202 lines
5.2 KiB
C
202 lines
5.2 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Energy Model of CPUs
|
|
*
|
|
* Copyright (c) 2018, Arm ltd.
|
|
* Written by: Quentin Perret, Arm ltd.
|
|
*/
|
|
|
|
#define pr_fmt(fmt) "energy_model: " fmt
|
|
|
|
#include <linux/cpu.h>
|
|
#include <linux/cpumask.h>
|
|
#include <linux/energy_model.h>
|
|
#include <linux/sched/topology.h>
|
|
#include <linux/slab.h>
|
|
|
|
/* Mapping of each CPU to the performance domain to which it belongs. */
|
|
static DEFINE_PER_CPU(struct em_perf_domain *, em_data);
|
|
|
|
/*
|
|
* Mutex serializing the registrations of performance domains and letting
|
|
* callbacks defined by drivers sleep.
|
|
*/
|
|
static DEFINE_MUTEX(em_pd_mutex);
|
|
|
|
static struct em_perf_domain *em_create_pd(cpumask_t *span, int nr_states,
|
|
struct em_data_callback *cb)
|
|
{
|
|
unsigned long opp_eff, prev_opp_eff = ULONG_MAX;
|
|
unsigned long power, freq, prev_freq = 0;
|
|
int i, ret, cpu = cpumask_first(span);
|
|
struct em_cap_state *table;
|
|
struct em_perf_domain *pd;
|
|
u64 fmax;
|
|
|
|
if (!cb->active_power)
|
|
return NULL;
|
|
|
|
pd = kzalloc(sizeof(*pd) + cpumask_size(), GFP_KERNEL);
|
|
if (!pd)
|
|
return NULL;
|
|
|
|
table = kcalloc(nr_states, sizeof(*table), GFP_KERNEL);
|
|
if (!table)
|
|
goto free_pd;
|
|
|
|
/* Build the list of capacity states for this performance domain */
|
|
for (i = 0, freq = 0; i < nr_states; i++, freq++) {
|
|
/*
|
|
* active_power() is a driver callback which ceils 'freq' to
|
|
* lowest capacity state of 'cpu' above 'freq' and updates
|
|
* 'power' and 'freq' accordingly.
|
|
*/
|
|
ret = cb->active_power(&power, &freq, cpu);
|
|
if (ret) {
|
|
pr_err("pd%d: invalid cap. state: %d\n", cpu, ret);
|
|
goto free_cs_table;
|
|
}
|
|
|
|
/*
|
|
* We expect the driver callback to increase the frequency for
|
|
* higher capacity states.
|
|
*/
|
|
if (freq <= prev_freq) {
|
|
pr_err("pd%d: non-increasing freq: %lu\n", cpu, freq);
|
|
goto free_cs_table;
|
|
}
|
|
|
|
/*
|
|
* The power returned by active_state() is expected to be
|
|
* positive, in milli-watts and to fit into 16 bits.
|
|
*/
|
|
if (!power || power > EM_CPU_MAX_POWER) {
|
|
pr_err("pd%d: invalid power: %lu\n", cpu, power);
|
|
goto free_cs_table;
|
|
}
|
|
|
|
table[i].power = power;
|
|
table[i].frequency = prev_freq = freq;
|
|
|
|
/*
|
|
* The hertz/watts efficiency ratio should decrease as the
|
|
* frequency grows on sane platforms. But this isn't always
|
|
* true in practice so warn the user if a higher OPP is more
|
|
* power efficient than a lower one.
|
|
*/
|
|
opp_eff = freq / power;
|
|
if (opp_eff >= prev_opp_eff)
|
|
pr_warn("pd%d: hertz/watts ratio non-monotonically decreasing: em_cap_state %d >= em_cap_state%d\n",
|
|
cpu, i, i - 1);
|
|
prev_opp_eff = opp_eff;
|
|
}
|
|
|
|
/* Compute the cost of each capacity_state. */
|
|
fmax = (u64) table[nr_states - 1].frequency;
|
|
for (i = 0; i < nr_states; i++) {
|
|
table[i].cost = div64_u64(fmax * table[i].power,
|
|
table[i].frequency);
|
|
}
|
|
|
|
pd->table = table;
|
|
pd->nr_cap_states = nr_states;
|
|
cpumask_copy(to_cpumask(pd->cpus), span);
|
|
|
|
return pd;
|
|
|
|
free_cs_table:
|
|
kfree(table);
|
|
free_pd:
|
|
kfree(pd);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* em_cpu_get() - Return the performance domain for a CPU
|
|
* @cpu : CPU to find the performance domain for
|
|
*
|
|
* Return: the performance domain to which 'cpu' belongs, or NULL if it doesn't
|
|
* exist.
|
|
*/
|
|
struct em_perf_domain *em_cpu_get(int cpu)
|
|
{
|
|
return READ_ONCE(per_cpu(em_data, cpu));
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_cpu_get);
|
|
|
|
/**
|
|
* em_register_perf_domain() - Register the Energy Model of a performance domain
|
|
* @span : Mask of CPUs in the performance domain
|
|
* @nr_states : Number of capacity states to register
|
|
* @cb : Callback functions providing the data of the Energy Model
|
|
*
|
|
* Create Energy Model tables for a performance domain using the callbacks
|
|
* defined in cb.
|
|
*
|
|
* If multiple clients register the same performance domain, all but the first
|
|
* registration will be ignored.
|
|
*
|
|
* Return 0 on success
|
|
*/
|
|
int em_register_perf_domain(cpumask_t *span, unsigned int nr_states,
|
|
struct em_data_callback *cb)
|
|
{
|
|
unsigned long cap, prev_cap = 0;
|
|
struct em_perf_domain *pd;
|
|
int cpu, ret = 0;
|
|
|
|
if (!span || !nr_states || !cb)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* Use a mutex to serialize the registration of performance domains and
|
|
* let the driver-defined callback functions sleep.
|
|
*/
|
|
mutex_lock(&em_pd_mutex);
|
|
|
|
for_each_cpu(cpu, span) {
|
|
/* Make sure we don't register again an existing domain. */
|
|
if (READ_ONCE(per_cpu(em_data, cpu))) {
|
|
ret = -EEXIST;
|
|
goto unlock;
|
|
}
|
|
|
|
/*
|
|
* All CPUs of a domain must have the same micro-architecture
|
|
* since they all share the same table.
|
|
*/
|
|
cap = arch_scale_cpu_capacity(NULL, cpu);
|
|
if (prev_cap && prev_cap != cap) {
|
|
pr_err("CPUs of %*pbl must have the same capacity\n",
|
|
cpumask_pr_args(span));
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
prev_cap = cap;
|
|
}
|
|
|
|
/* Create the performance domain and add it to the Energy Model. */
|
|
pd = em_create_pd(span, nr_states, cb);
|
|
if (!pd) {
|
|
ret = -EINVAL;
|
|
goto unlock;
|
|
}
|
|
|
|
for_each_cpu(cpu, span) {
|
|
/*
|
|
* The per-cpu array can be read concurrently from em_cpu_get().
|
|
* The barrier enforces the ordering needed to make sure readers
|
|
* can only access well formed em_perf_domain structs.
|
|
*/
|
|
smp_store_release(per_cpu_ptr(&em_data, cpu), pd);
|
|
}
|
|
|
|
pr_debug("Created perf domain %*pbl\n", cpumask_pr_args(span));
|
|
unlock:
|
|
mutex_unlock(&em_pd_mutex);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL_GPL(em_register_perf_domain);
|