OpenCloudOS-Kernel/kernel/kcov.c

1082 lines
29 KiB
C

// SPDX-License-Identifier: GPL-2.0
#define pr_fmt(fmt) "kcov: " fmt
#define DISABLE_BRANCH_PROFILING
#include <linux/atomic.h>
#include <linux/compiler.h>
#include <linux/errno.h>
#include <linux/export.h>
#include <linux/types.h>
#include <linux/file.h>
#include <linux/fs.h>
#include <linux/hashtable.h>
#include <linux/init.h>
#include <linux/kmsan-checks.h>
#include <linux/mm.h>
#include <linux/preempt.h>
#include <linux/printk.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/spinlock.h>
#include <linux/vmalloc.h>
#include <linux/debugfs.h>
#include <linux/uaccess.h>
#include <linux/kcov.h>
#include <linux/refcount.h>
#include <linux/log2.h>
#include <asm/setup.h>
#define kcov_debug(fmt, ...) pr_debug("%s: " fmt, __func__, ##__VA_ARGS__)
/* Number of 64-bit words written per one comparison: */
#define KCOV_WORDS_PER_CMP 4
/*
* kcov descriptor (one per opened debugfs file).
* State transitions of the descriptor:
* - initial state after open()
* - then there must be a single ioctl(KCOV_INIT_TRACE) call
* - then, mmap() call (several calls are allowed but not useful)
* - then, ioctl(KCOV_ENABLE, arg), where arg is
* KCOV_TRACE_PC - to trace only the PCs
* or
* KCOV_TRACE_CMP - to trace only the comparison operands
* - then, ioctl(KCOV_DISABLE) to disable the task.
* Enabling/disabling ioctls can be repeated (only one task a time allowed).
*/
struct kcov {
/*
* Reference counter. We keep one for:
* - opened file descriptor
* - task with enabled coverage (we can't unwire it from another task)
* - each code section for remote coverage collection
*/
refcount_t refcount;
/* The lock protects mode, size, area and t. */
spinlock_t lock;
enum kcov_mode mode;
/* Size of arena (in long's). */
unsigned int size;
/* Coverage buffer shared with user space. */
void *area;
/* Task for which we collect coverage, or NULL. */
struct task_struct *t;
/* Collecting coverage from remote (background) threads. */
bool remote;
/* Size of remote area (in long's). */
unsigned int remote_size;
/*
* Sequence is incremented each time kcov is reenabled, used by
* kcov_remote_stop(), see the comment there.
*/
int sequence;
};
struct kcov_remote_area {
struct list_head list;
unsigned int size;
};
struct kcov_remote {
u64 handle;
struct kcov *kcov;
struct hlist_node hnode;
};
static DEFINE_SPINLOCK(kcov_remote_lock);
static DEFINE_HASHTABLE(kcov_remote_map, 4);
static struct list_head kcov_remote_areas = LIST_HEAD_INIT(kcov_remote_areas);
struct kcov_percpu_data {
void *irq_area;
local_lock_t lock;
unsigned int saved_mode;
unsigned int saved_size;
void *saved_area;
struct kcov *saved_kcov;
int saved_sequence;
};
static DEFINE_PER_CPU(struct kcov_percpu_data, kcov_percpu_data) = {
.lock = INIT_LOCAL_LOCK(lock),
};
/* Must be called with kcov_remote_lock locked. */
static struct kcov_remote *kcov_remote_find(u64 handle)
{
struct kcov_remote *remote;
hash_for_each_possible(kcov_remote_map, remote, hnode, handle) {
if (remote->handle == handle)
return remote;
}
return NULL;
}
/* Must be called with kcov_remote_lock locked. */
static struct kcov_remote *kcov_remote_add(struct kcov *kcov, u64 handle)
{
struct kcov_remote *remote;
if (kcov_remote_find(handle))
return ERR_PTR(-EEXIST);
remote = kmalloc(sizeof(*remote), GFP_ATOMIC);
if (!remote)
return ERR_PTR(-ENOMEM);
remote->handle = handle;
remote->kcov = kcov;
hash_add(kcov_remote_map, &remote->hnode, handle);
return remote;
}
/* Must be called with kcov_remote_lock locked. */
static struct kcov_remote_area *kcov_remote_area_get(unsigned int size)
{
struct kcov_remote_area *area;
struct list_head *pos;
list_for_each(pos, &kcov_remote_areas) {
area = list_entry(pos, struct kcov_remote_area, list);
if (area->size == size) {
list_del(&area->list);
return area;
}
}
return NULL;
}
/* Must be called with kcov_remote_lock locked. */
static void kcov_remote_area_put(struct kcov_remote_area *area,
unsigned int size)
{
INIT_LIST_HEAD(&area->list);
area->size = size;
list_add(&area->list, &kcov_remote_areas);
/*
* KMSAN doesn't instrument this file, so it may not know area->list
* is initialized. Unpoison it explicitly to avoid reports in
* kcov_remote_area_get().
*/
kmsan_unpoison_memory(&area->list, sizeof(area->list));
}
static notrace bool check_kcov_mode(enum kcov_mode needed_mode, struct task_struct *t)
{
unsigned int mode;
/*
* We are interested in code coverage as a function of a syscall inputs,
* so we ignore code executed in interrupts, unless we are in a remote
* coverage collection section in a softirq.
*/
if (!in_task() && !(in_serving_softirq() && t->kcov_softirq))
return false;
mode = READ_ONCE(t->kcov_mode);
/*
* There is some code that runs in interrupts but for which
* in_interrupt() returns false (e.g. preempt_schedule_irq()).
* READ_ONCE()/barrier() effectively provides load-acquire wrt
* interrupts, there are paired barrier()/WRITE_ONCE() in
* kcov_start().
*/
barrier();
return mode == needed_mode;
}
static notrace unsigned long canonicalize_ip(unsigned long ip)
{
#ifdef CONFIG_RANDOMIZE_BASE
ip -= kaslr_offset();
#endif
return ip;
}
/*
* Entry point from instrumented code.
* This is called once per basic-block/edge.
*/
void notrace __sanitizer_cov_trace_pc(void)
{
struct task_struct *t;
unsigned long *area;
unsigned long ip = canonicalize_ip(_RET_IP_);
unsigned long pos;
t = current;
if (!check_kcov_mode(KCOV_MODE_TRACE_PC, t))
return;
area = t->kcov_area;
/* The first 64-bit word is the number of subsequent PCs. */
pos = READ_ONCE(area[0]) + 1;
if (likely(pos < t->kcov_size)) {
/* Previously we write pc before updating pos. However, some
* early interrupt code could bypass check_kcov_mode() check
* and invoke __sanitizer_cov_trace_pc(). If such interrupt is
* raised between writing pc and updating pos, the pc could be
* overitten by the recursive __sanitizer_cov_trace_pc().
* Update pos before writing pc to avoid such interleaving.
*/
WRITE_ONCE(area[0], pos);
barrier();
area[pos] = ip;
}
}
EXPORT_SYMBOL(__sanitizer_cov_trace_pc);
#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
static void notrace write_comp_data(u64 type, u64 arg1, u64 arg2, u64 ip)
{
struct task_struct *t;
u64 *area;
u64 count, start_index, end_pos, max_pos;
t = current;
if (!check_kcov_mode(KCOV_MODE_TRACE_CMP, t))
return;
ip = canonicalize_ip(ip);
/*
* We write all comparison arguments and types as u64.
* The buffer was allocated for t->kcov_size unsigned longs.
*/
area = (u64 *)t->kcov_area;
max_pos = t->kcov_size * sizeof(unsigned long);
count = READ_ONCE(area[0]);
/* Every record is KCOV_WORDS_PER_CMP 64-bit words. */
start_index = 1 + count * KCOV_WORDS_PER_CMP;
end_pos = (start_index + KCOV_WORDS_PER_CMP) * sizeof(u64);
if (likely(end_pos <= max_pos)) {
/* See comment in __sanitizer_cov_trace_pc(). */
WRITE_ONCE(area[0], count + 1);
barrier();
area[start_index] = type;
area[start_index + 1] = arg1;
area[start_index + 2] = arg2;
area[start_index + 3] = ip;
}
}
void notrace __sanitizer_cov_trace_cmp1(u8 arg1, u8 arg2)
{
write_comp_data(KCOV_CMP_SIZE(0), arg1, arg2, _RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_cmp1);
void notrace __sanitizer_cov_trace_cmp2(u16 arg1, u16 arg2)
{
write_comp_data(KCOV_CMP_SIZE(1), arg1, arg2, _RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_cmp2);
void notrace __sanitizer_cov_trace_cmp4(u32 arg1, u32 arg2)
{
write_comp_data(KCOV_CMP_SIZE(2), arg1, arg2, _RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_cmp4);
void notrace __sanitizer_cov_trace_cmp8(kcov_u64 arg1, kcov_u64 arg2)
{
write_comp_data(KCOV_CMP_SIZE(3), arg1, arg2, _RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_cmp8);
void notrace __sanitizer_cov_trace_const_cmp1(u8 arg1, u8 arg2)
{
write_comp_data(KCOV_CMP_SIZE(0) | KCOV_CMP_CONST, arg1, arg2,
_RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp1);
void notrace __sanitizer_cov_trace_const_cmp2(u16 arg1, u16 arg2)
{
write_comp_data(KCOV_CMP_SIZE(1) | KCOV_CMP_CONST, arg1, arg2,
_RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp2);
void notrace __sanitizer_cov_trace_const_cmp4(u32 arg1, u32 arg2)
{
write_comp_data(KCOV_CMP_SIZE(2) | KCOV_CMP_CONST, arg1, arg2,
_RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp4);
void notrace __sanitizer_cov_trace_const_cmp8(kcov_u64 arg1, kcov_u64 arg2)
{
write_comp_data(KCOV_CMP_SIZE(3) | KCOV_CMP_CONST, arg1, arg2,
_RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_const_cmp8);
void notrace __sanitizer_cov_trace_switch(kcov_u64 val, void *arg)
{
u64 i;
u64 *cases = arg;
u64 count = cases[0];
u64 size = cases[1];
u64 type = KCOV_CMP_CONST;
switch (size) {
case 8:
type |= KCOV_CMP_SIZE(0);
break;
case 16:
type |= KCOV_CMP_SIZE(1);
break;
case 32:
type |= KCOV_CMP_SIZE(2);
break;
case 64:
type |= KCOV_CMP_SIZE(3);
break;
default:
return;
}
for (i = 0; i < count; i++)
write_comp_data(type, cases[i + 2], val, _RET_IP_);
}
EXPORT_SYMBOL(__sanitizer_cov_trace_switch);
#endif /* ifdef CONFIG_KCOV_ENABLE_COMPARISONS */
static void kcov_start(struct task_struct *t, struct kcov *kcov,
unsigned int size, void *area, enum kcov_mode mode,
int sequence)
{
kcov_debug("t = %px, size = %u, area = %px\n", t, size, area);
t->kcov = kcov;
/* Cache in task struct for performance. */
t->kcov_size = size;
t->kcov_area = area;
t->kcov_sequence = sequence;
/* See comment in check_kcov_mode(). */
barrier();
WRITE_ONCE(t->kcov_mode, mode);
}
static void kcov_stop(struct task_struct *t)
{
WRITE_ONCE(t->kcov_mode, KCOV_MODE_DISABLED);
barrier();
t->kcov = NULL;
t->kcov_size = 0;
t->kcov_area = NULL;
}
static void kcov_task_reset(struct task_struct *t)
{
kcov_stop(t);
t->kcov_sequence = 0;
t->kcov_handle = 0;
}
void kcov_task_init(struct task_struct *t)
{
kcov_task_reset(t);
t->kcov_handle = current->kcov_handle;
}
static void kcov_reset(struct kcov *kcov)
{
kcov->t = NULL;
kcov->mode = KCOV_MODE_INIT;
kcov->remote = false;
kcov->remote_size = 0;
kcov->sequence++;
}
static void kcov_remote_reset(struct kcov *kcov)
{
int bkt;
struct kcov_remote *remote;
struct hlist_node *tmp;
unsigned long flags;
spin_lock_irqsave(&kcov_remote_lock, flags);
hash_for_each_safe(kcov_remote_map, bkt, tmp, remote, hnode) {
if (remote->kcov != kcov)
continue;
hash_del(&remote->hnode);
kfree(remote);
}
/* Do reset before unlock to prevent races with kcov_remote_start(). */
kcov_reset(kcov);
spin_unlock_irqrestore(&kcov_remote_lock, flags);
}
static void kcov_disable(struct task_struct *t, struct kcov *kcov)
{
kcov_task_reset(t);
if (kcov->remote)
kcov_remote_reset(kcov);
else
kcov_reset(kcov);
}
static void kcov_get(struct kcov *kcov)
{
refcount_inc(&kcov->refcount);
}
static void kcov_put(struct kcov *kcov)
{
if (refcount_dec_and_test(&kcov->refcount)) {
kcov_remote_reset(kcov);
vfree(kcov->area);
kfree(kcov);
}
}
void kcov_task_exit(struct task_struct *t)
{
struct kcov *kcov;
unsigned long flags;
kcov = t->kcov;
if (kcov == NULL)
return;
spin_lock_irqsave(&kcov->lock, flags);
kcov_debug("t = %px, kcov->t = %px\n", t, kcov->t);
/*
* For KCOV_ENABLE devices we want to make sure that t->kcov->t == t,
* which comes down to:
* WARN_ON(!kcov->remote && kcov->t != t);
*
* For KCOV_REMOTE_ENABLE devices, the exiting task is either:
*
* 1. A remote task between kcov_remote_start() and kcov_remote_stop().
* In this case we should print a warning right away, since a task
* shouldn't be exiting when it's in a kcov coverage collection
* section. Here t points to the task that is collecting remote
* coverage, and t->kcov->t points to the thread that created the
* kcov device. Which means that to detect this case we need to
* check that t != t->kcov->t, and this gives us the following:
* WARN_ON(kcov->remote && kcov->t != t);
*
* 2. The task that created kcov exiting without calling KCOV_DISABLE,
* and then again we make sure that t->kcov->t == t:
* WARN_ON(kcov->remote && kcov->t != t);
*
* By combining all three checks into one we get:
*/
if (WARN_ON(kcov->t != t)) {
spin_unlock_irqrestore(&kcov->lock, flags);
return;
}
/* Just to not leave dangling references behind. */
kcov_disable(t, kcov);
spin_unlock_irqrestore(&kcov->lock, flags);
kcov_put(kcov);
}
static int kcov_mmap(struct file *filep, struct vm_area_struct *vma)
{
int res = 0;
struct kcov *kcov = vma->vm_file->private_data;
unsigned long size, off;
struct page *page;
unsigned long flags;
spin_lock_irqsave(&kcov->lock, flags);
size = kcov->size * sizeof(unsigned long);
if (kcov->area == NULL || vma->vm_pgoff != 0 ||
vma->vm_end - vma->vm_start != size) {
res = -EINVAL;
goto exit;
}
spin_unlock_irqrestore(&kcov->lock, flags);
vm_flags_set(vma, VM_DONTEXPAND);
for (off = 0; off < size; off += PAGE_SIZE) {
page = vmalloc_to_page(kcov->area + off);
res = vm_insert_page(vma, vma->vm_start + off, page);
if (res) {
pr_warn_once("kcov: vm_insert_page() failed\n");
return res;
}
}
return 0;
exit:
spin_unlock_irqrestore(&kcov->lock, flags);
return res;
}
static int kcov_open(struct inode *inode, struct file *filep)
{
struct kcov *kcov;
kcov = kzalloc(sizeof(*kcov), GFP_KERNEL);
if (!kcov)
return -ENOMEM;
kcov->mode = KCOV_MODE_DISABLED;
kcov->sequence = 1;
refcount_set(&kcov->refcount, 1);
spin_lock_init(&kcov->lock);
filep->private_data = kcov;
return nonseekable_open(inode, filep);
}
static int kcov_close(struct inode *inode, struct file *filep)
{
kcov_put(filep->private_data);
return 0;
}
static int kcov_get_mode(unsigned long arg)
{
if (arg == KCOV_TRACE_PC)
return KCOV_MODE_TRACE_PC;
else if (arg == KCOV_TRACE_CMP)
#ifdef CONFIG_KCOV_ENABLE_COMPARISONS
return KCOV_MODE_TRACE_CMP;
#else
return -ENOTSUPP;
#endif
else
return -EINVAL;
}
/*
* Fault in a lazily-faulted vmalloc area before it can be used by
* __santizer_cov_trace_pc(), to avoid recursion issues if any code on the
* vmalloc fault handling path is instrumented.
*/
static void kcov_fault_in_area(struct kcov *kcov)
{
unsigned long stride = PAGE_SIZE / sizeof(unsigned long);
unsigned long *area = kcov->area;
unsigned long offset;
for (offset = 0; offset < kcov->size; offset += stride)
READ_ONCE(area[offset]);
}
static inline bool kcov_check_handle(u64 handle, bool common_valid,
bool uncommon_valid, bool zero_valid)
{
if (handle & ~(KCOV_SUBSYSTEM_MASK | KCOV_INSTANCE_MASK))
return false;
switch (handle & KCOV_SUBSYSTEM_MASK) {
case KCOV_SUBSYSTEM_COMMON:
return (handle & KCOV_INSTANCE_MASK) ?
common_valid : zero_valid;
case KCOV_SUBSYSTEM_USB:
return uncommon_valid;
default:
return false;
}
return false;
}
static int kcov_ioctl_locked(struct kcov *kcov, unsigned int cmd,
unsigned long arg)
{
struct task_struct *t;
unsigned long flags, unused;
int mode, i;
struct kcov_remote_arg *remote_arg;
struct kcov_remote *remote;
switch (cmd) {
case KCOV_ENABLE:
/*
* Enable coverage for the current task.
* At this point user must have been enabled trace mode,
* and mmapped the file. Coverage collection is disabled only
* at task exit or voluntary by KCOV_DISABLE. After that it can
* be enabled for another task.
*/
if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
return -EINVAL;
t = current;
if (kcov->t != NULL || t->kcov != NULL)
return -EBUSY;
mode = kcov_get_mode(arg);
if (mode < 0)
return mode;
kcov_fault_in_area(kcov);
kcov->mode = mode;
kcov_start(t, kcov, kcov->size, kcov->area, kcov->mode,
kcov->sequence);
kcov->t = t;
/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
kcov_get(kcov);
return 0;
case KCOV_DISABLE:
/* Disable coverage for the current task. */
unused = arg;
if (unused != 0 || current->kcov != kcov)
return -EINVAL;
t = current;
if (WARN_ON(kcov->t != t))
return -EINVAL;
kcov_disable(t, kcov);
kcov_put(kcov);
return 0;
case KCOV_REMOTE_ENABLE:
if (kcov->mode != KCOV_MODE_INIT || !kcov->area)
return -EINVAL;
t = current;
if (kcov->t != NULL || t->kcov != NULL)
return -EBUSY;
remote_arg = (struct kcov_remote_arg *)arg;
mode = kcov_get_mode(remote_arg->trace_mode);
if (mode < 0)
return mode;
if (remote_arg->area_size > LONG_MAX / sizeof(unsigned long))
return -EINVAL;
kcov->mode = mode;
t->kcov = kcov;
kcov->t = t;
kcov->remote = true;
kcov->remote_size = remote_arg->area_size;
spin_lock_irqsave(&kcov_remote_lock, flags);
for (i = 0; i < remote_arg->num_handles; i++) {
if (!kcov_check_handle(remote_arg->handles[i],
false, true, false)) {
spin_unlock_irqrestore(&kcov_remote_lock,
flags);
kcov_disable(t, kcov);
return -EINVAL;
}
remote = kcov_remote_add(kcov, remote_arg->handles[i]);
if (IS_ERR(remote)) {
spin_unlock_irqrestore(&kcov_remote_lock,
flags);
kcov_disable(t, kcov);
return PTR_ERR(remote);
}
}
if (remote_arg->common_handle) {
if (!kcov_check_handle(remote_arg->common_handle,
true, false, false)) {
spin_unlock_irqrestore(&kcov_remote_lock,
flags);
kcov_disable(t, kcov);
return -EINVAL;
}
remote = kcov_remote_add(kcov,
remote_arg->common_handle);
if (IS_ERR(remote)) {
spin_unlock_irqrestore(&kcov_remote_lock,
flags);
kcov_disable(t, kcov);
return PTR_ERR(remote);
}
t->kcov_handle = remote_arg->common_handle;
}
spin_unlock_irqrestore(&kcov_remote_lock, flags);
/* Put either in kcov_task_exit() or in KCOV_DISABLE. */
kcov_get(kcov);
return 0;
default:
return -ENOTTY;
}
}
static long kcov_ioctl(struct file *filep, unsigned int cmd, unsigned long arg)
{
struct kcov *kcov;
int res;
struct kcov_remote_arg *remote_arg = NULL;
unsigned int remote_num_handles;
unsigned long remote_arg_size;
unsigned long size, flags;
void *area;
kcov = filep->private_data;
switch (cmd) {
case KCOV_INIT_TRACE:
/*
* Enable kcov in trace mode and setup buffer size.
* Must happen before anything else.
*
* First check the size argument - it must be at least 2
* to hold the current position and one PC.
*/
size = arg;
if (size < 2 || size > INT_MAX / sizeof(unsigned long))
return -EINVAL;
area = vmalloc_user(size * sizeof(unsigned long));
if (area == NULL)
return -ENOMEM;
spin_lock_irqsave(&kcov->lock, flags);
if (kcov->mode != KCOV_MODE_DISABLED) {
spin_unlock_irqrestore(&kcov->lock, flags);
vfree(area);
return -EBUSY;
}
kcov->area = area;
kcov->size = size;
kcov->mode = KCOV_MODE_INIT;
spin_unlock_irqrestore(&kcov->lock, flags);
return 0;
case KCOV_REMOTE_ENABLE:
if (get_user(remote_num_handles, (unsigned __user *)(arg +
offsetof(struct kcov_remote_arg, num_handles))))
return -EFAULT;
if (remote_num_handles > KCOV_REMOTE_MAX_HANDLES)
return -EINVAL;
remote_arg_size = struct_size(remote_arg, handles,
remote_num_handles);
remote_arg = memdup_user((void __user *)arg, remote_arg_size);
if (IS_ERR(remote_arg))
return PTR_ERR(remote_arg);
if (remote_arg->num_handles != remote_num_handles) {
kfree(remote_arg);
return -EINVAL;
}
arg = (unsigned long)remote_arg;
fallthrough;
default:
/*
* All other commands can be normally executed under a spin lock, so we
* obtain and release it here in order to simplify kcov_ioctl_locked().
*/
spin_lock_irqsave(&kcov->lock, flags);
res = kcov_ioctl_locked(kcov, cmd, arg);
spin_unlock_irqrestore(&kcov->lock, flags);
kfree(remote_arg);
return res;
}
}
static const struct file_operations kcov_fops = {
.open = kcov_open,
.unlocked_ioctl = kcov_ioctl,
.compat_ioctl = kcov_ioctl,
.mmap = kcov_mmap,
.release = kcov_close,
};
/*
* kcov_remote_start() and kcov_remote_stop() can be used to annotate a section
* of code in a kernel background thread or in a softirq to allow kcov to be
* used to collect coverage from that part of code.
*
* The handle argument of kcov_remote_start() identifies a code section that is
* used for coverage collection. A userspace process passes this handle to
* KCOV_REMOTE_ENABLE ioctl to make the used kcov device start collecting
* coverage for the code section identified by this handle.
*
* The usage of these annotations in the kernel code is different depending on
* the type of the kernel thread whose code is being annotated.
*
* For global kernel threads that are spawned in a limited number of instances
* (e.g. one USB hub_event() worker thread is spawned per USB HCD) and for
* softirqs, each instance must be assigned a unique 4-byte instance id. The
* instance id is then combined with a 1-byte subsystem id to get a handle via
* kcov_remote_handle(subsystem_id, instance_id).
*
* For local kernel threads that are spawned from system calls handler when a
* user interacts with some kernel interface (e.g. vhost workers), a handle is
* passed from a userspace process as the common_handle field of the
* kcov_remote_arg struct (note, that the user must generate a handle by using
* kcov_remote_handle() with KCOV_SUBSYSTEM_COMMON as the subsystem id and an
* arbitrary 4-byte non-zero number as the instance id). This common handle
* then gets saved into the task_struct of the process that issued the
* KCOV_REMOTE_ENABLE ioctl. When this process issues system calls that spawn
* kernel threads, the common handle must be retrieved via kcov_common_handle()
* and passed to the spawned threads via custom annotations. Those kernel
* threads must in turn be annotated with kcov_remote_start(common_handle) and
* kcov_remote_stop(). All of the threads that are spawned by the same process
* obtain the same handle, hence the name "common".
*
* See Documentation/dev-tools/kcov.rst for more details.
*
* Internally, kcov_remote_start() looks up the kcov device associated with the
* provided handle, allocates an area for coverage collection, and saves the
* pointers to kcov and area into the current task_struct to allow coverage to
* be collected via __sanitizer_cov_trace_pc().
* In turns kcov_remote_stop() clears those pointers from task_struct to stop
* collecting coverage and copies all collected coverage into the kcov area.
*/
static inline bool kcov_mode_enabled(unsigned int mode)
{
return (mode & ~KCOV_IN_CTXSW) != KCOV_MODE_DISABLED;
}
static void kcov_remote_softirq_start(struct task_struct *t)
{
struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
unsigned int mode;
mode = READ_ONCE(t->kcov_mode);
barrier();
if (kcov_mode_enabled(mode)) {
data->saved_mode = mode;
data->saved_size = t->kcov_size;
data->saved_area = t->kcov_area;
data->saved_sequence = t->kcov_sequence;
data->saved_kcov = t->kcov;
kcov_stop(t);
}
}
static void kcov_remote_softirq_stop(struct task_struct *t)
{
struct kcov_percpu_data *data = this_cpu_ptr(&kcov_percpu_data);
if (data->saved_kcov) {
kcov_start(t, data->saved_kcov, data->saved_size,
data->saved_area, data->saved_mode,
data->saved_sequence);
data->saved_mode = 0;
data->saved_size = 0;
data->saved_area = NULL;
data->saved_sequence = 0;
data->saved_kcov = NULL;
}
}
void kcov_remote_start(u64 handle)
{
struct task_struct *t = current;
struct kcov_remote *remote;
struct kcov *kcov;
unsigned int mode;
void *area;
unsigned int size;
int sequence;
unsigned long flags;
if (WARN_ON(!kcov_check_handle(handle, true, true, true)))
return;
if (!in_task() && !in_serving_softirq())
return;
local_lock_irqsave(&kcov_percpu_data.lock, flags);
/*
* Check that kcov_remote_start() is not called twice in background
* threads nor called by user tasks (with enabled kcov).
*/
mode = READ_ONCE(t->kcov_mode);
if (WARN_ON(in_task() && kcov_mode_enabled(mode))) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
/*
* Check that kcov_remote_start() is not called twice in softirqs.
* Note, that kcov_remote_start() can be called from a softirq that
* happened while collecting coverage from a background thread.
*/
if (WARN_ON(in_serving_softirq() && t->kcov_softirq)) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
spin_lock(&kcov_remote_lock);
remote = kcov_remote_find(handle);
if (!remote) {
spin_unlock(&kcov_remote_lock);
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
kcov_debug("handle = %llx, context: %s\n", handle,
in_task() ? "task" : "softirq");
kcov = remote->kcov;
/* Put in kcov_remote_stop(). */
kcov_get(kcov);
/*
* Read kcov fields before unlock to prevent races with
* KCOV_DISABLE / kcov_remote_reset().
*/
mode = kcov->mode;
sequence = kcov->sequence;
if (in_task()) {
size = kcov->remote_size;
area = kcov_remote_area_get(size);
} else {
size = CONFIG_KCOV_IRQ_AREA_SIZE;
area = this_cpu_ptr(&kcov_percpu_data)->irq_area;
}
spin_unlock(&kcov_remote_lock);
/* Can only happen when in_task(). */
if (!area) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
area = vmalloc(size * sizeof(unsigned long));
if (!area) {
kcov_put(kcov);
return;
}
local_lock_irqsave(&kcov_percpu_data.lock, flags);
}
/* Reset coverage size. */
*(u64 *)area = 0;
if (in_serving_softirq()) {
kcov_remote_softirq_start(t);
t->kcov_softirq = 1;
}
kcov_start(t, kcov, size, area, mode, sequence);
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
}
EXPORT_SYMBOL(kcov_remote_start);
static void kcov_move_area(enum kcov_mode mode, void *dst_area,
unsigned int dst_area_size, void *src_area)
{
u64 word_size = sizeof(unsigned long);
u64 count_size, entry_size_log;
u64 dst_len, src_len;
void *dst_entries, *src_entries;
u64 dst_occupied, dst_free, bytes_to_move, entries_moved;
kcov_debug("%px %u <= %px %lu\n",
dst_area, dst_area_size, src_area, *(unsigned long *)src_area);
switch (mode) {
case KCOV_MODE_TRACE_PC:
dst_len = READ_ONCE(*(unsigned long *)dst_area);
src_len = *(unsigned long *)src_area;
count_size = sizeof(unsigned long);
entry_size_log = __ilog2_u64(sizeof(unsigned long));
break;
case KCOV_MODE_TRACE_CMP:
dst_len = READ_ONCE(*(u64 *)dst_area);
src_len = *(u64 *)src_area;
count_size = sizeof(u64);
BUILD_BUG_ON(!is_power_of_2(KCOV_WORDS_PER_CMP));
entry_size_log = __ilog2_u64(sizeof(u64) * KCOV_WORDS_PER_CMP);
break;
default:
WARN_ON(1);
return;
}
/* As arm can't divide u64 integers use log of entry size. */
if (dst_len > ((dst_area_size * word_size - count_size) >>
entry_size_log))
return;
dst_occupied = count_size + (dst_len << entry_size_log);
dst_free = dst_area_size * word_size - dst_occupied;
bytes_to_move = min(dst_free, src_len << entry_size_log);
dst_entries = dst_area + dst_occupied;
src_entries = src_area + count_size;
memcpy(dst_entries, src_entries, bytes_to_move);
entries_moved = bytes_to_move >> entry_size_log;
switch (mode) {
case KCOV_MODE_TRACE_PC:
WRITE_ONCE(*(unsigned long *)dst_area, dst_len + entries_moved);
break;
case KCOV_MODE_TRACE_CMP:
WRITE_ONCE(*(u64 *)dst_area, dst_len + entries_moved);
break;
default:
break;
}
}
/* See the comment before kcov_remote_start() for usage details. */
void kcov_remote_stop(void)
{
struct task_struct *t = current;
struct kcov *kcov;
unsigned int mode;
void *area;
unsigned int size;
int sequence;
unsigned long flags;
if (!in_task() && !in_serving_softirq())
return;
local_lock_irqsave(&kcov_percpu_data.lock, flags);
mode = READ_ONCE(t->kcov_mode);
barrier();
if (!kcov_mode_enabled(mode)) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
/*
* When in softirq, check if the corresponding kcov_remote_start()
* actually found the remote handle and started collecting coverage.
*/
if (in_serving_softirq() && !t->kcov_softirq) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
/* Make sure that kcov_softirq is only set when in softirq. */
if (WARN_ON(!in_serving_softirq() && t->kcov_softirq)) {
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
return;
}
kcov = t->kcov;
area = t->kcov_area;
size = t->kcov_size;
sequence = t->kcov_sequence;
kcov_stop(t);
if (in_serving_softirq()) {
t->kcov_softirq = 0;
kcov_remote_softirq_stop(t);
}
spin_lock(&kcov->lock);
/*
* KCOV_DISABLE could have been called between kcov_remote_start()
* and kcov_remote_stop(), hence the sequence check.
*/
if (sequence == kcov->sequence && kcov->remote)
kcov_move_area(kcov->mode, kcov->area, kcov->size, area);
spin_unlock(&kcov->lock);
if (in_task()) {
spin_lock(&kcov_remote_lock);
kcov_remote_area_put(area, size);
spin_unlock(&kcov_remote_lock);
}
local_unlock_irqrestore(&kcov_percpu_data.lock, flags);
/* Get in kcov_remote_start(). */
kcov_put(kcov);
}
EXPORT_SYMBOL(kcov_remote_stop);
/* See the comment before kcov_remote_start() for usage details. */
u64 kcov_common_handle(void)
{
if (!in_task())
return 0;
return current->kcov_handle;
}
EXPORT_SYMBOL(kcov_common_handle);
static int __init kcov_init(void)
{
int cpu;
for_each_possible_cpu(cpu) {
void *area = vmalloc_node(CONFIG_KCOV_IRQ_AREA_SIZE *
sizeof(unsigned long), cpu_to_node(cpu));
if (!area)
return -ENOMEM;
per_cpu_ptr(&kcov_percpu_data, cpu)->irq_area = area;
}
/*
* The kcov debugfs file won't ever get removed and thus,
* there is no need to protect it against removal races. The
* use of debugfs_create_file_unsafe() is actually safe here.
*/
debugfs_create_file_unsafe("kcov", 0600, NULL, NULL, &kcov_fops);
return 0;
}
device_initcall(kcov_init);