792 lines
19 KiB
C
792 lines
19 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Copyright (C) 2016 Facebook
|
|
* Copyright (C) 2013-2014 Jens Axboe
|
|
*/
|
|
|
|
#include <linux/sched.h>
|
|
#include <linux/random.h>
|
|
#include <linux/sbitmap.h>
|
|
#include <linux/seq_file.h>
|
|
|
|
static int init_alloc_hint(struct sbitmap *sb, gfp_t flags)
|
|
{
|
|
unsigned depth = sb->depth;
|
|
|
|
sb->alloc_hint = alloc_percpu_gfp(unsigned int, flags);
|
|
if (!sb->alloc_hint)
|
|
return -ENOMEM;
|
|
|
|
if (depth && !sb->round_robin) {
|
|
int i;
|
|
|
|
for_each_possible_cpu(i)
|
|
*per_cpu_ptr(sb->alloc_hint, i) = get_random_u32_below(depth);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline unsigned update_alloc_hint_before_get(struct sbitmap *sb,
|
|
unsigned int depth)
|
|
{
|
|
unsigned hint;
|
|
|
|
hint = this_cpu_read(*sb->alloc_hint);
|
|
if (unlikely(hint >= depth)) {
|
|
hint = depth ? get_random_u32_below(depth) : 0;
|
|
this_cpu_write(*sb->alloc_hint, hint);
|
|
}
|
|
|
|
return hint;
|
|
}
|
|
|
|
static inline void update_alloc_hint_after_get(struct sbitmap *sb,
|
|
unsigned int depth,
|
|
unsigned int hint,
|
|
unsigned int nr)
|
|
{
|
|
if (nr == -1) {
|
|
/* If the map is full, a hint won't do us much good. */
|
|
this_cpu_write(*sb->alloc_hint, 0);
|
|
} else if (nr == hint || unlikely(sb->round_robin)) {
|
|
/* Only update the hint if we used it. */
|
|
hint = nr + 1;
|
|
if (hint >= depth - 1)
|
|
hint = 0;
|
|
this_cpu_write(*sb->alloc_hint, hint);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* See if we have deferred clears that we can batch move
|
|
*/
|
|
static inline bool sbitmap_deferred_clear(struct sbitmap_word *map,
|
|
unsigned int depth, unsigned int alloc_hint, bool wrap)
|
|
{
|
|
unsigned long mask, word_mask;
|
|
|
|
guard(raw_spinlock_irqsave)(&map->swap_lock);
|
|
|
|
if (!map->cleared) {
|
|
if (depth == 0)
|
|
return false;
|
|
|
|
word_mask = (~0UL) >> (BITS_PER_LONG - depth);
|
|
/*
|
|
* The current behavior is to always retry after moving
|
|
* ->cleared to word, and we change it to retry in case
|
|
* of any free bits. To avoid an infinite loop, we need
|
|
* to take wrap & alloc_hint into account, otherwise a
|
|
* soft lockup may occur.
|
|
*/
|
|
if (!wrap && alloc_hint)
|
|
word_mask &= ~((1UL << alloc_hint) - 1);
|
|
|
|
return (READ_ONCE(map->word) & word_mask) != word_mask;
|
|
}
|
|
|
|
/*
|
|
* First get a stable cleared mask, setting the old mask to 0.
|
|
*/
|
|
mask = xchg(&map->cleared, 0);
|
|
|
|
/*
|
|
* Now clear the masked bits in our free word
|
|
*/
|
|
atomic_long_andnot(mask, (atomic_long_t *)&map->word);
|
|
BUILD_BUG_ON(sizeof(atomic_long_t) != sizeof(map->word));
|
|
return true;
|
|
}
|
|
|
|
int sbitmap_init_node(struct sbitmap *sb, unsigned int depth, int shift,
|
|
gfp_t flags, int node, bool round_robin,
|
|
bool alloc_hint)
|
|
{
|
|
unsigned int bits_per_word;
|
|
int i;
|
|
|
|
if (shift < 0)
|
|
shift = sbitmap_calculate_shift(depth);
|
|
|
|
bits_per_word = 1U << shift;
|
|
if (bits_per_word > BITS_PER_LONG)
|
|
return -EINVAL;
|
|
|
|
sb->shift = shift;
|
|
sb->depth = depth;
|
|
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
|
|
sb->round_robin = round_robin;
|
|
|
|
if (depth == 0) {
|
|
sb->map = NULL;
|
|
return 0;
|
|
}
|
|
|
|
if (alloc_hint) {
|
|
if (init_alloc_hint(sb, flags))
|
|
return -ENOMEM;
|
|
} else {
|
|
sb->alloc_hint = NULL;
|
|
}
|
|
|
|
sb->map = kvzalloc_node(sb->map_nr * sizeof(*sb->map), flags, node);
|
|
if (!sb->map) {
|
|
free_percpu(sb->alloc_hint);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < sb->map_nr; i++)
|
|
raw_spin_lock_init(&sb->map[i].swap_lock);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_init_node);
|
|
|
|
void sbitmap_resize(struct sbitmap *sb, unsigned int depth)
|
|
{
|
|
unsigned int bits_per_word = 1U << sb->shift;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sb->map_nr; i++)
|
|
sbitmap_deferred_clear(&sb->map[i], 0, 0, 0);
|
|
|
|
sb->depth = depth;
|
|
sb->map_nr = DIV_ROUND_UP(sb->depth, bits_per_word);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_resize);
|
|
|
|
static int __sbitmap_get_word(unsigned long *word, unsigned long depth,
|
|
unsigned int hint, bool wrap)
|
|
{
|
|
int nr;
|
|
|
|
/* don't wrap if starting from 0 */
|
|
wrap = wrap && hint;
|
|
|
|
while (1) {
|
|
nr = find_next_zero_bit(word, depth, hint);
|
|
if (unlikely(nr >= depth)) {
|
|
/*
|
|
* We started with an offset, and we didn't reset the
|
|
* offset to 0 in a failure case, so start from 0 to
|
|
* exhaust the map.
|
|
*/
|
|
if (hint && wrap) {
|
|
hint = 0;
|
|
continue;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
if (!test_and_set_bit_lock(nr, word))
|
|
break;
|
|
|
|
hint = nr + 1;
|
|
if (hint >= depth - 1)
|
|
hint = 0;
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int sbitmap_find_bit_in_word(struct sbitmap_word *map,
|
|
unsigned int depth,
|
|
unsigned int alloc_hint,
|
|
bool wrap)
|
|
{
|
|
int nr;
|
|
|
|
do {
|
|
nr = __sbitmap_get_word(&map->word, depth,
|
|
alloc_hint, wrap);
|
|
if (nr != -1)
|
|
break;
|
|
if (!sbitmap_deferred_clear(map, depth, alloc_hint, wrap))
|
|
break;
|
|
} while (1);
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int sbitmap_find_bit(struct sbitmap *sb,
|
|
unsigned int depth,
|
|
unsigned int index,
|
|
unsigned int alloc_hint,
|
|
bool wrap)
|
|
{
|
|
unsigned int i;
|
|
int nr = -1;
|
|
|
|
for (i = 0; i < sb->map_nr; i++) {
|
|
nr = sbitmap_find_bit_in_word(&sb->map[index],
|
|
min_t(unsigned int,
|
|
__map_depth(sb, index),
|
|
depth),
|
|
alloc_hint, wrap);
|
|
|
|
if (nr != -1) {
|
|
nr += index << sb->shift;
|
|
break;
|
|
}
|
|
|
|
/* Jump to next index. */
|
|
alloc_hint = 0;
|
|
if (++index >= sb->map_nr)
|
|
index = 0;
|
|
}
|
|
|
|
return nr;
|
|
}
|
|
|
|
static int __sbitmap_get(struct sbitmap *sb, unsigned int alloc_hint)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = SB_NR_TO_INDEX(sb, alloc_hint);
|
|
|
|
/*
|
|
* Unless we're doing round robin tag allocation, just use the
|
|
* alloc_hint to find the right word index. No point in looping
|
|
* twice in find_next_zero_bit() for that case.
|
|
*/
|
|
if (sb->round_robin)
|
|
alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
|
|
else
|
|
alloc_hint = 0;
|
|
|
|
return sbitmap_find_bit(sb, UINT_MAX, index, alloc_hint,
|
|
!sb->round_robin);
|
|
}
|
|
|
|
int sbitmap_get(struct sbitmap *sb)
|
|
{
|
|
int nr;
|
|
unsigned int hint, depth;
|
|
|
|
if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
|
|
return -1;
|
|
|
|
depth = READ_ONCE(sb->depth);
|
|
hint = update_alloc_hint_before_get(sb, depth);
|
|
nr = __sbitmap_get(sb, hint);
|
|
update_alloc_hint_after_get(sb, depth, hint, nr);
|
|
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_get);
|
|
|
|
static int __sbitmap_get_shallow(struct sbitmap *sb,
|
|
unsigned int alloc_hint,
|
|
unsigned long shallow_depth)
|
|
{
|
|
unsigned int index;
|
|
|
|
index = SB_NR_TO_INDEX(sb, alloc_hint);
|
|
alloc_hint = SB_NR_TO_BIT(sb, alloc_hint);
|
|
|
|
return sbitmap_find_bit(sb, shallow_depth, index, alloc_hint, true);
|
|
}
|
|
|
|
int sbitmap_get_shallow(struct sbitmap *sb, unsigned long shallow_depth)
|
|
{
|
|
int nr;
|
|
unsigned int hint, depth;
|
|
|
|
if (WARN_ON_ONCE(unlikely(!sb->alloc_hint)))
|
|
return -1;
|
|
|
|
depth = READ_ONCE(sb->depth);
|
|
hint = update_alloc_hint_before_get(sb, depth);
|
|
nr = __sbitmap_get_shallow(sb, hint, shallow_depth);
|
|
update_alloc_hint_after_get(sb, depth, hint, nr);
|
|
|
|
return nr;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_get_shallow);
|
|
|
|
bool sbitmap_any_bit_set(const struct sbitmap *sb)
|
|
{
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < sb->map_nr; i++) {
|
|
if (sb->map[i].word & ~sb->map[i].cleared)
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_any_bit_set);
|
|
|
|
static unsigned int __sbitmap_weight(const struct sbitmap *sb, bool set)
|
|
{
|
|
unsigned int i, weight = 0;
|
|
|
|
for (i = 0; i < sb->map_nr; i++) {
|
|
const struct sbitmap_word *word = &sb->map[i];
|
|
unsigned int word_depth = __map_depth(sb, i);
|
|
|
|
if (set)
|
|
weight += bitmap_weight(&word->word, word_depth);
|
|
else
|
|
weight += bitmap_weight(&word->cleared, word_depth);
|
|
}
|
|
return weight;
|
|
}
|
|
|
|
static unsigned int sbitmap_cleared(const struct sbitmap *sb)
|
|
{
|
|
return __sbitmap_weight(sb, false);
|
|
}
|
|
|
|
unsigned int sbitmap_weight(const struct sbitmap *sb)
|
|
{
|
|
return __sbitmap_weight(sb, true) - sbitmap_cleared(sb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_weight);
|
|
|
|
void sbitmap_show(struct sbitmap *sb, struct seq_file *m)
|
|
{
|
|
seq_printf(m, "depth=%u\n", sb->depth);
|
|
seq_printf(m, "busy=%u\n", sbitmap_weight(sb));
|
|
seq_printf(m, "cleared=%u\n", sbitmap_cleared(sb));
|
|
seq_printf(m, "bits_per_word=%u\n", 1U << sb->shift);
|
|
seq_printf(m, "map_nr=%u\n", sb->map_nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_show);
|
|
|
|
static inline void emit_byte(struct seq_file *m, unsigned int offset, u8 byte)
|
|
{
|
|
if ((offset & 0xf) == 0) {
|
|
if (offset != 0)
|
|
seq_putc(m, '\n');
|
|
seq_printf(m, "%08x:", offset);
|
|
}
|
|
if ((offset & 0x1) == 0)
|
|
seq_putc(m, ' ');
|
|
seq_printf(m, "%02x", byte);
|
|
}
|
|
|
|
void sbitmap_bitmap_show(struct sbitmap *sb, struct seq_file *m)
|
|
{
|
|
u8 byte = 0;
|
|
unsigned int byte_bits = 0;
|
|
unsigned int offset = 0;
|
|
int i;
|
|
|
|
for (i = 0; i < sb->map_nr; i++) {
|
|
unsigned long word = READ_ONCE(sb->map[i].word);
|
|
unsigned long cleared = READ_ONCE(sb->map[i].cleared);
|
|
unsigned int word_bits = __map_depth(sb, i);
|
|
|
|
word &= ~cleared;
|
|
|
|
while (word_bits > 0) {
|
|
unsigned int bits = min(8 - byte_bits, word_bits);
|
|
|
|
byte |= (word & (BIT(bits) - 1)) << byte_bits;
|
|
byte_bits += bits;
|
|
if (byte_bits == 8) {
|
|
emit_byte(m, offset, byte);
|
|
byte = 0;
|
|
byte_bits = 0;
|
|
offset++;
|
|
}
|
|
word >>= bits;
|
|
word_bits -= bits;
|
|
}
|
|
}
|
|
if (byte_bits) {
|
|
emit_byte(m, offset, byte);
|
|
offset++;
|
|
}
|
|
if (offset)
|
|
seq_putc(m, '\n');
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_bitmap_show);
|
|
|
|
static unsigned int sbq_calc_wake_batch(struct sbitmap_queue *sbq,
|
|
unsigned int depth)
|
|
{
|
|
unsigned int wake_batch;
|
|
unsigned int shallow_depth;
|
|
|
|
/*
|
|
* For each batch, we wake up one queue. We need to make sure that our
|
|
* batch size is small enough that the full depth of the bitmap,
|
|
* potentially limited by a shallow depth, is enough to wake up all of
|
|
* the queues.
|
|
*
|
|
* Each full word of the bitmap has bits_per_word bits, and there might
|
|
* be a partial word. There are depth / bits_per_word full words and
|
|
* depth % bits_per_word bits left over. In bitwise arithmetic:
|
|
*
|
|
* bits_per_word = 1 << shift
|
|
* depth / bits_per_word = depth >> shift
|
|
* depth % bits_per_word = depth & ((1 << shift) - 1)
|
|
*
|
|
* Each word can be limited to sbq->min_shallow_depth bits.
|
|
*/
|
|
shallow_depth = min(1U << sbq->sb.shift, sbq->min_shallow_depth);
|
|
depth = ((depth >> sbq->sb.shift) * shallow_depth +
|
|
min(depth & ((1U << sbq->sb.shift) - 1), shallow_depth));
|
|
wake_batch = clamp_t(unsigned int, depth / SBQ_WAIT_QUEUES, 1,
|
|
SBQ_WAKE_BATCH);
|
|
|
|
return wake_batch;
|
|
}
|
|
|
|
int sbitmap_queue_init_node(struct sbitmap_queue *sbq, unsigned int depth,
|
|
int shift, bool round_robin, gfp_t flags, int node)
|
|
{
|
|
int ret;
|
|
int i;
|
|
|
|
ret = sbitmap_init_node(&sbq->sb, depth, shift, flags, node,
|
|
round_robin, true);
|
|
if (ret)
|
|
return ret;
|
|
|
|
sbq->min_shallow_depth = UINT_MAX;
|
|
sbq->wake_batch = sbq_calc_wake_batch(sbq, depth);
|
|
atomic_set(&sbq->wake_index, 0);
|
|
atomic_set(&sbq->ws_active, 0);
|
|
atomic_set(&sbq->completion_cnt, 0);
|
|
atomic_set(&sbq->wakeup_cnt, 0);
|
|
|
|
sbq->ws = kzalloc_node(SBQ_WAIT_QUEUES * sizeof(*sbq->ws), flags, node);
|
|
if (!sbq->ws) {
|
|
sbitmap_free(&sbq->sb);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
for (i = 0; i < SBQ_WAIT_QUEUES; i++)
|
|
init_waitqueue_head(&sbq->ws[i].wait);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_init_node);
|
|
|
|
static void sbitmap_queue_update_wake_batch(struct sbitmap_queue *sbq,
|
|
unsigned int depth)
|
|
{
|
|
unsigned int wake_batch;
|
|
|
|
wake_batch = sbq_calc_wake_batch(sbq, depth);
|
|
if (sbq->wake_batch != wake_batch)
|
|
WRITE_ONCE(sbq->wake_batch, wake_batch);
|
|
}
|
|
|
|
void sbitmap_queue_recalculate_wake_batch(struct sbitmap_queue *sbq,
|
|
unsigned int users)
|
|
{
|
|
unsigned int wake_batch;
|
|
unsigned int depth = (sbq->sb.depth + users - 1) / users;
|
|
|
|
wake_batch = clamp_val(depth / SBQ_WAIT_QUEUES,
|
|
1, SBQ_WAKE_BATCH);
|
|
|
|
WRITE_ONCE(sbq->wake_batch, wake_batch);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_recalculate_wake_batch);
|
|
|
|
void sbitmap_queue_resize(struct sbitmap_queue *sbq, unsigned int depth)
|
|
{
|
|
sbitmap_queue_update_wake_batch(sbq, depth);
|
|
sbitmap_resize(&sbq->sb, depth);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_resize);
|
|
|
|
int __sbitmap_queue_get(struct sbitmap_queue *sbq)
|
|
{
|
|
return sbitmap_get(&sbq->sb);
|
|
}
|
|
EXPORT_SYMBOL_GPL(__sbitmap_queue_get);
|
|
|
|
unsigned long __sbitmap_queue_get_batch(struct sbitmap_queue *sbq, int nr_tags,
|
|
unsigned int *offset)
|
|
{
|
|
struct sbitmap *sb = &sbq->sb;
|
|
unsigned int hint, depth;
|
|
unsigned long index, nr;
|
|
int i;
|
|
|
|
if (unlikely(sb->round_robin))
|
|
return 0;
|
|
|
|
depth = READ_ONCE(sb->depth);
|
|
hint = update_alloc_hint_before_get(sb, depth);
|
|
|
|
index = SB_NR_TO_INDEX(sb, hint);
|
|
|
|
for (i = 0; i < sb->map_nr; i++) {
|
|
struct sbitmap_word *map = &sb->map[index];
|
|
unsigned long get_mask;
|
|
unsigned int map_depth = __map_depth(sb, index);
|
|
unsigned long val;
|
|
|
|
sbitmap_deferred_clear(map, 0, 0, 0);
|
|
val = READ_ONCE(map->word);
|
|
if (val == (1UL << (map_depth - 1)) - 1)
|
|
goto next;
|
|
|
|
nr = find_first_zero_bit(&val, map_depth);
|
|
if (nr + nr_tags <= map_depth) {
|
|
atomic_long_t *ptr = (atomic_long_t *) &map->word;
|
|
|
|
get_mask = ((1UL << nr_tags) - 1) << nr;
|
|
while (!atomic_long_try_cmpxchg(ptr, &val,
|
|
get_mask | val))
|
|
;
|
|
get_mask = (get_mask & ~val) >> nr;
|
|
if (get_mask) {
|
|
*offset = nr + (index << sb->shift);
|
|
update_alloc_hint_after_get(sb, depth, hint,
|
|
*offset + nr_tags - 1);
|
|
return get_mask;
|
|
}
|
|
}
|
|
next:
|
|
/* Jump to next index. */
|
|
if (++index >= sb->map_nr)
|
|
index = 0;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
int sbitmap_queue_get_shallow(struct sbitmap_queue *sbq,
|
|
unsigned int shallow_depth)
|
|
{
|
|
WARN_ON_ONCE(shallow_depth < sbq->min_shallow_depth);
|
|
|
|
return sbitmap_get_shallow(&sbq->sb, shallow_depth);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_get_shallow);
|
|
|
|
void sbitmap_queue_min_shallow_depth(struct sbitmap_queue *sbq,
|
|
unsigned int min_shallow_depth)
|
|
{
|
|
sbq->min_shallow_depth = min_shallow_depth;
|
|
sbitmap_queue_update_wake_batch(sbq, sbq->sb.depth);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_min_shallow_depth);
|
|
|
|
static void __sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
|
|
{
|
|
int i, wake_index, woken;
|
|
|
|
if (!atomic_read(&sbq->ws_active))
|
|
return;
|
|
|
|
wake_index = atomic_read(&sbq->wake_index);
|
|
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
|
|
struct sbq_wait_state *ws = &sbq->ws[wake_index];
|
|
|
|
/*
|
|
* Advance the index before checking the current queue.
|
|
* It improves fairness, by ensuring the queue doesn't
|
|
* need to be fully emptied before trying to wake up
|
|
* from the next one.
|
|
*/
|
|
wake_index = sbq_index_inc(wake_index);
|
|
|
|
if (waitqueue_active(&ws->wait)) {
|
|
woken = wake_up_nr(&ws->wait, nr);
|
|
if (woken == nr)
|
|
break;
|
|
nr -= woken;
|
|
}
|
|
}
|
|
|
|
if (wake_index != atomic_read(&sbq->wake_index))
|
|
atomic_set(&sbq->wake_index, wake_index);
|
|
}
|
|
|
|
void sbitmap_queue_wake_up(struct sbitmap_queue *sbq, int nr)
|
|
{
|
|
unsigned int wake_batch = READ_ONCE(sbq->wake_batch);
|
|
unsigned int wakeups;
|
|
|
|
if (!atomic_read(&sbq->ws_active))
|
|
return;
|
|
|
|
atomic_add(nr, &sbq->completion_cnt);
|
|
wakeups = atomic_read(&sbq->wakeup_cnt);
|
|
|
|
do {
|
|
if (atomic_read(&sbq->completion_cnt) - wakeups < wake_batch)
|
|
return;
|
|
} while (!atomic_try_cmpxchg(&sbq->wakeup_cnt,
|
|
&wakeups, wakeups + wake_batch));
|
|
|
|
__sbitmap_queue_wake_up(sbq, wake_batch);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_up);
|
|
|
|
static inline void sbitmap_update_cpu_hint(struct sbitmap *sb, int cpu, int tag)
|
|
{
|
|
if (likely(!sb->round_robin && tag < sb->depth))
|
|
data_race(*per_cpu_ptr(sb->alloc_hint, cpu) = tag);
|
|
}
|
|
|
|
void sbitmap_queue_clear_batch(struct sbitmap_queue *sbq, int offset,
|
|
int *tags, int nr_tags)
|
|
{
|
|
struct sbitmap *sb = &sbq->sb;
|
|
unsigned long *addr = NULL;
|
|
unsigned long mask = 0;
|
|
int i;
|
|
|
|
smp_mb__before_atomic();
|
|
for (i = 0; i < nr_tags; i++) {
|
|
const int tag = tags[i] - offset;
|
|
unsigned long *this_addr;
|
|
|
|
/* since we're clearing a batch, skip the deferred map */
|
|
this_addr = &sb->map[SB_NR_TO_INDEX(sb, tag)].word;
|
|
if (!addr) {
|
|
addr = this_addr;
|
|
} else if (addr != this_addr) {
|
|
atomic_long_andnot(mask, (atomic_long_t *) addr);
|
|
mask = 0;
|
|
addr = this_addr;
|
|
}
|
|
mask |= (1UL << SB_NR_TO_BIT(sb, tag));
|
|
}
|
|
|
|
if (mask)
|
|
atomic_long_andnot(mask, (atomic_long_t *) addr);
|
|
|
|
smp_mb__after_atomic();
|
|
sbitmap_queue_wake_up(sbq, nr_tags);
|
|
sbitmap_update_cpu_hint(&sbq->sb, raw_smp_processor_id(),
|
|
tags[nr_tags - 1] - offset);
|
|
}
|
|
|
|
void sbitmap_queue_clear(struct sbitmap_queue *sbq, unsigned int nr,
|
|
unsigned int cpu)
|
|
{
|
|
/*
|
|
* Once the clear bit is set, the bit may be allocated out.
|
|
*
|
|
* Orders READ/WRITE on the associated instance(such as request
|
|
* of blk_mq) by this bit for avoiding race with re-allocation,
|
|
* and its pair is the memory barrier implied in __sbitmap_get_word.
|
|
*
|
|
* One invariant is that the clear bit has to be zero when the bit
|
|
* is in use.
|
|
*/
|
|
smp_mb__before_atomic();
|
|
sbitmap_deferred_clear_bit(&sbq->sb, nr);
|
|
|
|
/*
|
|
* Pairs with the memory barrier in set_current_state() to ensure the
|
|
* proper ordering of clear_bit_unlock()/waitqueue_active() in the waker
|
|
* and test_and_set_bit_lock()/prepare_to_wait()/finish_wait() in the
|
|
* waiter. See the comment on waitqueue_active().
|
|
*/
|
|
smp_mb__after_atomic();
|
|
sbitmap_queue_wake_up(sbq, 1);
|
|
sbitmap_update_cpu_hint(&sbq->sb, cpu, nr);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_clear);
|
|
|
|
void sbitmap_queue_wake_all(struct sbitmap_queue *sbq)
|
|
{
|
|
int i, wake_index;
|
|
|
|
/*
|
|
* Pairs with the memory barrier in set_current_state() like in
|
|
* sbitmap_queue_wake_up().
|
|
*/
|
|
smp_mb();
|
|
wake_index = atomic_read(&sbq->wake_index);
|
|
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
|
|
struct sbq_wait_state *ws = &sbq->ws[wake_index];
|
|
|
|
if (waitqueue_active(&ws->wait))
|
|
wake_up(&ws->wait);
|
|
|
|
wake_index = sbq_index_inc(wake_index);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_wake_all);
|
|
|
|
void sbitmap_queue_show(struct sbitmap_queue *sbq, struct seq_file *m)
|
|
{
|
|
bool first;
|
|
int i;
|
|
|
|
sbitmap_show(&sbq->sb, m);
|
|
|
|
seq_puts(m, "alloc_hint={");
|
|
first = true;
|
|
for_each_possible_cpu(i) {
|
|
if (!first)
|
|
seq_puts(m, ", ");
|
|
first = false;
|
|
seq_printf(m, "%u", *per_cpu_ptr(sbq->sb.alloc_hint, i));
|
|
}
|
|
seq_puts(m, "}\n");
|
|
|
|
seq_printf(m, "wake_batch=%u\n", sbq->wake_batch);
|
|
seq_printf(m, "wake_index=%d\n", atomic_read(&sbq->wake_index));
|
|
seq_printf(m, "ws_active=%d\n", atomic_read(&sbq->ws_active));
|
|
|
|
seq_puts(m, "ws={\n");
|
|
for (i = 0; i < SBQ_WAIT_QUEUES; i++) {
|
|
struct sbq_wait_state *ws = &sbq->ws[i];
|
|
seq_printf(m, "\t{.wait=%s},\n",
|
|
waitqueue_active(&ws->wait) ? "active" : "inactive");
|
|
}
|
|
seq_puts(m, "}\n");
|
|
|
|
seq_printf(m, "round_robin=%d\n", sbq->sb.round_robin);
|
|
seq_printf(m, "min_shallow_depth=%u\n", sbq->min_shallow_depth);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_queue_show);
|
|
|
|
void sbitmap_add_wait_queue(struct sbitmap_queue *sbq,
|
|
struct sbq_wait_state *ws,
|
|
struct sbq_wait *sbq_wait)
|
|
{
|
|
if (!sbq_wait->sbq) {
|
|
sbq_wait->sbq = sbq;
|
|
atomic_inc(&sbq->ws_active);
|
|
add_wait_queue(&ws->wait, &sbq_wait->wait);
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_add_wait_queue);
|
|
|
|
void sbitmap_del_wait_queue(struct sbq_wait *sbq_wait)
|
|
{
|
|
list_del_init(&sbq_wait->wait.entry);
|
|
if (sbq_wait->sbq) {
|
|
atomic_dec(&sbq_wait->sbq->ws_active);
|
|
sbq_wait->sbq = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_del_wait_queue);
|
|
|
|
void sbitmap_prepare_to_wait(struct sbitmap_queue *sbq,
|
|
struct sbq_wait_state *ws,
|
|
struct sbq_wait *sbq_wait, int state)
|
|
{
|
|
if (!sbq_wait->sbq) {
|
|
atomic_inc(&sbq->ws_active);
|
|
sbq_wait->sbq = sbq;
|
|
}
|
|
prepare_to_wait_exclusive(&ws->wait, &sbq_wait->wait, state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_prepare_to_wait);
|
|
|
|
void sbitmap_finish_wait(struct sbitmap_queue *sbq, struct sbq_wait_state *ws,
|
|
struct sbq_wait *sbq_wait)
|
|
{
|
|
finish_wait(&ws->wait, &sbq_wait->wait);
|
|
if (sbq_wait->sbq) {
|
|
atomic_dec(&sbq->ws_active);
|
|
sbq_wait->sbq = NULL;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(sbitmap_finish_wait);
|