276 lines
8.6 KiB
C
276 lines
8.6 KiB
C
/*
|
|
* Copyright © 2014 Intel Corporation
|
|
*
|
|
* Permission is hereby granted, free of charge, to any person obtaining a
|
|
* copy of this software and associated documentation files (the "Software"),
|
|
* to deal in the Software without restriction, including without limitation
|
|
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
|
|
* and/or sell copies of the Software, and to permit persons to whom the
|
|
* Software is furnished to do so, subject to the following conditions:
|
|
*
|
|
* The above copyright notice and this permission notice (including the next
|
|
* paragraph) shall be included in all copies or substantial portions of the
|
|
* Software.
|
|
*
|
|
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
|
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
|
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
|
|
* THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
|
* LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
|
|
* FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
|
|
* IN THE SOFTWARE.
|
|
*
|
|
*/
|
|
#ifndef _INTEL_UC_H_
|
|
#define _INTEL_UC_H_
|
|
|
|
#include "intel_guc_fwif.h"
|
|
#include "i915_guc_reg.h"
|
|
#include "intel_ringbuffer.h"
|
|
#include "intel_guc_ct.h"
|
|
#include "i915_vma.h"
|
|
|
|
struct drm_i915_gem_request;
|
|
|
|
/*
|
|
* This structure primarily describes the GEM object shared with the GuC.
|
|
* The specs sometimes refer to this object as a "GuC context", but we use
|
|
* the term "client" to avoid confusion with hardware contexts. This
|
|
* GEM object is held for the entire lifetime of our interaction with
|
|
* the GuC, being allocated before the GuC is loaded with its firmware.
|
|
* Because there's no way to update the address used by the GuC after
|
|
* initialisation, the shared object must stay pinned into the GGTT as
|
|
* long as the GuC is in use. We also keep the first page (only) mapped
|
|
* into kernel address space, as it includes shared data that must be
|
|
* updated on every request submission.
|
|
*
|
|
* The single GEM object described here is actually made up of several
|
|
* separate areas, as far as the GuC is concerned. The first page (kept
|
|
* kmap'd) includes the "process descriptor" which holds sequence data for
|
|
* the doorbell, and one cacheline which actually *is* the doorbell; a
|
|
* write to this will "ring the doorbell" (i.e. send an interrupt to the
|
|
* GuC). The subsequent pages of the client object constitute the work
|
|
* queue (a circular array of work items), again described in the process
|
|
* descriptor. Work queue pages are mapped momentarily as required.
|
|
*
|
|
* We also keep a few statistics on failures. Ideally, these should all
|
|
* be zero!
|
|
* no_wq_space: times that the submission pre-check found no space was
|
|
* available in the work queue (note, the queue is shared,
|
|
* not per-engine). It is OK for this to be nonzero, but
|
|
* it should not be huge!
|
|
*/
|
|
struct i915_guc_client {
|
|
struct i915_vma *vma;
|
|
void *vaddr;
|
|
struct i915_gem_context *owner;
|
|
struct intel_guc *guc;
|
|
|
|
uint32_t engines; /* bitmap of (host) engine ids */
|
|
uint32_t priority;
|
|
u32 stage_id;
|
|
uint32_t proc_desc_offset;
|
|
|
|
u16 doorbell_id;
|
|
unsigned long doorbell_offset;
|
|
u32 doorbell_cookie;
|
|
|
|
spinlock_t wq_lock;
|
|
uint32_t wq_offset;
|
|
uint32_t wq_size;
|
|
uint32_t wq_tail;
|
|
uint32_t wq_rsvd;
|
|
uint32_t no_wq_space;
|
|
|
|
/* Per-engine counts of GuC submissions */
|
|
uint64_t submissions[I915_NUM_ENGINES];
|
|
};
|
|
|
|
enum intel_uc_fw_status {
|
|
INTEL_UC_FIRMWARE_FAIL = -1,
|
|
INTEL_UC_FIRMWARE_NONE = 0,
|
|
INTEL_UC_FIRMWARE_PENDING,
|
|
INTEL_UC_FIRMWARE_SUCCESS
|
|
};
|
|
|
|
/* User-friendly representation of an enum */
|
|
static inline
|
|
const char *intel_uc_fw_status_repr(enum intel_uc_fw_status status)
|
|
{
|
|
switch (status) {
|
|
case INTEL_UC_FIRMWARE_FAIL:
|
|
return "FAIL";
|
|
case INTEL_UC_FIRMWARE_NONE:
|
|
return "NONE";
|
|
case INTEL_UC_FIRMWARE_PENDING:
|
|
return "PENDING";
|
|
case INTEL_UC_FIRMWARE_SUCCESS:
|
|
return "SUCCESS";
|
|
}
|
|
return "<invalid>";
|
|
}
|
|
|
|
enum intel_uc_fw_type {
|
|
INTEL_UC_FW_TYPE_GUC,
|
|
INTEL_UC_FW_TYPE_HUC
|
|
};
|
|
|
|
/* User-friendly representation of an enum */
|
|
static inline const char *intel_uc_fw_type_repr(enum intel_uc_fw_type type)
|
|
{
|
|
switch (type) {
|
|
case INTEL_UC_FW_TYPE_GUC:
|
|
return "GuC";
|
|
case INTEL_UC_FW_TYPE_HUC:
|
|
return "HuC";
|
|
}
|
|
return "uC";
|
|
}
|
|
|
|
/*
|
|
* This structure encapsulates all the data needed during the process
|
|
* of fetching, caching, and loading the firmware image into the GuC.
|
|
*/
|
|
struct intel_uc_fw {
|
|
const char *path;
|
|
size_t size;
|
|
struct drm_i915_gem_object *obj;
|
|
enum intel_uc_fw_status fetch_status;
|
|
enum intel_uc_fw_status load_status;
|
|
|
|
uint16_t major_ver_wanted;
|
|
uint16_t minor_ver_wanted;
|
|
uint16_t major_ver_found;
|
|
uint16_t minor_ver_found;
|
|
|
|
enum intel_uc_fw_type type;
|
|
uint32_t header_size;
|
|
uint32_t header_offset;
|
|
uint32_t rsa_size;
|
|
uint32_t rsa_offset;
|
|
uint32_t ucode_size;
|
|
uint32_t ucode_offset;
|
|
};
|
|
|
|
struct intel_guc_log {
|
|
uint32_t flags;
|
|
struct i915_vma *vma;
|
|
/* The runtime stuff gets created only when GuC logging gets enabled */
|
|
struct {
|
|
void *buf_addr;
|
|
struct workqueue_struct *flush_wq;
|
|
struct work_struct flush_work;
|
|
struct rchan *relay_chan;
|
|
} runtime;
|
|
/* logging related stats */
|
|
u32 capture_miss_count;
|
|
u32 flush_interrupt_count;
|
|
u32 prev_overflow_count[GUC_MAX_LOG_BUFFER];
|
|
u32 total_overflow_count[GUC_MAX_LOG_BUFFER];
|
|
u32 flush_count[GUC_MAX_LOG_BUFFER];
|
|
};
|
|
|
|
struct intel_guc {
|
|
struct intel_uc_fw fw;
|
|
struct intel_guc_log log;
|
|
struct intel_guc_ct ct;
|
|
|
|
/* Log snapshot if GuC errors during load */
|
|
struct drm_i915_gem_object *load_err_log;
|
|
|
|
/* intel_guc_recv interrupt related state */
|
|
bool interrupts_enabled;
|
|
|
|
struct i915_vma *ads_vma;
|
|
struct i915_vma *stage_desc_pool;
|
|
void *stage_desc_pool_vaddr;
|
|
struct ida stage_ids;
|
|
|
|
struct i915_guc_client *execbuf_client;
|
|
|
|
DECLARE_BITMAP(doorbell_bitmap, GUC_NUM_DOORBELLS);
|
|
uint32_t db_cacheline; /* Cyclic counter mod pagesize */
|
|
|
|
/* GuC's FW specific registers used in MMIO send */
|
|
struct {
|
|
u32 base;
|
|
unsigned int count;
|
|
enum forcewake_domains fw_domains;
|
|
} send_regs;
|
|
|
|
/* To serialize the intel_guc_send actions */
|
|
struct mutex send_mutex;
|
|
|
|
/* GuC's FW specific send function */
|
|
int (*send)(struct intel_guc *guc, const u32 *data, u32 len);
|
|
|
|
/* GuC's FW specific notify function */
|
|
void (*notify)(struct intel_guc *guc);
|
|
};
|
|
|
|
struct intel_huc {
|
|
/* Generic uC firmware management */
|
|
struct intel_uc_fw fw;
|
|
|
|
/* HuC-specific additions */
|
|
};
|
|
|
|
/* intel_uc.c */
|
|
void intel_uc_sanitize_options(struct drm_i915_private *dev_priv);
|
|
void intel_uc_init_early(struct drm_i915_private *dev_priv);
|
|
void intel_uc_init_fw(struct drm_i915_private *dev_priv);
|
|
void intel_uc_fini_fw(struct drm_i915_private *dev_priv);
|
|
int intel_uc_init_hw(struct drm_i915_private *dev_priv);
|
|
void intel_uc_fini_hw(struct drm_i915_private *dev_priv);
|
|
int intel_guc_sample_forcewake(struct intel_guc *guc);
|
|
int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len);
|
|
int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len);
|
|
|
|
static inline int intel_guc_send(struct intel_guc *guc, const u32 *action, u32 len)
|
|
{
|
|
return guc->send(guc, action, len);
|
|
}
|
|
|
|
static inline void intel_guc_notify(struct intel_guc *guc)
|
|
{
|
|
guc->notify(guc);
|
|
}
|
|
|
|
/* intel_guc_loader.c */
|
|
int intel_guc_select_fw(struct intel_guc *guc);
|
|
int intel_guc_init_hw(struct intel_guc *guc);
|
|
int intel_guc_suspend(struct drm_i915_private *dev_priv);
|
|
int intel_guc_resume(struct drm_i915_private *dev_priv);
|
|
u32 intel_guc_wopcm_size(struct drm_i915_private *dev_priv);
|
|
|
|
/* i915_guc_submission.c */
|
|
int i915_guc_submission_init(struct drm_i915_private *dev_priv);
|
|
int i915_guc_submission_enable(struct drm_i915_private *dev_priv);
|
|
int i915_guc_wq_reserve(struct drm_i915_gem_request *rq);
|
|
void i915_guc_wq_unreserve(struct drm_i915_gem_request *request);
|
|
void i915_guc_submission_disable(struct drm_i915_private *dev_priv);
|
|
void i915_guc_submission_fini(struct drm_i915_private *dev_priv);
|
|
struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size);
|
|
|
|
/* intel_guc_log.c */
|
|
int intel_guc_log_create(struct intel_guc *guc);
|
|
void intel_guc_log_destroy(struct intel_guc *guc);
|
|
int i915_guc_log_control(struct drm_i915_private *dev_priv, u64 control_val);
|
|
void i915_guc_log_register(struct drm_i915_private *dev_priv);
|
|
void i915_guc_log_unregister(struct drm_i915_private *dev_priv);
|
|
|
|
static inline u32 guc_ggtt_offset(struct i915_vma *vma)
|
|
{
|
|
u32 offset = i915_ggtt_offset(vma);
|
|
GEM_BUG_ON(offset < GUC_WOPCM_TOP);
|
|
GEM_BUG_ON(range_overflows_t(u64, offset, vma->size, GUC_GGTT_TOP));
|
|
return offset;
|
|
}
|
|
|
|
/* intel_huc.c */
|
|
void intel_huc_select_fw(struct intel_huc *huc);
|
|
void intel_huc_init_hw(struct intel_huc *huc);
|
|
void intel_guc_auth_huc(struct drm_i915_private *dev_priv);
|
|
|
|
#endif
|