
args->pid = task_pid_nr_ns(p->lead_thread,
task_active_pid_ns(p->lead_thread));
ret = criu_get_process_object_info(p, &args->num_devices, &args->num_bos,
&args->num_objects, &args->priv_data_size);
if (ret)
goto err_unlock;
dev_dbg(kfd_device, "Num of devices:%u bos:%u objects:%u priv_data_size:%lld\n",
args->num_devices, args->num_bos, args->num_objects,
args->priv_data_size);
err_unlock:
if (ret) {
kfd_process_restore_queues(p);
p->queues_paused = false;
}
mutex_unlock(&p->mutex);
return ret;
}
static int kfd_ioctl_criu(struct file *filep, struct kfd_process *p, void *data)
{
struct kfd_ioctl_criu_args *args = data;
int ret;
dev_dbg(kfd_device, "CRIU operation: %d\n", args->op);
switch (args->op) {
case KFD_CRIU_OP_PROCESS_INFO:
ret = criu_process_info(filep, p, args);
break;
case KFD_CRIU_OP_CHECKPOINT:
ret = criu_checkpoint(filep, p, args);
break;
case KFD_CRIU_OP_UNPAUSE:
ret = criu_unpause(filep, p, args);
break;
case KFD_CRIU_OP_RESTORE:
ret = criu_restore(filep, p, args);
break;
case KFD_CRIU_OP_RESUME:
ret = criu_resume(filep, p, args);
break;
default:
dev_dbg(kfd_device, "Unsupported CRIU operation:%d\n", args->op);
ret = -EINVAL;
break;
}
if (ret)
dev_dbg(kfd_device, "CRIU operation:%d err:%d\n", args->op, ret);
return ret;
}
static int runtime_enable(struct kfd_process *p, uint64_t r_debug,
bool enable_ttmp_setup)
{
int i = 0, ret = 0;
if (p->is_runtime_retry)
goto retry;
if (p->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_DISABLED)
return -EBUSY;
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (pdd->qpd.queue_count)
return -EEXIST;
}
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_ENABLED;
p->runtime_info.r_debug = r_debug;
p->runtime_info.ttmp_setup = enable_ttmp_setup;
if (p->runtime_info.ttmp_setup) {
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev)) {
amdgpu_gfx_off_ctrl(pdd->dev->adev, false);
pdd->dev->kfd2kgd->enable_debug_trap(
pdd->dev->adev,
true,
pdd->dev->vm_info.last_vmid_kfd);
} else if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
pdd->spi_dbg_override = pdd->dev->kfd2kgd->enable_debug_trap(
pdd->dev->adev,
false,
0);
}
}
}
retry:
if (p->debug_trap_enabled) {
if (!p->is_runtime_retry) {
kfd_dbg_trap_activate(p);
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
p, NULL, 0, false, NULL, 0);
}
mutex_unlock(&p->mutex);
ret = down_interruptible(&p->runtime_enable_sema);
mutex_lock(&p->mutex);
p->is_runtime_retry = !!ret;
}
return ret;
}
static int runtime_disable(struct kfd_process *p)
{
int i = 0, ret;
bool was_enabled = p->runtime_info.runtime_state == DEBUG_RUNTIME_STATE_ENABLED;
p->runtime_info.runtime_state = DEBUG_RUNTIME_STATE_DISABLED;
p->runtime_info.r_debug = 0;
if (p->debug_trap_enabled) {
if (was_enabled)
kfd_dbg_trap_deactivate(p, false, 0);
if (!p->is_runtime_retry)
kfd_dbg_ev_raise(KFD_EC_MASK(EC_PROCESS_RUNTIME),
p, NULL, 0, false, NULL, 0);
mutex_unlock(&p->mutex);
ret = down_interruptible(&p->runtime_enable_sema);
mutex_lock(&p->mutex);
p->is_runtime_retry = !!ret;
if (ret)
return ret;
}
if (was_enabled && p->runtime_info.ttmp_setup) {
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (!kfd_dbg_is_rlc_restore_supported(pdd->dev))
amdgpu_gfx_off_ctrl(pdd->dev->adev, true);
}
}
p->runtime_info.ttmp_setup = false;
/* disable ttmp setup */
for (i = 0; i < p->n_pdds; i++) {
struct kfd_process_device *pdd = p->pdds[i];
if (kfd_dbg_is_per_vmid_supported(pdd->dev)) {
pdd->spi_dbg_override =
pdd->dev->kfd2kgd->disable_debug_trap(
pdd->dev->adev,
false,
pdd->dev->vm_info.last_vmid_kfd);
if (!pdd->dev->kfd->shared_resources.enable_mes)
debug_refresh_runlist(pdd->dev->dqm);
else
kfd_dbg_set_mes_debug_mode(pdd);
}
}
return 0;
}
static int kfd_ioctl_runtime_enable(struct file *filep, struct kfd_process *p, void *data)
{
struct kfd_ioctl_runtime_enable_args *args = data;
int r;
mutex_lock(&p->mutex);
if (args->mode_mask & KFD_RUNTIME_ENABLE_MODE_ENABLE_MASK)
r = runtime_enable(p, args->r_debug,
!!(args->mode_mask & KFD_RUNTIME_ENABLE_MODE_TTMP_SAVE_MASK));
else
r = runtime_disable(p);
mutex_unlock(&p->mutex);
return r;
}
static int kfd_ioctl_set_debug_trap(struct file *filep, struct kfd_process *p, void *data)
{
struct kfd_ioctl_dbg_trap_args *args = data;
struct task_struct *thread = NULL;
struct mm_struct *mm = NULL;
struct pid *pid = NULL;
struct kfd_process *target = NULL;
struct kfd_process_device *pdd = NULL;
int r = 0;
if (sched_policy == KFD_SCHED_POLICY_NO_HWS) {
pr_err("Debugging does not support sched_policy %i", sched_policy);
return -EINVAL;
}
pid = find_get_pid(args->pid);
if (!pid) {
pr_debug("Cannot find pid info for %i\n", args->pid);
r = -ESRCH;
goto out;
}
thread = get_pid_task(pid, PIDTYPE_PID);
if (!thread) {
r = -ESRCH;
goto out;
}
mm = get_task_mm(thread);
if (!mm) {
r = -ESRCH;
goto out;
}
if (args->op == KFD_IOC_DBG_TRAP_ENABLE) {
bool create_process;
rcu_read_lock();
create_process = thread && thread != current && ptrace_parent(thread) == current;
rcu_read_unlock();
target = create_process ? kfd_create_process(thread) :
kfd_lookup_process_by_pid(pid);
} else {
target = kfd_lookup_process_by_pid(pid);
}
if (IS_ERR_OR_NULL(target)) {
pr_debug("Cannot find process PID %i to debug\n", args->pid);
r = target ? PTR_ERR(target) : -ESRCH;
goto out;
}
/* Check if target is still PTRACED. */
rcu_read_lock();
if (target != p && args->op != KFD_IOC_DBG_TRAP_DISABLE
&& ptrace_parent(target->lead_thread) != current) {
pr_err("PID %i is not PTRACED and cannot be debugged\n", args->pid);
r = -EPERM;
}
rcu_read_unlock();
if (r)
goto out;
mutex_lock(&target->mutex);
if (args->op != KFD_IOC_DBG_TRAP_ENABLE && !target->debug_trap_enabled) {
pr_err("PID %i not debug enabled for op %i\n", args->pid, args->op);
r = -EINVAL;
goto unlock_out;
}
if (target->runtime_info.runtime_state != DEBUG_RUNTIME_STATE_ENABLED &&
(args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE ||
args->op == KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE ||
args->op == KFD_IOC_DBG_TRAP_SUSPEND_QUEUES ||
args->op == KFD_IOC_DBG_TRAP_RESUME_QUEUES ||
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH ||
args->op == KFD_IOC_DBG_TRAP_SET_FLAGS)) {
r = -EPERM;
goto unlock_out;
}
if (args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ||
args->op == KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH) {
int user_gpu_id = kfd_process_get_user_gpu_id(target,
args->op == KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH ?
args->set_node_address_watch.gpu_id :
args->clear_node_address_watch.gpu_id);
pdd = kfd_process_device_data_by_id(target, user_gpu_id);
if (user_gpu_id == -EINVAL || !pdd) {
r = -ENODEV;
goto unlock_out;
}
}
switch (args->op) {
case KFD_IOC_DBG_TRAP_ENABLE:
if (target != p)
target->debugger_process = p;
r = kfd_dbg_trap_enable(target,
args->enable.dbg_fd,
(void __user *)args->enable.rinfo_ptr,
&args->enable.rinfo_size);
if (!r)
target->exception_enable_mask = args->enable.exception_mask;
break;
case KFD_IOC_DBG_TRAP_DISABLE:
r = kfd_dbg_trap_disable(target);
break;
case KFD_IOC_DBG_TRAP_SEND_RUNTIME_EVENT:
r = kfd_dbg_send_exception_to_runtime(target,
args->send_runtime_event.gpu_id,
args->send_runtime_event.queue_id,
args->send_runtime_event.exception_mask);
break;
case KFD_IOC_DBG_TRAP_SET_EXCEPTIONS_ENABLED:
kfd_dbg_set_enabled_debug_exception_mask(target,
args->set_exceptions_enabled.exception_mask);
break;
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_OVERRIDE:
r = kfd_dbg_trap_set_wave_launch_override(target,
args->launch_override.override_mode,
args->launch_override.enable_mask,
args->launch_override.support_request_mask,
&args->launch_override.enable_mask,
&args->launch_override.support_request_mask);
break;
case KFD_IOC_DBG_TRAP_SET_WAVE_LAUNCH_MODE:
r = kfd_dbg_trap_set_wave_launch_mode(target,
args->launch_mode.launch_mode);
break;
case KFD_IOC_DBG_TRAP_SUSPEND_QUEUES:
r = suspend_queues(target,
args->suspend_queues.num_queues,
args->suspend_queues.grace_period,
args->suspend_queues.exception_mask,
(uint32_t *)args->suspend_queues.queue_array_ptr);
break;
case KFD_IOC_DBG_TRAP_RESUME_QUEUES:
r = resume_queues(target, args->resume_queues.num_queues,
(uint32_t *)args->resume_queues.queue_array_ptr);
break;
case KFD_IOC_DBG_TRAP_SET_NODE_ADDRESS_WATCH:
r = kfd_dbg_trap_set_dev_address_watch(pdd,
args->set_node_address_watch.address,
args->set_node_address_watch.mask,
&args->set_node_address_watch.id,
args->set_node_address_watch.mode);
break;
case KFD_IOC_DBG_TRAP_CLEAR_NODE_ADDRESS_WATCH:
r = kfd_dbg_trap_clear_dev_address_watch(pdd,
args->clear_node_address_watch.id);
break;
case KFD_IOC_DBG_TRAP_SET_FLAGS:
r = kfd_dbg_trap_set_flags(target, &args->set_flags.flags);
break;
case KFD_IOC_DBG_TRAP_QUERY_DEBUG_EVENT:
r = kfd_dbg_ev_query_debug_event(target,
&args->query_debug_event.queue_id,
&args->query_debug_event.gpu_id,
args->query_debug_event.exception_mask,
&args->query_debug_event.exception_mask);
break;
case KFD_IOC_DBG_TRAP_QUERY_EXCEPTION_INFO:
r = kfd_dbg_trap_query_exception_info(target,
args->query_exception_info.source_id,
args->query_exception_info.exception_code,
args->query_exception_info.clear_exception,
(void __user *)args->query_exception_info.info_ptr,
&args->query_exception_info.info_size);
break;
case KFD_IOC_DBG_TRAP_GET_QUEUE_SNAPSHOT:
r = pqm_get_queue_snapshot(&target->pqm,
args->queue_snapshot.exception_mask,
(void __user *)args->queue_snapshot.snapshot_buf_ptr,
&args->queue_snapshot.num_queues,
&args->queue_snapshot.entry_size);
break;
case KFD_IOC_DBG_TRAP_GET_DEVICE_SNAPSHOT:
r = kfd_dbg_trap_device_snapshot(target,
args->device_snapshot.exception_mask,
(void __user *)args->device_snapshot.snapshot_buf_ptr,
&args->device_snapshot.num_devices,
&args->device_snapshot.entry_size);
break;
default:
pr_err("Invalid option: %i\n", args->op);
r = -EINVAL;
}
unlock_out:
mutex_unlock(&target->mutex);
out:
if (thread)
put_task_struct(thread);
if (mm)
mmput(mm);
if (pid)
put_pid(pid);
if (target)
kfd_unref_process(target);
return r;
}
#define AMDKFD_IOCTL_DEF(ioctl, _func, _flags) \
[_IOC_NR(ioctl)] = {.cmd = ioctl, .func = _func, .flags = _flags, \
.cmd_drv = 0, .name = #ioctl}
/** Ioctl table */
static const struct amdkfd_ioctl_desc amdkfd_ioctls[] = {
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_VERSION,
kfd_ioctl_get_version, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_QUEUE,
kfd_ioctl_create_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_QUEUE,
kfd_ioctl_destroy_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_MEMORY_POLICY,
kfd_ioctl_set_memory_policy, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_CLOCK_COUNTERS,
kfd_ioctl_get_clock_counters, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES,
kfd_ioctl_get_process_apertures, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UPDATE_QUEUE,
kfd_ioctl_update_queue, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CREATE_EVENT,
kfd_ioctl_create_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DESTROY_EVENT,
kfd_ioctl_destroy_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_EVENT,
kfd_ioctl_set_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RESET_EVENT,
kfd_ioctl_reset_event, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_WAIT_EVENTS,
kfd_ioctl_wait_events, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_REGISTER_DEPRECATED,
kfd_ioctl_dbg_register, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_UNREGISTER_DEPRECATED,
kfd_ioctl_dbg_unregister, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_ADDRESS_WATCH_DEPRECATED,
kfd_ioctl_dbg_address_watch, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_WAVE_CONTROL_DEPRECATED,
kfd_ioctl_dbg_wave_control, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_SCRATCH_BACKING_VA,
kfd_ioctl_set_scratch_backing_va, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_TILE_CONFIG,
kfd_ioctl_get_tile_config, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_TRAP_HANDLER,
kfd_ioctl_set_trap_handler, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_PROCESS_APERTURES_NEW,
kfd_ioctl_get_process_apertures_new, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ACQUIRE_VM,
kfd_ioctl_acquire_vm, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_MEMORY_OF_GPU,
kfd_ioctl_alloc_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_FREE_MEMORY_OF_GPU,
kfd_ioctl_free_memory_of_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_MAP_MEMORY_TO_GPU,
kfd_ioctl_map_memory_to_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_UNMAP_MEMORY_FROM_GPU,
kfd_ioctl_unmap_memory_from_gpu, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_CU_MASK,
kfd_ioctl_set_cu_mask, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_QUEUE_WAVE_STATE,
kfd_ioctl_get_queue_wave_state, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_GET_DMABUF_INFO,
kfd_ioctl_get_dmabuf_info, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_IMPORT_DMABUF,
kfd_ioctl_import_dmabuf, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_ALLOC_QUEUE_GWS,
kfd_ioctl_alloc_queue_gws, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SMI_EVENTS,
kfd_ioctl_smi_events, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SVM, kfd_ioctl_svm, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_SET_XNACK_MODE,
kfd_ioctl_set_xnack_mode, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_CRIU_OP,
kfd_ioctl_criu, KFD_IOC_FLAG_CHECKPOINT_RESTORE),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_AVAILABLE_MEMORY,
kfd_ioctl_get_available_memory, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_EXPORT_DMABUF,
kfd_ioctl_export_dmabuf, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_RUNTIME_ENABLE,
kfd_ioctl_runtime_enable, 0),
AMDKFD_IOCTL_DEF(AMDKFD_IOC_DBG_TRAP,
kfd_ioctl_set_debug_trap, 0),
};
#define AMDKFD_CORE_IOCTL_COUNT ARRAY_SIZE(amdkfd_ioctls)
static long kfd_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct kfd_process *process;
amdkfd_ioctl_t *func;
const struct amdkfd_ioctl_desc *ioctl = NULL;
unsigned int nr = _IOC_NR(cmd);
char stack_kdata[128];
char *kdata = NULL;
unsigned int usize, asize;
int retcode = -EINVAL;
bool ptrace_attached = false;
if (nr >= AMDKFD_CORE_IOCTL_COUNT)
goto err_i1;
if ((nr >= AMDKFD_COMMAND_START) && (nr < AMDKFD_COMMAND_END)) {
u32 amdkfd_size;
ioctl = &amdkfd_ioctls[nr];
amdkfd_size = _IOC_SIZE(ioctl->cmd);
usize = asize = _IOC_SIZE(cmd);
if (amdkfd_size > asize)
asize = amdkfd_size;
cmd = ioctl->cmd;
} else
goto err_i1;
dev_dbg(kfd_device, "ioctl cmd 0x%x (#0x%x), arg 0x%lx\n", cmd, nr, arg);
/* Get the process struct from the filep. Only the process
* that opened /dev/kfd can use the file descriptor. Child
* processes need to create their own KFD device context.
*/
process = filep->private_data;
rcu_read_lock();
if ((ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE) &&
ptrace_parent(process->lead_thread) == current)
ptrace_attached = true;
rcu_read_unlock();
if (process->lead_thread != current->group_leader
&& !ptrace_attached) {
dev_dbg(kfd_device, "Using KFD FD in wrong process\n");
retcode = -EBADF;
goto err_i1;
}
/* Do not trust userspace, use our own definition */
func = ioctl->func;
if (unlikely(!func)) {
dev_dbg(kfd_device, "no function\n");
retcode = -EINVAL;
goto err_i1;
}
/*
* Versions of docker shipped in Ubuntu 18.xx and 20.xx do not support
* CAP_CHECKPOINT_RESTORE, so we also allow access if CAP_SYS_ADMIN as CAP_SYS_ADMIN is a
* more priviledged access.
*/
if (unlikely(ioctl->flags & KFD_IOC_FLAG_CHECKPOINT_RESTORE)) {
if (!capable(CAP_CHECKPOINT_RESTORE) &&
!capable(CAP_SYS_ADMIN)) {
retcode = -EACCES;
goto err_i1;
}
}
if (cmd & (IOC_IN | IOC_OUT)) {
if (asize <= sizeof(stack_kdata)) {
kdata = stack_kdata;
} else {
kdata = kmalloc(asize, GFP_KERNEL);
if (!kdata) {
retcode = -ENOMEM;
goto err_i1;
}
}
if (asize > usize)
memset(kdata + usize, 0, asize - usize);
}
if (cmd & IOC_IN) {
if (copy_from_user(kdata, (void __user *)arg, usize) != 0) {
retcode = -EFAULT;
goto err_i1;
}
} else if (cmd & IOC_OUT) {
memset(kdata, 0, usize);
}
retcode = func(filep, process, kdata);
if (cmd & IOC_OUT)
if (copy_to_user((void __user *)arg, kdata, usize) != 0)
retcode = -EFAULT;
err_i1:
if (!ioctl)
dev_dbg(kfd_device, "invalid ioctl: pid=%d, cmd=0x%02x, nr=0x%02x\n",
task_pid_nr(current), cmd, nr);
if (kdata != stack_kdata)
kfree(kdata);
if (retcode)
dev_dbg(kfd_device, "ioctl cmd (#0x%x), arg 0x%lx, ret = %d\n",
nr, arg, retcode);
return retcode;
}
static int kfd_mmio_mmap(struct kfd_node *dev, struct kfd_process *process,
struct vm_area_struct *vma)
{
phys_addr_t address;
if (vma->vm_end - vma->vm_start != PAGE_SIZE)
return -EINVAL;
address = dev->adev->rmmio_remap.bus_addr;
vm_flags_set(vma, VM_IO | VM_DONTCOPY | VM_DONTEXPAND | VM_NORESERVE |
VM_DONTDUMP | VM_PFNMAP);
vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
pr_debug("pasid 0x%x mapping mmio page\n"
" target user address == 0x%08llX\n"
" physical address == 0x%08llX\n"
" vm_flags == 0x%04lX\n"
" size == 0x%04lX\n",
process->pasid, (unsigned long long) vma->vm_start,
address, vma->vm_flags, PAGE_SIZE);
return io_remap_pfn_range(vma,
vma->vm_start,
address >> PAGE_SHIFT,
PAGE_SIZE,
vma->vm_page_prot);
}
static int kfd_mmap(struct file *filp, struct vm_area_struct *vma)
{
struct kfd_process *process;
struct kfd_node *dev = NULL;
unsigned long mmap_offset;
unsigned int gpu_id;
process = kfd_get_process(current);
if (IS_ERR(process))
return PTR_ERR(process);
mmap_offset = vma->vm_pgoff << PAGE_SHIFT;
gpu_id = KFD_MMAP_GET_GPU_ID(mmap_offset);
if (gpu_id)
dev = kfd_device_by_id(gpu_id);
switch (mmap_offset & KFD_MMAP_TYPE_MASK) {
case KFD_MMAP_TYPE_DOORBELL:
if (!dev)
return -ENODEV;
return kfd_doorbell_mmap(dev, process, vma);
case KFD_MMAP_TYPE_EVENTS:
return kfd_event_mmap(process, vma);
case KFD_MMAP_TYPE_RESERVED_MEM:
if (!dev)
return -ENODEV;
return kfd_reserved_mem_mmap(dev, process, vma);
case KFD_MMAP_TYPE_MMIO:
if (!dev)
return -ENODEV;
return kfd_mmio_mmap(dev, process, vma);
}
return -EFAULT;
}