OpenCloudOS-Kernel/fs/ext4/inode.c

5948 lines
171 KiB
C

/*
* linux/fs/ext4/inode.c
*
* Copyright (C) 1992, 1993, 1994, 1995
* Remy Card (card@masi.ibp.fr)
* Laboratoire MASI - Institut Blaise Pascal
* Universite Pierre et Marie Curie (Paris VI)
*
* from
*
* linux/fs/minix/inode.c
*
* Copyright (C) 1991, 1992 Linus Torvalds
*
* 64-bit file support on 64-bit platforms by Jakub Jelinek
* (jj@sunsite.ms.mff.cuni.cz)
*
* Assorted race fixes, rewrite of ext4_get_block() by Al Viro, 2000
*/
#include <linux/fs.h>
#include <linux/time.h>
#include <linux/highuid.h>
#include <linux/pagemap.h>
#include <linux/dax.h>
#include <linux/quotaops.h>
#include <linux/string.h>
#include <linux/buffer_head.h>
#include <linux/writeback.h>
#include <linux/pagevec.h>
#include <linux/mpage.h>
#include <linux/namei.h>
#include <linux/uio.h>
#include <linux/bio.h>
#include <linux/workqueue.h>
#include <linux/kernel.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/bitops.h>
#include <linux/iomap.h>
#include "ext4_jbd2.h"
#include "xattr.h"
#include "acl.h"
#include "truncate.h"
#include <trace/events/ext4.h>
#define MPAGE_DA_EXTENT_TAIL 0x01
static __u32 ext4_inode_csum(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
__u32 csum;
__u16 dummy_csum = 0;
int offset = offsetof(struct ext4_inode, i_checksum_lo);
unsigned int csum_size = sizeof(dummy_csum);
csum = ext4_chksum(sbi, ei->i_csum_seed, (__u8 *)raw, offset);
csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum, csum_size);
offset += csum_size;
csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
EXT4_GOOD_OLD_INODE_SIZE - offset);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
offset = offsetof(struct ext4_inode, i_checksum_hi);
csum = ext4_chksum(sbi, csum, (__u8 *)raw +
EXT4_GOOD_OLD_INODE_SIZE,
offset - EXT4_GOOD_OLD_INODE_SIZE);
if (EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi)) {
csum = ext4_chksum(sbi, csum, (__u8 *)&dummy_csum,
csum_size);
offset += csum_size;
}
csum = ext4_chksum(sbi, csum, (__u8 *)raw + offset,
EXT4_INODE_SIZE(inode->i_sb) - offset);
}
return csum;
}
static int ext4_inode_csum_verify(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
__u32 provided, calculated;
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
cpu_to_le32(EXT4_OS_LINUX) ||
!ext4_has_metadata_csum(inode->i_sb))
return 1;
provided = le16_to_cpu(raw->i_checksum_lo);
calculated = ext4_inode_csum(inode, raw, ei);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
provided |= ((__u32)le16_to_cpu(raw->i_checksum_hi)) << 16;
else
calculated &= 0xFFFF;
return provided == calculated;
}
static void ext4_inode_csum_set(struct inode *inode, struct ext4_inode *raw,
struct ext4_inode_info *ei)
{
__u32 csum;
if (EXT4_SB(inode->i_sb)->s_es->s_creator_os !=
cpu_to_le32(EXT4_OS_LINUX) ||
!ext4_has_metadata_csum(inode->i_sb))
return;
csum = ext4_inode_csum(inode, raw, ei);
raw->i_checksum_lo = cpu_to_le16(csum & 0xFFFF);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw, ei, i_checksum_hi))
raw->i_checksum_hi = cpu_to_le16(csum >> 16);
}
static inline int ext4_begin_ordered_truncate(struct inode *inode,
loff_t new_size)
{
trace_ext4_begin_ordered_truncate(inode, new_size);
/*
* If jinode is zero, then we never opened the file for
* writing, so there's no need to call
* jbd2_journal_begin_ordered_truncate() since there's no
* outstanding writes we need to flush.
*/
if (!EXT4_I(inode)->jinode)
return 0;
return jbd2_journal_begin_ordered_truncate(EXT4_JOURNAL(inode),
EXT4_I(inode)->jinode,
new_size);
}
static void ext4_invalidatepage(struct page *page, unsigned int offset,
unsigned int length);
static int __ext4_journalled_writepage(struct page *page, unsigned int len);
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh);
static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
int pextents);
/*
* Test whether an inode is a fast symlink.
*/
int ext4_inode_is_fast_symlink(struct inode *inode)
{
int ea_blocks = EXT4_I(inode)->i_file_acl ?
EXT4_CLUSTER_SIZE(inode->i_sb) >> 9 : 0;
if (ext4_has_inline_data(inode))
return 0;
return (S_ISLNK(inode->i_mode) && inode->i_blocks - ea_blocks == 0);
}
/*
* Restart the transaction associated with *handle. This does a commit,
* so before we call here everything must be consistently dirtied against
* this transaction.
*/
int ext4_truncate_restart_trans(handle_t *handle, struct inode *inode,
int nblocks)
{
int ret;
/*
* Drop i_data_sem to avoid deadlock with ext4_map_blocks. At this
* moment, get_block can be called only for blocks inside i_size since
* page cache has been already dropped and writes are blocked by
* i_mutex. So we can safely drop the i_data_sem here.
*/
BUG_ON(EXT4_JOURNAL(inode) == NULL);
jbd_debug(2, "restarting handle %p\n", handle);
up_write(&EXT4_I(inode)->i_data_sem);
ret = ext4_journal_restart(handle, nblocks);
down_write(&EXT4_I(inode)->i_data_sem);
ext4_discard_preallocations(inode);
return ret;
}
/*
* Called at the last iput() if i_nlink is zero.
*/
void ext4_evict_inode(struct inode *inode)
{
handle_t *handle;
int err;
trace_ext4_evict_inode(inode);
if (inode->i_nlink) {
/*
* When journalling data dirty buffers are tracked only in the
* journal. So although mm thinks everything is clean and
* ready for reaping the inode might still have some pages to
* write in the running transaction or waiting to be
* checkpointed. Thus calling jbd2_journal_invalidatepage()
* (via truncate_inode_pages()) to discard these buffers can
* cause data loss. Also even if we did not discard these
* buffers, we would have no way to find them after the inode
* is reaped and thus user could see stale data if he tries to
* read them before the transaction is checkpointed. So be
* careful and force everything to disk here... We use
* ei->i_datasync_tid to store the newest transaction
* containing inode's data.
*
* Note that directories do not have this problem because they
* don't use page cache.
*/
if (inode->i_ino != EXT4_JOURNAL_INO &&
ext4_should_journal_data(inode) &&
(S_ISLNK(inode->i_mode) || S_ISREG(inode->i_mode))) {
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
tid_t commit_tid = EXT4_I(inode)->i_datasync_tid;
jbd2_complete_transaction(journal, commit_tid);
filemap_write_and_wait(&inode->i_data);
}
truncate_inode_pages_final(&inode->i_data);
goto no_delete;
}
if (is_bad_inode(inode))
goto no_delete;
dquot_initialize(inode);
if (ext4_should_order_data(inode))
ext4_begin_ordered_truncate(inode, 0);
truncate_inode_pages_final(&inode->i_data);
/*
* Protect us against freezing - iput() caller didn't have to have any
* protection against it
*/
sb_start_intwrite(inode->i_sb);
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE,
ext4_blocks_for_truncate(inode)+3);
if (IS_ERR(handle)) {
ext4_std_error(inode->i_sb, PTR_ERR(handle));
/*
* If we're going to skip the normal cleanup, we still need to
* make sure that the in-core orphan linked list is properly
* cleaned up.
*/
ext4_orphan_del(NULL, inode);
sb_end_intwrite(inode->i_sb);
goto no_delete;
}
if (IS_SYNC(inode))
ext4_handle_sync(handle);
inode->i_size = 0;
err = ext4_mark_inode_dirty(handle, inode);
if (err) {
ext4_warning(inode->i_sb,
"couldn't mark inode dirty (err %d)", err);
goto stop_handle;
}
if (inode->i_blocks) {
err = ext4_truncate(inode);
if (err) {
ext4_error(inode->i_sb,
"couldn't truncate inode %lu (err %d)",
inode->i_ino, err);
goto stop_handle;
}
}
/*
* ext4_ext_truncate() doesn't reserve any slop when it
* restarts journal transactions; therefore there may not be
* enough credits left in the handle to remove the inode from
* the orphan list and set the dtime field.
*/
if (!ext4_handle_has_enough_credits(handle, 3)) {
err = ext4_journal_extend(handle, 3);
if (err > 0)
err = ext4_journal_restart(handle, 3);
if (err != 0) {
ext4_warning(inode->i_sb,
"couldn't extend journal (err %d)", err);
stop_handle:
ext4_journal_stop(handle);
ext4_orphan_del(NULL, inode);
sb_end_intwrite(inode->i_sb);
goto no_delete;
}
}
/*
* Kill off the orphan record which ext4_truncate created.
* AKPM: I think this can be inside the above `if'.
* Note that ext4_orphan_del() has to be able to cope with the
* deletion of a non-existent orphan - this is because we don't
* know if ext4_truncate() actually created an orphan record.
* (Well, we could do this if we need to, but heck - it works)
*/
ext4_orphan_del(handle, inode);
EXT4_I(inode)->i_dtime = get_seconds();
/*
* One subtle ordering requirement: if anything has gone wrong
* (transaction abort, IO errors, whatever), then we can still
* do these next steps (the fs will already have been marked as
* having errors), but we can't free the inode if the mark_dirty
* fails.
*/
if (ext4_mark_inode_dirty(handle, inode))
/* If that failed, just do the required in-core inode clear. */
ext4_clear_inode(inode);
else
ext4_free_inode(handle, inode);
ext4_journal_stop(handle);
sb_end_intwrite(inode->i_sb);
return;
no_delete:
ext4_clear_inode(inode); /* We must guarantee clearing of inode... */
}
#ifdef CONFIG_QUOTA
qsize_t *ext4_get_reserved_space(struct inode *inode)
{
return &EXT4_I(inode)->i_reserved_quota;
}
#endif
/*
* Called with i_data_sem down, which is important since we can call
* ext4_discard_preallocations() from here.
*/
void ext4_da_update_reserve_space(struct inode *inode,
int used, int quota_claim)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
spin_lock(&ei->i_block_reservation_lock);
trace_ext4_da_update_reserve_space(inode, used, quota_claim);
if (unlikely(used > ei->i_reserved_data_blocks)) {
ext4_warning(inode->i_sb, "%s: ino %lu, used %d "
"with only %d reserved data blocks",
__func__, inode->i_ino, used,
ei->i_reserved_data_blocks);
WARN_ON(1);
used = ei->i_reserved_data_blocks;
}
/* Update per-inode reservations */
ei->i_reserved_data_blocks -= used;
percpu_counter_sub(&sbi->s_dirtyclusters_counter, used);
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
/* Update quota subsystem for data blocks */
if (quota_claim)
dquot_claim_block(inode, EXT4_C2B(sbi, used));
else {
/*
* We did fallocate with an offset that is already delayed
* allocated. So on delayed allocated writeback we should
* not re-claim the quota for fallocated blocks.
*/
dquot_release_reservation_block(inode, EXT4_C2B(sbi, used));
}
/*
* If we have done all the pending block allocations and if
* there aren't any writers on the inode, we can discard the
* inode's preallocations.
*/
if ((ei->i_reserved_data_blocks == 0) &&
(atomic_read(&inode->i_writecount) == 0))
ext4_discard_preallocations(inode);
}
static int __check_block_validity(struct inode *inode, const char *func,
unsigned int line,
struct ext4_map_blocks *map)
{
if (!ext4_data_block_valid(EXT4_SB(inode->i_sb), map->m_pblk,
map->m_len)) {
ext4_error_inode(inode, func, line, map->m_pblk,
"lblock %lu mapped to illegal pblock "
"(length %d)", (unsigned long) map->m_lblk,
map->m_len);
return -EFSCORRUPTED;
}
return 0;
}
int ext4_issue_zeroout(struct inode *inode, ext4_lblk_t lblk, ext4_fsblk_t pblk,
ext4_lblk_t len)
{
int ret;
if (ext4_encrypted_inode(inode))
return fscrypt_zeroout_range(inode, lblk, pblk, len);
ret = sb_issue_zeroout(inode->i_sb, pblk, len, GFP_NOFS);
if (ret > 0)
ret = 0;
return ret;
}
#define check_block_validity(inode, map) \
__check_block_validity((inode), __func__, __LINE__, (map))
#ifdef ES_AGGRESSIVE_TEST
static void ext4_map_blocks_es_recheck(handle_t *handle,
struct inode *inode,
struct ext4_map_blocks *es_map,
struct ext4_map_blocks *map,
int flags)
{
int retval;
map->m_flags = 0;
/*
* There is a race window that the result is not the same.
* e.g. xfstests #223 when dioread_nolock enables. The reason
* is that we lookup a block mapping in extent status tree with
* out taking i_data_sem. So at the time the unwritten extent
* could be converted.
*/
down_read(&EXT4_I(inode)->i_data_sem);
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
}
up_read((&EXT4_I(inode)->i_data_sem));
/*
* We don't check m_len because extent will be collpased in status
* tree. So the m_len might not equal.
*/
if (es_map->m_lblk != map->m_lblk ||
es_map->m_flags != map->m_flags ||
es_map->m_pblk != map->m_pblk) {
printk("ES cache assertion failed for inode: %lu "
"es_cached ex [%d/%d/%llu/%x] != "
"found ex [%d/%d/%llu/%x] retval %d flags %x\n",
inode->i_ino, es_map->m_lblk, es_map->m_len,
es_map->m_pblk, es_map->m_flags, map->m_lblk,
map->m_len, map->m_pblk, map->m_flags,
retval, flags);
}
}
#endif /* ES_AGGRESSIVE_TEST */
/*
* The ext4_map_blocks() function tries to look up the requested blocks,
* and returns if the blocks are already mapped.
*
* Otherwise it takes the write lock of the i_data_sem and allocate blocks
* and store the allocated blocks in the result buffer head and mark it
* mapped.
*
* If file type is extents based, it will call ext4_ext_map_blocks(),
* Otherwise, call with ext4_ind_map_blocks() to handle indirect mapping
* based files
*
* On success, it returns the number of blocks being mapped or allocated. if
* create==0 and the blocks are pre-allocated and unwritten, the resulting @map
* is marked as unwritten. If the create == 1, it will mark @map as mapped.
*
* It returns 0 if plain look up failed (blocks have not been allocated), in
* that case, @map is returned as unmapped but we still do fill map->m_len to
* indicate the length of a hole starting at map->m_lblk.
*
* It returns the error in case of allocation failure.
*/
int ext4_map_blocks(handle_t *handle, struct inode *inode,
struct ext4_map_blocks *map, int flags)
{
struct extent_status es;
int retval;
int ret = 0;
#ifdef ES_AGGRESSIVE_TEST
struct ext4_map_blocks orig_map;
memcpy(&orig_map, map, sizeof(*map));
#endif
map->m_flags = 0;
ext_debug("ext4_map_blocks(): inode %lu, flag %d, max_blocks %u,"
"logical block %lu\n", inode->i_ino, flags, map->m_len,
(unsigned long) map->m_lblk);
/*
* ext4_map_blocks returns an int, and m_len is an unsigned int
*/
if (unlikely(map->m_len > INT_MAX))
map->m_len = INT_MAX;
/* We can handle the block number less than EXT_MAX_BLOCKS */
if (unlikely(map->m_lblk >= EXT_MAX_BLOCKS))
return -EFSCORRUPTED;
/* Lookup extent status tree firstly */
if (ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
if (ext4_es_is_written(&es) || ext4_es_is_unwritten(&es)) {
map->m_pblk = ext4_es_pblock(&es) +
map->m_lblk - es.es_lblk;
map->m_flags |= ext4_es_is_written(&es) ?
EXT4_MAP_MAPPED : EXT4_MAP_UNWRITTEN;
retval = es.es_len - (map->m_lblk - es.es_lblk);
if (retval > map->m_len)
retval = map->m_len;
map->m_len = retval;
} else if (ext4_es_is_delayed(&es) || ext4_es_is_hole(&es)) {
map->m_pblk = 0;
retval = es.es_len - (map->m_lblk - es.es_lblk);
if (retval > map->m_len)
retval = map->m_len;
map->m_len = retval;
retval = 0;
} else {
BUG_ON(1);
}
#ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(handle, inode, map,
&orig_map, flags);
#endif
goto found;
}
/*
* Try to see if we can get the block without requesting a new
* file system block.
*/
down_read(&EXT4_I(inode)->i_data_sem);
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags &
EXT4_GET_BLOCKS_KEEP_SIZE);
}
if (retval > 0) {
unsigned int status;
if (unlikely(retval != map->m_len)) {
ext4_warning(inode->i_sb,
"ES len assertion failed for inode "
"%lu: retval %d != map->m_len %d",
inode->i_ino, retval, map->m_len);
WARN_ON(1);
}
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
!(status & EXTENT_STATUS_WRITTEN) &&
ext4_find_delalloc_range(inode, map->m_lblk,
map->m_lblk + map->m_len - 1))
status |= EXTENT_STATUS_DELAYED;
ret = ext4_es_insert_extent(inode, map->m_lblk,
map->m_len, map->m_pblk, status);
if (ret < 0)
retval = ret;
}
up_read((&EXT4_I(inode)->i_data_sem));
found:
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
ret = check_block_validity(inode, map);
if (ret != 0)
return ret;
}
/* If it is only a block(s) look up */
if ((flags & EXT4_GET_BLOCKS_CREATE) == 0)
return retval;
/*
* Returns if the blocks have already allocated
*
* Note that if blocks have been preallocated
* ext4_ext_get_block() returns the create = 0
* with buffer head unmapped.
*/
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED)
/*
* If we need to convert extent to unwritten
* we continue and do the actual work in
* ext4_ext_map_blocks()
*/
if (!(flags & EXT4_GET_BLOCKS_CONVERT_UNWRITTEN))
return retval;
/*
* Here we clear m_flags because after allocating an new extent,
* it will be set again.
*/
map->m_flags &= ~EXT4_MAP_FLAGS;
/*
* New blocks allocate and/or writing to unwritten extent
* will possibly result in updating i_data, so we take
* the write lock of i_data_sem, and call get_block()
* with create == 1 flag.
*/
down_write(&EXT4_I(inode)->i_data_sem);
/*
* We need to check for EXT4 here because migrate
* could have changed the inode type in between
*/
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
retval = ext4_ext_map_blocks(handle, inode, map, flags);
} else {
retval = ext4_ind_map_blocks(handle, inode, map, flags);
if (retval > 0 && map->m_flags & EXT4_MAP_NEW) {
/*
* We allocated new blocks which will result in
* i_data's format changing. Force the migrate
* to fail by clearing migrate flags
*/
ext4_clear_inode_state(inode, EXT4_STATE_EXT_MIGRATE);
}
/*
* Update reserved blocks/metadata blocks after successful
* block allocation which had been deferred till now. We don't
* support fallocate for non extent files. So we can update
* reserve space here.
*/
if ((retval > 0) &&
(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE))
ext4_da_update_reserve_space(inode, retval, 1);
}
if (retval > 0) {
unsigned int status;
if (unlikely(retval != map->m_len)) {
ext4_warning(inode->i_sb,
"ES len assertion failed for inode "
"%lu: retval %d != map->m_len %d",
inode->i_ino, retval, map->m_len);
WARN_ON(1);
}
/*
* We have to zeroout blocks before inserting them into extent
* status tree. Otherwise someone could look them up there and
* use them before they are really zeroed. We also have to
* unmap metadata before zeroing as otherwise writeback can
* overwrite zeros with stale data from block device.
*/
if (flags & EXT4_GET_BLOCKS_ZERO &&
map->m_flags & EXT4_MAP_MAPPED &&
map->m_flags & EXT4_MAP_NEW) {
clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
map->m_len);
ret = ext4_issue_zeroout(inode, map->m_lblk,
map->m_pblk, map->m_len);
if (ret) {
retval = ret;
goto out_sem;
}
}
/*
* If the extent has been zeroed out, we don't need to update
* extent status tree.
*/
if ((flags & EXT4_GET_BLOCKS_PRE_IO) &&
ext4_es_lookup_extent(inode, map->m_lblk, &es)) {
if (ext4_es_is_written(&es))
goto out_sem;
}
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
if (!(flags & EXT4_GET_BLOCKS_DELALLOC_RESERVE) &&
!(status & EXTENT_STATUS_WRITTEN) &&
ext4_find_delalloc_range(inode, map->m_lblk,
map->m_lblk + map->m_len - 1))
status |= EXTENT_STATUS_DELAYED;
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
map->m_pblk, status);
if (ret < 0) {
retval = ret;
goto out_sem;
}
}
out_sem:
up_write((&EXT4_I(inode)->i_data_sem));
if (retval > 0 && map->m_flags & EXT4_MAP_MAPPED) {
ret = check_block_validity(inode, map);
if (ret != 0)
return ret;
/*
* Inodes with freshly allocated blocks where contents will be
* visible after transaction commit must be on transaction's
* ordered data list.
*/
if (map->m_flags & EXT4_MAP_NEW &&
!(map->m_flags & EXT4_MAP_UNWRITTEN) &&
!(flags & EXT4_GET_BLOCKS_ZERO) &&
!IS_NOQUOTA(inode) &&
ext4_should_order_data(inode)) {
if (flags & EXT4_GET_BLOCKS_IO_SUBMIT)
ret = ext4_jbd2_inode_add_wait(handle, inode);
else
ret = ext4_jbd2_inode_add_write(handle, inode);
if (ret)
return ret;
}
}
return retval;
}
/*
* Update EXT4_MAP_FLAGS in bh->b_state. For buffer heads attached to pages
* we have to be careful as someone else may be manipulating b_state as well.
*/
static void ext4_update_bh_state(struct buffer_head *bh, unsigned long flags)
{
unsigned long old_state;
unsigned long new_state;
flags &= EXT4_MAP_FLAGS;
/* Dummy buffer_head? Set non-atomically. */
if (!bh->b_page) {
bh->b_state = (bh->b_state & ~EXT4_MAP_FLAGS) | flags;
return;
}
/*
* Someone else may be modifying b_state. Be careful! This is ugly but
* once we get rid of using bh as a container for mapping information
* to pass to / from get_block functions, this can go away.
*/
do {
old_state = READ_ONCE(bh->b_state);
new_state = (old_state & ~EXT4_MAP_FLAGS) | flags;
} while (unlikely(
cmpxchg(&bh->b_state, old_state, new_state) != old_state));
}
static int _ext4_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int flags)
{
struct ext4_map_blocks map;
int ret = 0;
if (ext4_has_inline_data(inode))
return -ERANGE;
map.m_lblk = iblock;
map.m_len = bh->b_size >> inode->i_blkbits;
ret = ext4_map_blocks(ext4_journal_current_handle(), inode, &map,
flags);
if (ret > 0) {
map_bh(bh, inode->i_sb, map.m_pblk);
ext4_update_bh_state(bh, map.m_flags);
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
ret = 0;
} else if (ret == 0) {
/* hole case, need to fill in bh->b_size */
bh->b_size = inode->i_sb->s_blocksize * map.m_len;
}
return ret;
}
int ext4_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
return _ext4_get_block(inode, iblock, bh,
create ? EXT4_GET_BLOCKS_CREATE : 0);
}
/*
* Get block function used when preparing for buffered write if we require
* creating an unwritten extent if blocks haven't been allocated. The extent
* will be converted to written after the IO is complete.
*/
int ext4_get_block_unwritten(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
ext4_debug("ext4_get_block_unwritten: inode %lu, create flag %d\n",
inode->i_ino, create);
return _ext4_get_block(inode, iblock, bh_result,
EXT4_GET_BLOCKS_IO_CREATE_EXT);
}
/* Maximum number of blocks we map for direct IO at once. */
#define DIO_MAX_BLOCKS 4096
/*
* Get blocks function for the cases that need to start a transaction -
* generally difference cases of direct IO and DAX IO. It also handles retries
* in case of ENOSPC.
*/
static int ext4_get_block_trans(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int flags)
{
int dio_credits;
handle_t *handle;
int retries = 0;
int ret;
/* Trim mapping request to maximum we can map at once for DIO */
if (bh_result->b_size >> inode->i_blkbits > DIO_MAX_BLOCKS)
bh_result->b_size = DIO_MAX_BLOCKS << inode->i_blkbits;
dio_credits = ext4_chunk_trans_blocks(inode,
bh_result->b_size >> inode->i_blkbits);
retry:
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS, dio_credits);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = _ext4_get_block(inode, iblock, bh_result, flags);
ext4_journal_stop(handle);
if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry;
return ret;
}
/* Get block function for DIO reads and writes to inodes without extents */
int ext4_dio_get_block(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
/* We don't expect handle for direct IO */
WARN_ON_ONCE(ext4_journal_current_handle());
if (!create)
return _ext4_get_block(inode, iblock, bh, 0);
return ext4_get_block_trans(inode, iblock, bh, EXT4_GET_BLOCKS_CREATE);
}
/*
* Get block function for AIO DIO writes when we create unwritten extent if
* blocks are not allocated yet. The extent will be converted to written
* after IO is complete.
*/
static int ext4_dio_get_block_unwritten_async(struct inode *inode,
sector_t iblock, struct buffer_head *bh_result, int create)
{
int ret;
/* We don't expect handle for direct IO */
WARN_ON_ONCE(ext4_journal_current_handle());
ret = ext4_get_block_trans(inode, iblock, bh_result,
EXT4_GET_BLOCKS_IO_CREATE_EXT);
/*
* When doing DIO using unwritten extents, we need io_end to convert
* unwritten extents to written on IO completion. We allocate io_end
* once we spot unwritten extent and store it in b_private. Generic
* DIO code keeps b_private set and furthermore passes the value to
* our completion callback in 'private' argument.
*/
if (!ret && buffer_unwritten(bh_result)) {
if (!bh_result->b_private) {
ext4_io_end_t *io_end;
io_end = ext4_init_io_end(inode, GFP_KERNEL);
if (!io_end)
return -ENOMEM;
bh_result->b_private = io_end;
ext4_set_io_unwritten_flag(inode, io_end);
}
set_buffer_defer_completion(bh_result);
}
return ret;
}
/*
* Get block function for non-AIO DIO writes when we create unwritten extent if
* blocks are not allocated yet. The extent will be converted to written
* after IO is complete from ext4_ext_direct_IO() function.
*/
static int ext4_dio_get_block_unwritten_sync(struct inode *inode,
sector_t iblock, struct buffer_head *bh_result, int create)
{
int ret;
/* We don't expect handle for direct IO */
WARN_ON_ONCE(ext4_journal_current_handle());
ret = ext4_get_block_trans(inode, iblock, bh_result,
EXT4_GET_BLOCKS_IO_CREATE_EXT);
/*
* Mark inode as having pending DIO writes to unwritten extents.
* ext4_ext_direct_IO() checks this flag and converts extents to
* written.
*/
if (!ret && buffer_unwritten(bh_result))
ext4_set_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
return ret;
}
static int ext4_dio_get_block_overwrite(struct inode *inode, sector_t iblock,
struct buffer_head *bh_result, int create)
{
int ret;
ext4_debug("ext4_dio_get_block_overwrite: inode %lu, create flag %d\n",
inode->i_ino, create);
/* We don't expect handle for direct IO */
WARN_ON_ONCE(ext4_journal_current_handle());
ret = _ext4_get_block(inode, iblock, bh_result, 0);
/*
* Blocks should have been preallocated! ext4_file_write_iter() checks
* that.
*/
WARN_ON_ONCE(!buffer_mapped(bh_result) || buffer_unwritten(bh_result));
return ret;
}
/*
* `handle' can be NULL if create is zero
*/
struct buffer_head *ext4_getblk(handle_t *handle, struct inode *inode,
ext4_lblk_t block, int map_flags)
{
struct ext4_map_blocks map;
struct buffer_head *bh;
int create = map_flags & EXT4_GET_BLOCKS_CREATE;
int err;
J_ASSERT(handle != NULL || create == 0);
map.m_lblk = block;
map.m_len = 1;
err = ext4_map_blocks(handle, inode, &map, map_flags);
if (err == 0)
return create ? ERR_PTR(-ENOSPC) : NULL;
if (err < 0)
return ERR_PTR(err);
bh = sb_getblk(inode->i_sb, map.m_pblk);
if (unlikely(!bh))
return ERR_PTR(-ENOMEM);
if (map.m_flags & EXT4_MAP_NEW) {
J_ASSERT(create != 0);
J_ASSERT(handle != NULL);
/*
* Now that we do not always journal data, we should
* keep in mind whether this should always journal the
* new buffer as metadata. For now, regular file
* writes use ext4_get_block instead, so it's not a
* problem.
*/
lock_buffer(bh);
BUFFER_TRACE(bh, "call get_create_access");
err = ext4_journal_get_create_access(handle, bh);
if (unlikely(err)) {
unlock_buffer(bh);
goto errout;
}
if (!buffer_uptodate(bh)) {
memset(bh->b_data, 0, inode->i_sb->s_blocksize);
set_buffer_uptodate(bh);
}
unlock_buffer(bh);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
err = ext4_handle_dirty_metadata(handle, inode, bh);
if (unlikely(err))
goto errout;
} else
BUFFER_TRACE(bh, "not a new buffer");
return bh;
errout:
brelse(bh);
return ERR_PTR(err);
}
struct buffer_head *ext4_bread(handle_t *handle, struct inode *inode,
ext4_lblk_t block, int map_flags)
{
struct buffer_head *bh;
bh = ext4_getblk(handle, inode, block, map_flags);
if (IS_ERR(bh))
return bh;
if (!bh || buffer_uptodate(bh))
return bh;
ll_rw_block(REQ_OP_READ, REQ_META | REQ_PRIO, 1, &bh);
wait_on_buffer(bh);
if (buffer_uptodate(bh))
return bh;
put_bh(bh);
return ERR_PTR(-EIO);
}
int ext4_walk_page_buffers(handle_t *handle,
struct buffer_head *head,
unsigned from,
unsigned to,
int *partial,
int (*fn)(handle_t *handle,
struct buffer_head *bh))
{
struct buffer_head *bh;
unsigned block_start, block_end;
unsigned blocksize = head->b_size;
int err, ret = 0;
struct buffer_head *next;
for (bh = head, block_start = 0;
ret == 0 && (bh != head || !block_start);
block_start = block_end, bh = next) {
next = bh->b_this_page;
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (partial && !buffer_uptodate(bh))
*partial = 1;
continue;
}
err = (*fn)(handle, bh);
if (!ret)
ret = err;
}
return ret;
}
/*
* To preserve ordering, it is essential that the hole instantiation and
* the data write be encapsulated in a single transaction. We cannot
* close off a transaction and start a new one between the ext4_get_block()
* and the commit_write(). So doing the jbd2_journal_start at the start of
* prepare_write() is the right place.
*
* Also, this function can nest inside ext4_writepage(). In that case, we
* *know* that ext4_writepage() has generated enough buffer credits to do the
* whole page. So we won't block on the journal in that case, which is good,
* because the caller may be PF_MEMALLOC.
*
* By accident, ext4 can be reentered when a transaction is open via
* quota file writes. If we were to commit the transaction while thus
* reentered, there can be a deadlock - we would be holding a quota
* lock, and the commit would never complete if another thread had a
* transaction open and was blocking on the quota lock - a ranking
* violation.
*
* So what we do is to rely on the fact that jbd2_journal_stop/journal_start
* will _not_ run commit under these circumstances because handle->h_ref
* is elevated. We'll still have enough credits for the tiny quotafile
* write.
*/
int do_journal_get_write_access(handle_t *handle,
struct buffer_head *bh)
{
int dirty = buffer_dirty(bh);
int ret;
if (!buffer_mapped(bh) || buffer_freed(bh))
return 0;
/*
* __block_write_begin() could have dirtied some buffers. Clean
* the dirty bit as jbd2_journal_get_write_access() could complain
* otherwise about fs integrity issues. Setting of the dirty bit
* by __block_write_begin() isn't a real problem here as we clear
* the bit before releasing a page lock and thus writeback cannot
* ever write the buffer.
*/
if (dirty)
clear_buffer_dirty(bh);
BUFFER_TRACE(bh, "get write access");
ret = ext4_journal_get_write_access(handle, bh);
if (!ret && dirty)
ret = ext4_handle_dirty_metadata(handle, NULL, bh);
return ret;
}
#ifdef CONFIG_EXT4_FS_ENCRYPTION
static int ext4_block_write_begin(struct page *page, loff_t pos, unsigned len,
get_block_t *get_block)
{
unsigned from = pos & (PAGE_SIZE - 1);
unsigned to = from + len;
struct inode *inode = page->mapping->host;
unsigned block_start, block_end;
sector_t block;
int err = 0;
unsigned blocksize = inode->i_sb->s_blocksize;
unsigned bbits;
struct buffer_head *bh, *head, *wait[2], **wait_bh = wait;
bool decrypt = false;
BUG_ON(!PageLocked(page));
BUG_ON(from > PAGE_SIZE);
BUG_ON(to > PAGE_SIZE);
BUG_ON(from > to);
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
head = page_buffers(page);
bbits = ilog2(blocksize);
block = (sector_t)page->index << (PAGE_SHIFT - bbits);
for (bh = head, block_start = 0; bh != head || !block_start;
block++, block_start = block_end, bh = bh->b_this_page) {
block_end = block_start + blocksize;
if (block_end <= from || block_start >= to) {
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
}
continue;
}
if (buffer_new(bh))
clear_buffer_new(bh);
if (!buffer_mapped(bh)) {
WARN_ON(bh->b_size != blocksize);
err = get_block(inode, block, bh, 1);
if (err)
break;
if (buffer_new(bh)) {
clean_bdev_bh_alias(bh);
if (PageUptodate(page)) {
clear_buffer_new(bh);
set_buffer_uptodate(bh);
mark_buffer_dirty(bh);
continue;
}
if (block_end > to || block_start < from)
zero_user_segments(page, to, block_end,
block_start, from);
continue;
}
}
if (PageUptodate(page)) {
if (!buffer_uptodate(bh))
set_buffer_uptodate(bh);
continue;
}
if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
!buffer_unwritten(bh) &&
(block_start < from || block_end > to)) {
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
*wait_bh++ = bh;
decrypt = ext4_encrypted_inode(inode) &&
S_ISREG(inode->i_mode);
}
}
/*
* If we issued read requests, let them complete.
*/
while (wait_bh > wait) {
wait_on_buffer(*--wait_bh);
if (!buffer_uptodate(*wait_bh))
err = -EIO;
}
if (unlikely(err))
page_zero_new_buffers(page, from, to);
else if (decrypt)
err = fscrypt_decrypt_page(page->mapping->host, page,
PAGE_SIZE, 0, page->index);
return err;
}
#endif
static int ext4_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
struct inode *inode = mapping->host;
int ret, needed_blocks;
handle_t *handle;
int retries = 0;
struct page *page;
pgoff_t index;
unsigned from, to;
trace_ext4_write_begin(inode, pos, len, flags);
/*
* Reserve one block more for addition to orphan list in case
* we allocate blocks but write fails for some reason
*/
needed_blocks = ext4_writepage_trans_blocks(inode) + 1;
index = pos >> PAGE_SHIFT;
from = pos & (PAGE_SIZE - 1);
to = from + len;
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
ret = ext4_try_to_write_inline_data(mapping, inode, pos, len,
flags, pagep);
if (ret < 0)
return ret;
if (ret == 1)
return 0;
}
/*
* grab_cache_page_write_begin() can take a long time if the
* system is thrashing due to memory pressure, or if the page
* is being written back. So grab it first before we start
* the transaction handle. This also allows us to allocate
* the page (if needed) without using GFP_NOFS.
*/
retry_grab:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
unlock_page(page);
retry_journal:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE, needed_blocks);
if (IS_ERR(handle)) {
put_page(page);
return PTR_ERR(handle);
}
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
unlock_page(page);
put_page(page);
ext4_journal_stop(handle);
goto retry_grab;
}
/* In case writeback began while the page was unlocked */
wait_for_stable_page(page);
#ifdef CONFIG_EXT4_FS_ENCRYPTION
if (ext4_should_dioread_nolock(inode))
ret = ext4_block_write_begin(page, pos, len,
ext4_get_block_unwritten);
else
ret = ext4_block_write_begin(page, pos, len,
ext4_get_block);
#else
if (ext4_should_dioread_nolock(inode))
ret = __block_write_begin(page, pos, len,
ext4_get_block_unwritten);
else
ret = __block_write_begin(page, pos, len, ext4_get_block);
#endif
if (!ret && ext4_should_journal_data(inode)) {
ret = ext4_walk_page_buffers(handle, page_buffers(page),
from, to, NULL,
do_journal_get_write_access);
}
if (ret) {
unlock_page(page);
/*
* __block_write_begin may have instantiated a few blocks
* outside i_size. Trim these off again. Don't need
* i_size_read because we hold i_mutex.
*
* Add inode to orphan list in case we crash before
* truncate finishes
*/
if (pos + len > inode->i_size && ext4_can_truncate(inode))
ext4_orphan_add(handle, inode);
ext4_journal_stop(handle);
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might
* still be on the orphan list; we need to
* make sure the inode is removed from the
* orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
if (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_journal;
put_page(page);
return ret;
}
*pagep = page;
return ret;
}
/* For write_end() in data=journal mode */
static int write_end_fn(handle_t *handle, struct buffer_head *bh)
{
int ret;
if (!buffer_mapped(bh) || buffer_freed(bh))
return 0;
set_buffer_uptodate(bh);
ret = ext4_handle_dirty_metadata(handle, NULL, bh);
clear_buffer_meta(bh);
clear_buffer_prio(bh);
return ret;
}
/*
* We need to pick up the new inode size which generic_commit_write gave us
* `file' can be NULL - eg, when called from page_symlink().
*
* ext4 never places buffers on inode->i_mapping->private_list. metadata
* buffers are managed internally.
*/
static int ext4_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
handle_t *handle = ext4_journal_current_handle();
struct inode *inode = mapping->host;
loff_t old_size = inode->i_size;
int ret = 0, ret2;
int i_size_changed = 0;
trace_ext4_write_end(inode, pos, len, copied);
if (ext4_has_inline_data(inode)) {
ret = ext4_write_inline_data_end(inode, pos, len,
copied, page);
if (ret < 0)
goto errout;
copied = ret;
} else
copied = block_write_end(file, mapping, pos,
len, copied, page, fsdata);
/*
* it's important to update i_size while still holding page lock:
* page writeout could otherwise come in and zero beyond i_size.
*/
i_size_changed = ext4_update_inode_size(inode, pos + copied);
unlock_page(page);
put_page(page);
if (old_size < pos)
pagecache_isize_extended(inode, old_size, pos);
/*
* Don't mark the inode dirty under page lock. First, it unnecessarily
* makes the holding time of page lock longer. Second, it forces lock
* ordering of page lock and transaction start for journaling
* filesystems.
*/
if (i_size_changed)
ext4_mark_inode_dirty(handle, inode);
if (pos + len > inode->i_size && ext4_can_truncate(inode))
/* if we have allocated more blocks and copied
* less. We will have blocks allocated outside
* inode->i_size. So truncate them
*/
ext4_orphan_add(handle, inode);
errout:
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might still be
* on the orphan list; we need to make sure the inode
* is removed from the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret ? ret : copied;
}
/*
* This is a private version of page_zero_new_buffers() which doesn't
* set the buffer to be dirty, since in data=journalled mode we need
* to call ext4_handle_dirty_metadata() instead.
*/
static void zero_new_buffers(struct page *page, unsigned from, unsigned to)
{
unsigned int block_start = 0, block_end;
struct buffer_head *head, *bh;
bh = head = page_buffers(page);
do {
block_end = block_start + bh->b_size;
if (buffer_new(bh)) {
if (block_end > from && block_start < to) {
if (!PageUptodate(page)) {
unsigned start, size;
start = max(from, block_start);
size = min(to, block_end) - start;
zero_user(page, start, size);
set_buffer_uptodate(bh);
}
clear_buffer_new(bh);
}
}
block_start = block_end;
bh = bh->b_this_page;
} while (bh != head);
}
static int ext4_journalled_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
handle_t *handle = ext4_journal_current_handle();
struct inode *inode = mapping->host;
loff_t old_size = inode->i_size;
int ret = 0, ret2;
int partial = 0;
unsigned from, to;
int size_changed = 0;
trace_ext4_journalled_write_end(inode, pos, len, copied);
from = pos & (PAGE_SIZE - 1);
to = from + len;
BUG_ON(!ext4_handle_valid(handle));
if (ext4_has_inline_data(inode))
copied = ext4_write_inline_data_end(inode, pos, len,
copied, page);
else {
if (copied < len) {
if (!PageUptodate(page))
copied = 0;
zero_new_buffers(page, from+copied, to);
}
ret = ext4_walk_page_buffers(handle, page_buffers(page), from,
to, &partial, write_end_fn);
if (!partial)
SetPageUptodate(page);
}
size_changed = ext4_update_inode_size(inode, pos + copied);
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
unlock_page(page);
put_page(page);
if (old_size < pos)
pagecache_isize_extended(inode, old_size, pos);
if (size_changed) {
ret2 = ext4_mark_inode_dirty(handle, inode);
if (!ret)
ret = ret2;
}
if (pos + len > inode->i_size && ext4_can_truncate(inode))
/* if we have allocated more blocks and copied
* less. We will have blocks allocated outside
* inode->i_size. So truncate them
*/
ext4_orphan_add(handle, inode);
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
if (pos + len > inode->i_size) {
ext4_truncate_failed_write(inode);
/*
* If truncate failed early the inode might still be
* on the orphan list; we need to make sure the inode
* is removed from the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret ? ret : copied;
}
/*
* Reserve space for a single cluster
*/
static int ext4_da_reserve_space(struct inode *inode)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
int ret;
/*
* We will charge metadata quota at writeout time; this saves
* us from metadata over-estimation, though we may go over by
* a small amount in the end. Here we just reserve for data.
*/
ret = dquot_reserve_block(inode, EXT4_C2B(sbi, 1));
if (ret)
return ret;
spin_lock(&ei->i_block_reservation_lock);
if (ext4_claim_free_clusters(sbi, 1, 0)) {
spin_unlock(&ei->i_block_reservation_lock);
dquot_release_reservation_block(inode, EXT4_C2B(sbi, 1));
return -ENOSPC;
}
ei->i_reserved_data_blocks++;
trace_ext4_da_reserve_space(inode);
spin_unlock(&ei->i_block_reservation_lock);
return 0; /* success */
}
static void ext4_da_release_space(struct inode *inode, int to_free)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct ext4_inode_info *ei = EXT4_I(inode);
if (!to_free)
return; /* Nothing to release, exit */
spin_lock(&EXT4_I(inode)->i_block_reservation_lock);
trace_ext4_da_release_space(inode, to_free);
if (unlikely(to_free > ei->i_reserved_data_blocks)) {
/*
* if there aren't enough reserved blocks, then the
* counter is messed up somewhere. Since this
* function is called from invalidate page, it's
* harmless to return without any action.
*/
ext4_warning(inode->i_sb, "ext4_da_release_space: "
"ino %lu, to_free %d with only %d reserved "
"data blocks", inode->i_ino, to_free,
ei->i_reserved_data_blocks);
WARN_ON(1);
to_free = ei->i_reserved_data_blocks;
}
ei->i_reserved_data_blocks -= to_free;
/* update fs dirty data blocks counter */
percpu_counter_sub(&sbi->s_dirtyclusters_counter, to_free);
spin_unlock(&EXT4_I(inode)->i_block_reservation_lock);
dquot_release_reservation_block(inode, EXT4_C2B(sbi, to_free));
}
static void ext4_da_page_release_reservation(struct page *page,
unsigned int offset,
unsigned int length)
{
int to_release = 0, contiguous_blks = 0;
struct buffer_head *head, *bh;
unsigned int curr_off = 0;
struct inode *inode = page->mapping->host;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
unsigned int stop = offset + length;
int num_clusters;
ext4_fsblk_t lblk;
BUG_ON(stop > PAGE_SIZE || stop < length);
head = page_buffers(page);
bh = head;
do {
unsigned int next_off = curr_off + bh->b_size;
if (next_off > stop)
break;
if ((offset <= curr_off) && (buffer_delay(bh))) {
to_release++;
contiguous_blks++;
clear_buffer_delay(bh);
} else if (contiguous_blks) {
lblk = page->index <<
(PAGE_SHIFT - inode->i_blkbits);
lblk += (curr_off >> inode->i_blkbits) -
contiguous_blks;
ext4_es_remove_extent(inode, lblk, contiguous_blks);
contiguous_blks = 0;
}
curr_off = next_off;
} while ((bh = bh->b_this_page) != head);
if (contiguous_blks) {
lblk = page->index << (PAGE_SHIFT - inode->i_blkbits);
lblk += (curr_off >> inode->i_blkbits) - contiguous_blks;
ext4_es_remove_extent(inode, lblk, contiguous_blks);
}
/* If we have released all the blocks belonging to a cluster, then we
* need to release the reserved space for that cluster. */
num_clusters = EXT4_NUM_B2C(sbi, to_release);
while (num_clusters > 0) {
lblk = (page->index << (PAGE_SHIFT - inode->i_blkbits)) +
((num_clusters - 1) << sbi->s_cluster_bits);
if (sbi->s_cluster_ratio == 1 ||
!ext4_find_delalloc_cluster(inode, lblk))
ext4_da_release_space(inode, 1);
num_clusters--;
}
}
/*
* Delayed allocation stuff
*/
struct mpage_da_data {
struct inode *inode;
struct writeback_control *wbc;
pgoff_t first_page; /* The first page to write */
pgoff_t next_page; /* Current page to examine */
pgoff_t last_page; /* Last page to examine */
/*
* Extent to map - this can be after first_page because that can be
* fully mapped. We somewhat abuse m_flags to store whether the extent
* is delalloc or unwritten.
*/
struct ext4_map_blocks map;
struct ext4_io_submit io_submit; /* IO submission data */
};
static void mpage_release_unused_pages(struct mpage_da_data *mpd,
bool invalidate)
{
int nr_pages, i;
pgoff_t index, end;
struct pagevec pvec;
struct inode *inode = mpd->inode;
struct address_space *mapping = inode->i_mapping;
/* This is necessary when next_page == 0. */
if (mpd->first_page >= mpd->next_page)
return;
index = mpd->first_page;
end = mpd->next_page - 1;
if (invalidate) {
ext4_lblk_t start, last;
start = index << (PAGE_SHIFT - inode->i_blkbits);
last = end << (PAGE_SHIFT - inode->i_blkbits);
ext4_es_remove_extent(inode, start, last - start + 1);
}
pagevec_init(&pvec, 0);
while (index <= end) {
nr_pages = pagevec_lookup(&pvec, mapping, index, PAGEVEC_SIZE);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (page->index > end)
break;
BUG_ON(!PageLocked(page));
BUG_ON(PageWriteback(page));
if (invalidate) {
if (page_mapped(page))
clear_page_dirty_for_io(page);
block_invalidatepage(page, 0, PAGE_SIZE);
ClearPageUptodate(page);
}
unlock_page(page);
}
index = pvec.pages[nr_pages - 1]->index + 1;
pagevec_release(&pvec);
}
}
static void ext4_print_free_blocks(struct inode *inode)
{
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
struct super_block *sb = inode->i_sb;
struct ext4_inode_info *ei = EXT4_I(inode);
ext4_msg(sb, KERN_CRIT, "Total free blocks count %lld",
EXT4_C2B(EXT4_SB(inode->i_sb),
ext4_count_free_clusters(sb)));
ext4_msg(sb, KERN_CRIT, "Free/Dirty block details");
ext4_msg(sb, KERN_CRIT, "free_blocks=%lld",
(long long) EXT4_C2B(EXT4_SB(sb),
percpu_counter_sum(&sbi->s_freeclusters_counter)));
ext4_msg(sb, KERN_CRIT, "dirty_blocks=%lld",
(long long) EXT4_C2B(EXT4_SB(sb),
percpu_counter_sum(&sbi->s_dirtyclusters_counter)));
ext4_msg(sb, KERN_CRIT, "Block reservation details");
ext4_msg(sb, KERN_CRIT, "i_reserved_data_blocks=%u",
ei->i_reserved_data_blocks);
return;
}
static int ext4_bh_delay_or_unwritten(handle_t *handle, struct buffer_head *bh)
{
return (buffer_delay(bh) || buffer_unwritten(bh)) && buffer_dirty(bh);
}
/*
* This function is grabs code from the very beginning of
* ext4_map_blocks, but assumes that the caller is from delayed write
* time. This function looks up the requested blocks and sets the
* buffer delay bit under the protection of i_data_sem.
*/
static int ext4_da_map_blocks(struct inode *inode, sector_t iblock,
struct ext4_map_blocks *map,
struct buffer_head *bh)
{
struct extent_status es;
int retval;
sector_t invalid_block = ~((sector_t) 0xffff);
#ifdef ES_AGGRESSIVE_TEST
struct ext4_map_blocks orig_map;
memcpy(&orig_map, map, sizeof(*map));
#endif
if (invalid_block < ext4_blocks_count(EXT4_SB(inode->i_sb)->s_es))
invalid_block = ~0;
map->m_flags = 0;
ext_debug("ext4_da_map_blocks(): inode %lu, max_blocks %u,"
"logical block %lu\n", inode->i_ino, map->m_len,
(unsigned long) map->m_lblk);
/* Lookup extent status tree firstly */
if (ext4_es_lookup_extent(inode, iblock, &es)) {
if (ext4_es_is_hole(&es)) {
retval = 0;
down_read(&EXT4_I(inode)->i_data_sem);
goto add_delayed;
}
/*
* Delayed extent could be allocated by fallocate.
* So we need to check it.
*/
if (ext4_es_is_delayed(&es) && !ext4_es_is_unwritten(&es)) {
map_bh(bh, inode->i_sb, invalid_block);
set_buffer_new(bh);
set_buffer_delay(bh);
return 0;
}
map->m_pblk = ext4_es_pblock(&es) + iblock - es.es_lblk;
retval = es.es_len - (iblock - es.es_lblk);
if (retval > map->m_len)
retval = map->m_len;
map->m_len = retval;
if (ext4_es_is_written(&es))
map->m_flags |= EXT4_MAP_MAPPED;
else if (ext4_es_is_unwritten(&es))
map->m_flags |= EXT4_MAP_UNWRITTEN;
else
BUG_ON(1);
#ifdef ES_AGGRESSIVE_TEST
ext4_map_blocks_es_recheck(NULL, inode, map, &orig_map, 0);
#endif
return retval;
}
/*
* Try to see if we can get the block without requesting a new
* file system block.
*/
down_read(&EXT4_I(inode)->i_data_sem);
if (ext4_has_inline_data(inode))
retval = 0;
else if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
retval = ext4_ext_map_blocks(NULL, inode, map, 0);
else
retval = ext4_ind_map_blocks(NULL, inode, map, 0);
add_delayed:
if (retval == 0) {
int ret;
/*
* XXX: __block_prepare_write() unmaps passed block,
* is it OK?
*/
/*
* If the block was allocated from previously allocated cluster,
* then we don't need to reserve it again. However we still need
* to reserve metadata for every block we're going to write.
*/
if (EXT4_SB(inode->i_sb)->s_cluster_ratio == 1 ||
!ext4_find_delalloc_cluster(inode, map->m_lblk)) {
ret = ext4_da_reserve_space(inode);
if (ret) {
/* not enough space to reserve */
retval = ret;
goto out_unlock;
}
}
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
~0, EXTENT_STATUS_DELAYED);
if (ret) {
retval = ret;
goto out_unlock;
}
map_bh(bh, inode->i_sb, invalid_block);
set_buffer_new(bh);
set_buffer_delay(bh);
} else if (retval > 0) {
int ret;
unsigned int status;
if (unlikely(retval != map->m_len)) {
ext4_warning(inode->i_sb,
"ES len assertion failed for inode "
"%lu: retval %d != map->m_len %d",
inode->i_ino, retval, map->m_len);
WARN_ON(1);
}
status = map->m_flags & EXT4_MAP_UNWRITTEN ?
EXTENT_STATUS_UNWRITTEN : EXTENT_STATUS_WRITTEN;
ret = ext4_es_insert_extent(inode, map->m_lblk, map->m_len,
map->m_pblk, status);
if (ret != 0)
retval = ret;
}
out_unlock:
up_read((&EXT4_I(inode)->i_data_sem));
return retval;
}
/*
* This is a special get_block_t callback which is used by
* ext4_da_write_begin(). It will either return mapped block or
* reserve space for a single block.
*
* For delayed buffer_head we have BH_Mapped, BH_New, BH_Delay set.
* We also have b_blocknr = -1 and b_bdev initialized properly
*
* For unwritten buffer_head we have BH_Mapped, BH_New, BH_Unwritten set.
* We also have b_blocknr = physicalblock mapping unwritten extent and b_bdev
* initialized properly.
*/
int ext4_da_get_block_prep(struct inode *inode, sector_t iblock,
struct buffer_head *bh, int create)
{
struct ext4_map_blocks map;
int ret = 0;
BUG_ON(create == 0);
BUG_ON(bh->b_size != inode->i_sb->s_blocksize);
map.m_lblk = iblock;
map.m_len = 1;
/*
* first, we need to know whether the block is allocated already
* preallocated blocks are unmapped but should treated
* the same as allocated blocks.
*/
ret = ext4_da_map_blocks(inode, iblock, &map, bh);
if (ret <= 0)
return ret;
map_bh(bh, inode->i_sb, map.m_pblk);
ext4_update_bh_state(bh, map.m_flags);
if (buffer_unwritten(bh)) {
/* A delayed write to unwritten bh should be marked
* new and mapped. Mapped ensures that we don't do
* get_block multiple times when we write to the same
* offset and new ensures that we do proper zero out
* for partial write.
*/
set_buffer_new(bh);
set_buffer_mapped(bh);
}
return 0;
}
static int bget_one(handle_t *handle, struct buffer_head *bh)
{
get_bh(bh);
return 0;
}
static int bput_one(handle_t *handle, struct buffer_head *bh)
{
put_bh(bh);
return 0;
}
static int __ext4_journalled_writepage(struct page *page,
unsigned int len)
{
struct address_space *mapping = page->mapping;
struct inode *inode = mapping->host;
struct buffer_head *page_bufs = NULL;
handle_t *handle = NULL;
int ret = 0, err = 0;
int inline_data = ext4_has_inline_data(inode);
struct buffer_head *inode_bh = NULL;
ClearPageChecked(page);
if (inline_data) {
BUG_ON(page->index != 0);
BUG_ON(len > ext4_get_max_inline_size(inode));
inode_bh = ext4_journalled_write_inline_data(inode, len, page);
if (inode_bh == NULL)
goto out;
} else {
page_bufs = page_buffers(page);
if (!page_bufs) {
BUG();
goto out;
}
ext4_walk_page_buffers(handle, page_bufs, 0, len,
NULL, bget_one);
}
/*
* We need to release the page lock before we start the
* journal, so grab a reference so the page won't disappear
* out from under us.
*/
get_page(page);
unlock_page(page);
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
ext4_writepage_trans_blocks(inode));
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
put_page(page);
goto out_no_pagelock;
}
BUG_ON(!ext4_handle_valid(handle));
lock_page(page);
put_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
ext4_journal_stop(handle);
ret = 0;
goto out;
}
if (inline_data) {
BUFFER_TRACE(inode_bh, "get write access");
ret = ext4_journal_get_write_access(handle, inode_bh);
err = ext4_handle_dirty_metadata(handle, inode, inode_bh);
} else {
ret = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
do_journal_get_write_access);
err = ext4_walk_page_buffers(handle, page_bufs, 0, len, NULL,
write_end_fn);
}
if (ret == 0)
ret = err;
EXT4_I(inode)->i_datasync_tid = handle->h_transaction->t_tid;
err = ext4_journal_stop(handle);
if (!ret)
ret = err;
if (!ext4_has_inline_data(inode))
ext4_walk_page_buffers(NULL, page_bufs, 0, len,
NULL, bput_one);
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
out:
unlock_page(page);
out_no_pagelock:
brelse(inode_bh);
return ret;
}
/*
* Note that we don't need to start a transaction unless we're journaling data
* because we should have holes filled from ext4_page_mkwrite(). We even don't
* need to file the inode to the transaction's list in ordered mode because if
* we are writing back data added by write(), the inode is already there and if
* we are writing back data modified via mmap(), no one guarantees in which
* transaction the data will hit the disk. In case we are journaling data, we
* cannot start transaction directly because transaction start ranks above page
* lock so we have to do some magic.
*
* This function can get called via...
* - ext4_writepages after taking page lock (have journal handle)
* - journal_submit_inode_data_buffers (no journal handle)
* - shrink_page_list via the kswapd/direct reclaim (no journal handle)
* - grab_page_cache when doing write_begin (have journal handle)
*
* We don't do any block allocation in this function. If we have page with
* multiple blocks we need to write those buffer_heads that are mapped. This
* is important for mmaped based write. So if we do with blocksize 1K
* truncate(f, 1024);
* a = mmap(f, 0, 4096);
* a[0] = 'a';
* truncate(f, 4096);
* we have in the page first buffer_head mapped via page_mkwrite call back
* but other buffer_heads would be unmapped but dirty (dirty done via the
* do_wp_page). So writepage should write the first block. If we modify
* the mmap area beyond 1024 we will again get a page_fault and the
* page_mkwrite callback will do the block allocation and mark the
* buffer_heads mapped.
*
* We redirty the page if we have any buffer_heads that is either delay or
* unwritten in the page.
*
* We can get recursively called as show below.
*
* ext4_writepage() -> kmalloc() -> __alloc_pages() -> page_launder() ->
* ext4_writepage()
*
* But since we don't do any block allocation we should not deadlock.
* Page also have the dirty flag cleared so we don't get recurive page_lock.
*/
static int ext4_writepage(struct page *page,
struct writeback_control *wbc)
{
int ret = 0;
loff_t size;
unsigned int len;
struct buffer_head *page_bufs = NULL;
struct inode *inode = page->mapping->host;
struct ext4_io_submit io_submit;
bool keep_towrite = false;
trace_ext4_writepage(page);
size = i_size_read(inode);
if (page->index == size >> PAGE_SHIFT)
len = size & ~PAGE_MASK;
else
len = PAGE_SIZE;
page_bufs = page_buffers(page);
/*
* We cannot do block allocation or other extent handling in this
* function. If there are buffers needing that, we have to redirty
* the page. But we may reach here when we do a journal commit via
* journal_submit_inode_data_buffers() and in that case we must write
* allocated buffers to achieve data=ordered mode guarantees.
*
* Also, if there is only one buffer per page (the fs block
* size == the page size), if one buffer needs block
* allocation or needs to modify the extent tree to clear the
* unwritten flag, we know that the page can't be written at
* all, so we might as well refuse the write immediately.
* Unfortunately if the block size != page size, we can't as
* easily detect this case using ext4_walk_page_buffers(), but
* for the extremely common case, this is an optimization that
* skips a useless round trip through ext4_bio_write_page().
*/
if (ext4_walk_page_buffers(NULL, page_bufs, 0, len, NULL,
ext4_bh_delay_or_unwritten)) {
redirty_page_for_writepage(wbc, page);
if ((current->flags & PF_MEMALLOC) ||
(inode->i_sb->s_blocksize == PAGE_SIZE)) {
/*
* For memory cleaning there's no point in writing only
* some buffers. So just bail out. Warn if we came here
* from direct reclaim.
*/
WARN_ON_ONCE((current->flags & (PF_MEMALLOC|PF_KSWAPD))
== PF_MEMALLOC);
unlock_page(page);
return 0;
}
keep_towrite = true;
}
if (PageChecked(page) && ext4_should_journal_data(inode))
/*
* It's mmapped pagecache. Add buffers and journal it. There
* doesn't seem much point in redirtying the page here.
*/
return __ext4_journalled_writepage(page, len);
ext4_io_submit_init(&io_submit, wbc);
io_submit.io_end = ext4_init_io_end(inode, GFP_NOFS);
if (!io_submit.io_end) {
redirty_page_for_writepage(wbc, page);
unlock_page(page);
return -ENOMEM;
}
ret = ext4_bio_write_page(&io_submit, page, len, wbc, keep_towrite);
ext4_io_submit(&io_submit);
/* Drop io_end reference we got from init */
ext4_put_io_end_defer(io_submit.io_end);
return ret;
}
static int mpage_submit_page(struct mpage_da_data *mpd, struct page *page)
{
int len;
loff_t size = i_size_read(mpd->inode);
int err;
BUG_ON(page->index != mpd->first_page);
if (page->index == size >> PAGE_SHIFT)
len = size & ~PAGE_MASK;
else
len = PAGE_SIZE;
clear_page_dirty_for_io(page);
err = ext4_bio_write_page(&mpd->io_submit, page, len, mpd->wbc, false);
if (!err)
mpd->wbc->nr_to_write--;
mpd->first_page++;
return err;
}
#define BH_FLAGS ((1 << BH_Unwritten) | (1 << BH_Delay))
/*
* mballoc gives us at most this number of blocks...
* XXX: That seems to be only a limitation of ext4_mb_normalize_request().
* The rest of mballoc seems to handle chunks up to full group size.
*/
#define MAX_WRITEPAGES_EXTENT_LEN 2048
/*
* mpage_add_bh_to_extent - try to add bh to extent of blocks to map
*
* @mpd - extent of blocks
* @lblk - logical number of the block in the file
* @bh - buffer head we want to add to the extent
*
* The function is used to collect contig. blocks in the same state. If the
* buffer doesn't require mapping for writeback and we haven't started the
* extent of buffers to map yet, the function returns 'true' immediately - the
* caller can write the buffer right away. Otherwise the function returns true
* if the block has been added to the extent, false if the block couldn't be
* added.
*/
static bool mpage_add_bh_to_extent(struct mpage_da_data *mpd, ext4_lblk_t lblk,
struct buffer_head *bh)
{
struct ext4_map_blocks *map = &mpd->map;
/* Buffer that doesn't need mapping for writeback? */
if (!buffer_dirty(bh) || !buffer_mapped(bh) ||
(!buffer_delay(bh) && !buffer_unwritten(bh))) {
/* So far no extent to map => we write the buffer right away */
if (map->m_len == 0)
return true;
return false;
}
/* First block in the extent? */
if (map->m_len == 0) {
map->m_lblk = lblk;
map->m_len = 1;
map->m_flags = bh->b_state & BH_FLAGS;
return true;
}
/* Don't go larger than mballoc is willing to allocate */
if (map->m_len >= MAX_WRITEPAGES_EXTENT_LEN)
return false;
/* Can we merge the block to our big extent? */
if (lblk == map->m_lblk + map->m_len &&
(bh->b_state & BH_FLAGS) == map->m_flags) {
map->m_len++;
return true;
}
return false;
}
/*
* mpage_process_page_bufs - submit page buffers for IO or add them to extent
*
* @mpd - extent of blocks for mapping
* @head - the first buffer in the page
* @bh - buffer we should start processing from
* @lblk - logical number of the block in the file corresponding to @bh
*
* Walk through page buffers from @bh upto @head (exclusive) and either submit
* the page for IO if all buffers in this page were mapped and there's no
* accumulated extent of buffers to map or add buffers in the page to the
* extent of buffers to map. The function returns 1 if the caller can continue
* by processing the next page, 0 if it should stop adding buffers to the
* extent to map because we cannot extend it anymore. It can also return value
* < 0 in case of error during IO submission.
*/
static int mpage_process_page_bufs(struct mpage_da_data *mpd,
struct buffer_head *head,
struct buffer_head *bh,
ext4_lblk_t lblk)
{
struct inode *inode = mpd->inode;
int err;
ext4_lblk_t blocks = (i_size_read(inode) + (1 << inode->i_blkbits) - 1)
>> inode->i_blkbits;
do {
BUG_ON(buffer_locked(bh));
if (lblk >= blocks || !mpage_add_bh_to_extent(mpd, lblk, bh)) {
/* Found extent to map? */
if (mpd->map.m_len)
return 0;
/* Everything mapped so far and we hit EOF */
break;
}
} while (lblk++, (bh = bh->b_this_page) != head);
/* So far everything mapped? Submit the page for IO. */
if (mpd->map.m_len == 0) {
err = mpage_submit_page(mpd, head->b_page);
if (err < 0)
return err;
}
return lblk < blocks;
}
/*
* mpage_map_buffers - update buffers corresponding to changed extent and
* submit fully mapped pages for IO
*
* @mpd - description of extent to map, on return next extent to map
*
* Scan buffers corresponding to changed extent (we expect corresponding pages
* to be already locked) and update buffer state according to new extent state.
* We map delalloc buffers to their physical location, clear unwritten bits,
* and mark buffers as uninit when we perform writes to unwritten extents
* and do extent conversion after IO is finished. If the last page is not fully
* mapped, we update @map to the next extent in the last page that needs
* mapping. Otherwise we submit the page for IO.
*/
static int mpage_map_and_submit_buffers(struct mpage_da_data *mpd)
{
struct pagevec pvec;
int nr_pages, i;
struct inode *inode = mpd->inode;
struct buffer_head *head, *bh;
int bpp_bits = PAGE_SHIFT - inode->i_blkbits;
pgoff_t start, end;
ext4_lblk_t lblk;
sector_t pblock;
int err;
start = mpd->map.m_lblk >> bpp_bits;
end = (mpd->map.m_lblk + mpd->map.m_len - 1) >> bpp_bits;
lblk = start << bpp_bits;
pblock = mpd->map.m_pblk;
pagevec_init(&pvec, 0);
while (start <= end) {
nr_pages = pagevec_lookup(&pvec, inode->i_mapping, start,
PAGEVEC_SIZE);
if (nr_pages == 0)
break;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
if (page->index > end)
break;
/* Up to 'end' pages must be contiguous */
BUG_ON(page->index != start);
bh = head = page_buffers(page);
do {
if (lblk < mpd->map.m_lblk)
continue;
if (lblk >= mpd->map.m_lblk + mpd->map.m_len) {
/*
* Buffer after end of mapped extent.
* Find next buffer in the page to map.
*/
mpd->map.m_len = 0;
mpd->map.m_flags = 0;
/*
* FIXME: If dioread_nolock supports
* blocksize < pagesize, we need to make
* sure we add size mapped so far to
* io_end->size as the following call
* can submit the page for IO.
*/
err = mpage_process_page_bufs(mpd, head,
bh, lblk);
pagevec_release(&pvec);
if (err > 0)
err = 0;
return err;
}
if (buffer_delay(bh)) {
clear_buffer_delay(bh);
bh->b_blocknr = pblock++;
}
clear_buffer_unwritten(bh);
} while (lblk++, (bh = bh->b_this_page) != head);
/*
* FIXME: This is going to break if dioread_nolock
* supports blocksize < pagesize as we will try to
* convert potentially unmapped parts of inode.
*/
mpd->io_submit.io_end->size += PAGE_SIZE;
/* Page fully mapped - let IO run! */
err = mpage_submit_page(mpd, page);
if (err < 0) {
pagevec_release(&pvec);
return err;
}
start++;
}
pagevec_release(&pvec);
}
/* Extent fully mapped and matches with page boundary. We are done. */
mpd->map.m_len = 0;
mpd->map.m_flags = 0;
return 0;
}
static int mpage_map_one_extent(handle_t *handle, struct mpage_da_data *mpd)
{
struct inode *inode = mpd->inode;
struct ext4_map_blocks *map = &mpd->map;
int get_blocks_flags;
int err, dioread_nolock;
trace_ext4_da_write_pages_extent(inode, map);
/*
* Call ext4_map_blocks() to allocate any delayed allocation blocks, or
* to convert an unwritten extent to be initialized (in the case
* where we have written into one or more preallocated blocks). It is
* possible that we're going to need more metadata blocks than
* previously reserved. However we must not fail because we're in
* writeback and there is nothing we can do about it so it might result
* in data loss. So use reserved blocks to allocate metadata if
* possible.
*
* We pass in the magic EXT4_GET_BLOCKS_DELALLOC_RESERVE if
* the blocks in question are delalloc blocks. This indicates
* that the blocks and quotas has already been checked when
* the data was copied into the page cache.
*/
get_blocks_flags = EXT4_GET_BLOCKS_CREATE |
EXT4_GET_BLOCKS_METADATA_NOFAIL |
EXT4_GET_BLOCKS_IO_SUBMIT;
dioread_nolock = ext4_should_dioread_nolock(inode);
if (dioread_nolock)
get_blocks_flags |= EXT4_GET_BLOCKS_IO_CREATE_EXT;
if (map->m_flags & (1 << BH_Delay))
get_blocks_flags |= EXT4_GET_BLOCKS_DELALLOC_RESERVE;
err = ext4_map_blocks(handle, inode, map, get_blocks_flags);
if (err < 0)
return err;
if (dioread_nolock && (map->m_flags & EXT4_MAP_UNWRITTEN)) {
if (!mpd->io_submit.io_end->handle &&
ext4_handle_valid(handle)) {
mpd->io_submit.io_end->handle = handle->h_rsv_handle;
handle->h_rsv_handle = NULL;
}
ext4_set_io_unwritten_flag(inode, mpd->io_submit.io_end);
}
BUG_ON(map->m_len == 0);
if (map->m_flags & EXT4_MAP_NEW) {
clean_bdev_aliases(inode->i_sb->s_bdev, map->m_pblk,
map->m_len);
}
return 0;
}
/*
* mpage_map_and_submit_extent - map extent starting at mpd->lblk of length
* mpd->len and submit pages underlying it for IO
*
* @handle - handle for journal operations
* @mpd - extent to map
* @give_up_on_write - we set this to true iff there is a fatal error and there
* is no hope of writing the data. The caller should discard
* dirty pages to avoid infinite loops.
*
* The function maps extent starting at mpd->lblk of length mpd->len. If it is
* delayed, blocks are allocated, if it is unwritten, we may need to convert
* them to initialized or split the described range from larger unwritten
* extent. Note that we need not map all the described range since allocation
* can return less blocks or the range is covered by more unwritten extents. We
* cannot map more because we are limited by reserved transaction credits. On
* the other hand we always make sure that the last touched page is fully
* mapped so that it can be written out (and thus forward progress is
* guaranteed). After mapping we submit all mapped pages for IO.
*/
static int mpage_map_and_submit_extent(handle_t *handle,
struct mpage_da_data *mpd,
bool *give_up_on_write)
{
struct inode *inode = mpd->inode;
struct ext4_map_blocks *map = &mpd->map;
int err;
loff_t disksize;
int progress = 0;
mpd->io_submit.io_end->offset =
((loff_t)map->m_lblk) << inode->i_blkbits;
do {
err = mpage_map_one_extent(handle, mpd);
if (err < 0) {
struct super_block *sb = inode->i_sb;
if (EXT4_SB(sb)->s_mount_flags & EXT4_MF_FS_ABORTED)
goto invalidate_dirty_pages;
/*
* Let the uper layers retry transient errors.
* In the case of ENOSPC, if ext4_count_free_blocks()
* is non-zero, a commit should free up blocks.
*/
if ((err == -ENOMEM) ||
(err == -ENOSPC && ext4_count_free_clusters(sb))) {
if (progress)
goto update_disksize;
return err;
}
ext4_msg(sb, KERN_CRIT,
"Delayed block allocation failed for "
"inode %lu at logical offset %llu with"
" max blocks %u with error %d",
inode->i_ino,
(unsigned long long)map->m_lblk,
(unsigned)map->m_len, -err);
ext4_msg(sb, KERN_CRIT,
"This should not happen!! Data will "
"be lost\n");
if (err == -ENOSPC)
ext4_print_free_blocks(inode);
invalidate_dirty_pages:
*give_up_on_write = true;
return err;
}
progress = 1;
/*
* Update buffer state, submit mapped pages, and get us new
* extent to map
*/
err = mpage_map_and_submit_buffers(mpd);
if (err < 0)
goto update_disksize;
} while (map->m_len);
update_disksize:
/*
* Update on-disk size after IO is submitted. Races with
* truncate are avoided by checking i_size under i_data_sem.
*/
disksize = ((loff_t)mpd->first_page) << PAGE_SHIFT;
if (disksize > EXT4_I(inode)->i_disksize) {
int err2;
loff_t i_size;
down_write(&EXT4_I(inode)->i_data_sem);
i_size = i_size_read(inode);
if (disksize > i_size)
disksize = i_size;
if (disksize > EXT4_I(inode)->i_disksize)
EXT4_I(inode)->i_disksize = disksize;
err2 = ext4_mark_inode_dirty(handle, inode);
up_write(&EXT4_I(inode)->i_data_sem);
if (err2)
ext4_error(inode->i_sb,
"Failed to mark inode %lu dirty",
inode->i_ino);
if (!err)
err = err2;
}
return err;
}
/*
* Calculate the total number of credits to reserve for one writepages
* iteration. This is called from ext4_writepages(). We map an extent of
* up to MAX_WRITEPAGES_EXTENT_LEN blocks and then we go on and finish mapping
* the last partial page. So in total we can map MAX_WRITEPAGES_EXTENT_LEN +
* bpp - 1 blocks in bpp different extents.
*/
static int ext4_da_writepages_trans_blocks(struct inode *inode)
{
int bpp = ext4_journal_blocks_per_page(inode);
return ext4_meta_trans_blocks(inode,
MAX_WRITEPAGES_EXTENT_LEN + bpp - 1, bpp);
}
/*
* mpage_prepare_extent_to_map - find & lock contiguous range of dirty pages
* and underlying extent to map
*
* @mpd - where to look for pages
*
* Walk dirty pages in the mapping. If they are fully mapped, submit them for
* IO immediately. When we find a page which isn't mapped we start accumulating
* extent of buffers underlying these pages that needs mapping (formed by
* either delayed or unwritten buffers). We also lock the pages containing
* these buffers. The extent found is returned in @mpd structure (starting at
* mpd->lblk with length mpd->len blocks).
*
* Note that this function can attach bios to one io_end structure which are
* neither logically nor physically contiguous. Although it may seem as an
* unnecessary complication, it is actually inevitable in blocksize < pagesize
* case as we need to track IO to all buffers underlying a page in one io_end.
*/
static int mpage_prepare_extent_to_map(struct mpage_da_data *mpd)
{
struct address_space *mapping = mpd->inode->i_mapping;
struct pagevec pvec;
unsigned int nr_pages;
long left = mpd->wbc->nr_to_write;
pgoff_t index = mpd->first_page;
pgoff_t end = mpd->last_page;
int tag;
int i, err = 0;
int blkbits = mpd->inode->i_blkbits;
ext4_lblk_t lblk;
struct buffer_head *head;
if (mpd->wbc->sync_mode == WB_SYNC_ALL || mpd->wbc->tagged_writepages)
tag = PAGECACHE_TAG_TOWRITE;
else
tag = PAGECACHE_TAG_DIRTY;
pagevec_init(&pvec, 0);
mpd->map.m_len = 0;
mpd->next_page = index;
while (index <= end) {
nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
if (nr_pages == 0)
goto out;
for (i = 0; i < nr_pages; i++) {
struct page *page = pvec.pages[i];
/*
* At this point, the page may be truncated or
* invalidated (changing page->mapping to NULL), or
* even swizzled back from swapper_space to tmpfs file
* mapping. However, page->index will not change
* because we have a reference on the page.
*/
if (page->index > end)
goto out;
/*
* Accumulated enough dirty pages? This doesn't apply
* to WB_SYNC_ALL mode. For integrity sync we have to
* keep going because someone may be concurrently
* dirtying pages, and we might have synced a lot of
* newly appeared dirty pages, but have not synced all
* of the old dirty pages.
*/
if (mpd->wbc->sync_mode == WB_SYNC_NONE && left <= 0)
goto out;
/* If we can't merge this page, we are done. */
if (mpd->map.m_len > 0 && mpd->next_page != page->index)
goto out;
lock_page(page);
/*
* If the page is no longer dirty, or its mapping no
* longer corresponds to inode we are writing (which
* means it has been truncated or invalidated), or the
* page is already under writeback and we are not doing
* a data integrity writeback, skip the page
*/
if (!PageDirty(page) ||
(PageWriteback(page) &&
(mpd->wbc->sync_mode == WB_SYNC_NONE)) ||
unlikely(page->mapping != mapping)) {
unlock_page(page);
continue;
}
wait_on_page_writeback(page);
BUG_ON(PageWriteback(page));
if (mpd->map.m_len == 0)
mpd->first_page = page->index;
mpd->next_page = page->index + 1;
/* Add all dirty buffers to mpd */
lblk = ((ext4_lblk_t)page->index) <<
(PAGE_SHIFT - blkbits);
head = page_buffers(page);
err = mpage_process_page_bufs(mpd, head, head, lblk);
if (err <= 0)
goto out;
err = 0;
left--;
}
pagevec_release(&pvec);
cond_resched();
}
return 0;
out:
pagevec_release(&pvec);
return err;
}
static int __writepage(struct page *page, struct writeback_control *wbc,
void *data)
{
struct address_space *mapping = data;
int ret = ext4_writepage(page, wbc);
mapping_set_error(mapping, ret);
return ret;
}
static int ext4_writepages(struct address_space *mapping,
struct writeback_control *wbc)
{
pgoff_t writeback_index = 0;
long nr_to_write = wbc->nr_to_write;
int range_whole = 0;
int cycled = 1;
handle_t *handle = NULL;
struct mpage_da_data mpd;
struct inode *inode = mapping->host;
int needed_blocks, rsv_blocks = 0, ret = 0;
struct ext4_sb_info *sbi = EXT4_SB(mapping->host->i_sb);
bool done;
struct blk_plug plug;
bool give_up_on_write = false;
percpu_down_read(&sbi->s_journal_flag_rwsem);
trace_ext4_writepages(inode, wbc);
if (dax_mapping(mapping)) {
ret = dax_writeback_mapping_range(mapping, inode->i_sb->s_bdev,
wbc);
goto out_writepages;
}
/*
* No pages to write? This is mainly a kludge to avoid starting
* a transaction for special inodes like journal inode on last iput()
* because that could violate lock ordering on umount
*/
if (!mapping->nrpages || !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
goto out_writepages;
if (ext4_should_journal_data(inode)) {
struct blk_plug plug;
blk_start_plug(&plug);
ret = write_cache_pages(mapping, wbc, __writepage, mapping);
blk_finish_plug(&plug);
goto out_writepages;
}
/*
* If the filesystem has aborted, it is read-only, so return
* right away instead of dumping stack traces later on that
* will obscure the real source of the problem. We test
* EXT4_MF_FS_ABORTED instead of sb->s_flag's MS_RDONLY because
* the latter could be true if the filesystem is mounted
* read-only, and in that case, ext4_writepages should
* *never* be called, so if that ever happens, we would want
* the stack trace.
*/
if (unlikely(sbi->s_mount_flags & EXT4_MF_FS_ABORTED)) {
ret = -EROFS;
goto out_writepages;
}
if (ext4_should_dioread_nolock(inode)) {
/*
* We may need to convert up to one extent per block in
* the page and we may dirty the inode.
*/
rsv_blocks = 1 + (PAGE_SIZE >> inode->i_blkbits);
}
/*
* If we have inline data and arrive here, it means that
* we will soon create the block for the 1st page, so
* we'd better clear the inline data here.
*/
if (ext4_has_inline_data(inode)) {
/* Just inode will be modified... */
handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out_writepages;
}
BUG_ON(ext4_test_inode_state(inode,
EXT4_STATE_MAY_INLINE_DATA));
ext4_destroy_inline_data(handle, inode);
ext4_journal_stop(handle);
}
if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
range_whole = 1;
if (wbc->range_cyclic) {
writeback_index = mapping->writeback_index;
if (writeback_index)
cycled = 0;
mpd.first_page = writeback_index;
mpd.last_page = -1;
} else {
mpd.first_page = wbc->range_start >> PAGE_SHIFT;
mpd.last_page = wbc->range_end >> PAGE_SHIFT;
}
mpd.inode = inode;
mpd.wbc = wbc;
ext4_io_submit_init(&mpd.io_submit, wbc);
retry:
if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
tag_pages_for_writeback(mapping, mpd.first_page, mpd.last_page);
done = false;
blk_start_plug(&plug);
while (!done && mpd.first_page <= mpd.last_page) {
/* For each extent of pages we use new io_end */
mpd.io_submit.io_end = ext4_init_io_end(inode, GFP_KERNEL);
if (!mpd.io_submit.io_end) {
ret = -ENOMEM;
break;
}
/*
* We have two constraints: We find one extent to map and we
* must always write out whole page (makes a difference when
* blocksize < pagesize) so that we don't block on IO when we
* try to write out the rest of the page. Journalled mode is
* not supported by delalloc.
*/
BUG_ON(ext4_should_journal_data(inode));
needed_blocks = ext4_da_writepages_trans_blocks(inode);
/* start a new transaction */
handle = ext4_journal_start_with_reserve(inode,
EXT4_HT_WRITE_PAGE, needed_blocks, rsv_blocks);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
ext4_msg(inode->i_sb, KERN_CRIT, "%s: jbd2_start: "
"%ld pages, ino %lu; err %d", __func__,
wbc->nr_to_write, inode->i_ino, ret);
/* Release allocated io_end */
ext4_put_io_end(mpd.io_submit.io_end);
break;
}
trace_ext4_da_write_pages(inode, mpd.first_page, mpd.wbc);
ret = mpage_prepare_extent_to_map(&mpd);
if (!ret) {
if (mpd.map.m_len)
ret = mpage_map_and_submit_extent(handle, &mpd,
&give_up_on_write);
else {
/*
* We scanned the whole range (or exhausted
* nr_to_write), submitted what was mapped and
* didn't find anything needing mapping. We are
* done.
*/
done = true;
}
}
/*
* Caution: If the handle is synchronous,
* ext4_journal_stop() can wait for transaction commit
* to finish which may depend on writeback of pages to
* complete or on page lock to be released. In that
* case, we have to wait until after after we have
* submitted all the IO, released page locks we hold,
* and dropped io_end reference (for extent conversion
* to be able to complete) before stopping the handle.
*/
if (!ext4_handle_valid(handle) || handle->h_sync == 0) {
ext4_journal_stop(handle);
handle = NULL;
}
/* Submit prepared bio */
ext4_io_submit(&mpd.io_submit);
/* Unlock pages we didn't use */
mpage_release_unused_pages(&mpd, give_up_on_write);
/*
* Drop our io_end reference we got from init. We have
* to be careful and use deferred io_end finishing if
* we are still holding the transaction as we can
* release the last reference to io_end which may end
* up doing unwritten extent conversion.
*/
if (handle) {
ext4_put_io_end_defer(mpd.io_submit.io_end);
ext4_journal_stop(handle);
} else
ext4_put_io_end(mpd.io_submit.io_end);
if (ret == -ENOSPC && sbi->s_journal) {
/*
* Commit the transaction which would
* free blocks released in the transaction
* and try again
*/
jbd2_journal_force_commit_nested(sbi->s_journal);
ret = 0;
continue;
}
/* Fatal error - ENOMEM, EIO... */
if (ret)
break;
}
blk_finish_plug(&plug);
if (!ret && !cycled && wbc->nr_to_write > 0) {
cycled = 1;
mpd.last_page = writeback_index - 1;
mpd.first_page = 0;
goto retry;
}
/* Update index */
if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
/*
* Set the writeback_index so that range_cyclic
* mode will write it back later
*/
mapping->writeback_index = mpd.first_page;
out_writepages:
trace_ext4_writepages_result(inode, wbc, ret,
nr_to_write - wbc->nr_to_write);
percpu_up_read(&sbi->s_journal_flag_rwsem);
return ret;
}
static int ext4_nonda_switch(struct super_block *sb)
{
s64 free_clusters, dirty_clusters;
struct ext4_sb_info *sbi = EXT4_SB(sb);
/*
* switch to non delalloc mode if we are running low
* on free block. The free block accounting via percpu
* counters can get slightly wrong with percpu_counter_batch getting
* accumulated on each CPU without updating global counters
* Delalloc need an accurate free block accounting. So switch
* to non delalloc when we are near to error range.
*/
free_clusters =
percpu_counter_read_positive(&sbi->s_freeclusters_counter);
dirty_clusters =
percpu_counter_read_positive(&sbi->s_dirtyclusters_counter);
/*
* Start pushing delalloc when 1/2 of free blocks are dirty.
*/
if (dirty_clusters && (free_clusters < 2 * dirty_clusters))
try_to_writeback_inodes_sb(sb, WB_REASON_FS_FREE_SPACE);
if (2 * free_clusters < 3 * dirty_clusters ||
free_clusters < (dirty_clusters + EXT4_FREECLUSTERS_WATERMARK)) {
/*
* free block count is less than 150% of dirty blocks
* or free blocks is less than watermark
*/
return 1;
}
return 0;
}
/* We always reserve for an inode update; the superblock could be there too */
static int ext4_da_write_credits(struct inode *inode, loff_t pos, unsigned len)
{
if (likely(ext4_has_feature_large_file(inode->i_sb)))
return 1;
if (pos + len <= 0x7fffffffULL)
return 1;
/* We might need to update the superblock to set LARGE_FILE */
return 2;
}
static int ext4_da_write_begin(struct file *file, struct address_space *mapping,
loff_t pos, unsigned len, unsigned flags,
struct page **pagep, void **fsdata)
{
int ret, retries = 0;
struct page *page;
pgoff_t index;
struct inode *inode = mapping->host;
handle_t *handle;
index = pos >> PAGE_SHIFT;
if (ext4_nonda_switch(inode->i_sb) ||
S_ISLNK(inode->i_mode)) {
*fsdata = (void *)FALL_BACK_TO_NONDELALLOC;
return ext4_write_begin(file, mapping, pos,
len, flags, pagep, fsdata);
}
*fsdata = (void *)0;
trace_ext4_da_write_begin(inode, pos, len, flags);
if (ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA)) {
ret = ext4_da_write_inline_data_begin(mapping, inode,
pos, len, flags,
pagep, fsdata);
if (ret < 0)
return ret;
if (ret == 1)
return 0;
}
/*
* grab_cache_page_write_begin() can take a long time if the
* system is thrashing due to memory pressure, or if the page
* is being written back. So grab it first before we start
* the transaction handle. This also allows us to allocate
* the page (if needed) without using GFP_NOFS.
*/
retry_grab:
page = grab_cache_page_write_begin(mapping, index, flags);
if (!page)
return -ENOMEM;
unlock_page(page);
/*
* With delayed allocation, we don't log the i_disksize update
* if there is delayed block allocation. But we still need
* to journalling the i_disksize update if writes to the end
* of file which has an already mapped buffer.
*/
retry_journal:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
ext4_da_write_credits(inode, pos, len));
if (IS_ERR(handle)) {
put_page(page);
return PTR_ERR(handle);
}
lock_page(page);
if (page->mapping != mapping) {
/* The page got truncated from under us */
unlock_page(page);
put_page(page);
ext4_journal_stop(handle);
goto retry_grab;
}
/* In case writeback began while the page was unlocked */
wait_for_stable_page(page);
#ifdef CONFIG_EXT4_FS_ENCRYPTION
ret = ext4_block_write_begin(page, pos, len,
ext4_da_get_block_prep);
#else
ret = __block_write_begin(page, pos, len, ext4_da_get_block_prep);
#endif
if (ret < 0) {
unlock_page(page);
ext4_journal_stop(handle);
/*
* block_write_begin may have instantiated a few blocks
* outside i_size. Trim these off again. Don't need
* i_size_read because we hold i_mutex.
*/
if (pos + len > inode->i_size)
ext4_truncate_failed_write(inode);
if (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_journal;
put_page(page);
return ret;
}
*pagep = page;
return ret;
}
/*
* Check if we should update i_disksize
* when write to the end of file but not require block allocation
*/
static int ext4_da_should_update_i_disksize(struct page *page,
unsigned long offset)
{
struct buffer_head *bh;
struct inode *inode = page->mapping->host;
unsigned int idx;
int i;
bh = page_buffers(page);
idx = offset >> inode->i_blkbits;
for (i = 0; i < idx; i++)
bh = bh->b_this_page;
if (!buffer_mapped(bh) || (buffer_delay(bh)) || buffer_unwritten(bh))
return 0;
return 1;
}
static int ext4_da_write_end(struct file *file,
struct address_space *mapping,
loff_t pos, unsigned len, unsigned copied,
struct page *page, void *fsdata)
{
struct inode *inode = mapping->host;
int ret = 0, ret2;
handle_t *handle = ext4_journal_current_handle();
loff_t new_i_size;
unsigned long start, end;
int write_mode = (int)(unsigned long)fsdata;
if (write_mode == FALL_BACK_TO_NONDELALLOC)
return ext4_write_end(file, mapping, pos,
len, copied, page, fsdata);
trace_ext4_da_write_end(inode, pos, len, copied);
start = pos & (PAGE_SIZE - 1);
end = start + copied - 1;
/*
* generic_write_end() will run mark_inode_dirty() if i_size
* changes. So let's piggyback the i_disksize mark_inode_dirty
* into that.
*/
new_i_size = pos + copied;
if (copied && new_i_size > EXT4_I(inode)->i_disksize) {
if (ext4_has_inline_data(inode) ||
ext4_da_should_update_i_disksize(page, end)) {
ext4_update_i_disksize(inode, new_i_size);
/* We need to mark inode dirty even if
* new_i_size is less that inode->i_size
* bu greater than i_disksize.(hint delalloc)
*/
ext4_mark_inode_dirty(handle, inode);
}
}
if (write_mode != CONVERT_INLINE_DATA &&
ext4_test_inode_state(inode, EXT4_STATE_MAY_INLINE_DATA) &&
ext4_has_inline_data(inode))
ret2 = ext4_da_write_inline_data_end(inode, pos, len, copied,
page);
else
ret2 = generic_write_end(file, mapping, pos, len, copied,
page, fsdata);
copied = ret2;
if (ret2 < 0)
ret = ret2;
ret2 = ext4_journal_stop(handle);
if (!ret)
ret = ret2;
return ret ? ret : copied;
}
static void ext4_da_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
/*
* Drop reserved blocks
*/
BUG_ON(!PageLocked(page));
if (!page_has_buffers(page))
goto out;
ext4_da_page_release_reservation(page, offset, length);
out:
ext4_invalidatepage(page, offset, length);
return;
}
/*
* Force all delayed allocation blocks to be allocated for a given inode.
*/
int ext4_alloc_da_blocks(struct inode *inode)
{
trace_ext4_alloc_da_blocks(inode);
if (!EXT4_I(inode)->i_reserved_data_blocks)
return 0;
/*
* We do something simple for now. The filemap_flush() will
* also start triggering a write of the data blocks, which is
* not strictly speaking necessary (and for users of
* laptop_mode, not even desirable). However, to do otherwise
* would require replicating code paths in:
*
* ext4_writepages() ->
* write_cache_pages() ---> (via passed in callback function)
* __mpage_da_writepage() -->
* mpage_add_bh_to_extent()
* mpage_da_map_blocks()
*
* The problem is that write_cache_pages(), located in
* mm/page-writeback.c, marks pages clean in preparation for
* doing I/O, which is not desirable if we're not planning on
* doing I/O at all.
*
* We could call write_cache_pages(), and then redirty all of
* the pages by calling redirty_page_for_writepage() but that
* would be ugly in the extreme. So instead we would need to
* replicate parts of the code in the above functions,
* simplifying them because we wouldn't actually intend to
* write out the pages, but rather only collect contiguous
* logical block extents, call the multi-block allocator, and
* then update the buffer heads with the block allocations.
*
* For now, though, we'll cheat by calling filemap_flush(),
* which will map the blocks, and start the I/O, but not
* actually wait for the I/O to complete.
*/
return filemap_flush(inode->i_mapping);
}
/*
* bmap() is special. It gets used by applications such as lilo and by
* the swapper to find the on-disk block of a specific piece of data.
*
* Naturally, this is dangerous if the block concerned is still in the
* journal. If somebody makes a swapfile on an ext4 data-journaling
* filesystem and enables swap, then they may get a nasty shock when the
* data getting swapped to that swapfile suddenly gets overwritten by
* the original zero's written out previously to the journal and
* awaiting writeback in the kernel's buffer cache.
*
* So, if we see any bmap calls here on a modified, data-journaled file,
* take extra steps to flush any blocks which might be in the cache.
*/
static sector_t ext4_bmap(struct address_space *mapping, sector_t block)
{
struct inode *inode = mapping->host;
journal_t *journal;
int err;
/*
* We can get here for an inline file via the FIBMAP ioctl
*/
if (ext4_has_inline_data(inode))
return 0;
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY) &&
test_opt(inode->i_sb, DELALLOC)) {
/*
* With delalloc we want to sync the file
* so that we can make sure we allocate
* blocks for file
*/
filemap_write_and_wait(mapping);
}
if (EXT4_JOURNAL(inode) &&
ext4_test_inode_state(inode, EXT4_STATE_JDATA)) {
/*
* This is a REALLY heavyweight approach, but the use of
* bmap on dirty files is expected to be extremely rare:
* only if we run lilo or swapon on a freshly made file
* do we expect this to happen.
*
* (bmap requires CAP_SYS_RAWIO so this does not
* represent an unprivileged user DOS attack --- we'd be
* in trouble if mortal users could trigger this path at
* will.)
*
* NB. EXT4_STATE_JDATA is not set on files other than
* regular files. If somebody wants to bmap a directory
* or symlink and gets confused because the buffer
* hasn't yet been flushed to disk, they deserve
* everything they get.
*/
ext4_clear_inode_state(inode, EXT4_STATE_JDATA);
journal = EXT4_JOURNAL(inode);
jbd2_journal_lock_updates(journal);
err = jbd2_journal_flush(journal);
jbd2_journal_unlock_updates(journal);
if (err)
return 0;
}
return generic_block_bmap(mapping, block, ext4_get_block);
}
static int ext4_readpage(struct file *file, struct page *page)
{
int ret = -EAGAIN;
struct inode *inode = page->mapping->host;
trace_ext4_readpage(page);
if (ext4_has_inline_data(inode))
ret = ext4_readpage_inline(inode, page);
if (ret == -EAGAIN)
return ext4_mpage_readpages(page->mapping, NULL, page, 1);
return ret;
}
static int
ext4_readpages(struct file *file, struct address_space *mapping,
struct list_head *pages, unsigned nr_pages)
{
struct inode *inode = mapping->host;
/* If the file has inline data, no need to do readpages. */
if (ext4_has_inline_data(inode))
return 0;
return ext4_mpage_readpages(mapping, pages, NULL, nr_pages);
}
static void ext4_invalidatepage(struct page *page, unsigned int offset,
unsigned int length)
{
trace_ext4_invalidatepage(page, offset, length);
/* No journalling happens on data buffers when this function is used */
WARN_ON(page_has_buffers(page) && buffer_jbd(page_buffers(page)));
block_invalidatepage(page, offset, length);
}
static int __ext4_journalled_invalidatepage(struct page *page,
unsigned int offset,
unsigned int length)
{
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
trace_ext4_journalled_invalidatepage(page, offset, length);
/*
* If it's a full truncate we just forget about the pending dirtying
*/
if (offset == 0 && length == PAGE_SIZE)
ClearPageChecked(page);
return jbd2_journal_invalidatepage(journal, page, offset, length);
}
/* Wrapper for aops... */
static void ext4_journalled_invalidatepage(struct page *page,
unsigned int offset,
unsigned int length)
{
WARN_ON(__ext4_journalled_invalidatepage(page, offset, length) < 0);
}
static int ext4_releasepage(struct page *page, gfp_t wait)
{
journal_t *journal = EXT4_JOURNAL(page->mapping->host);
trace_ext4_releasepage(page);
/* Page has dirty journalled data -> cannot release */
if (PageChecked(page))
return 0;
if (journal)
return jbd2_journal_try_to_free_buffers(journal, page, wait);
else
return try_to_free_buffers(page);
}
#ifdef CONFIG_FS_DAX
static int ext4_iomap_begin(struct inode *inode, loff_t offset, loff_t length,
unsigned flags, struct iomap *iomap)
{
unsigned int blkbits = inode->i_blkbits;
unsigned long first_block = offset >> blkbits;
unsigned long last_block = (offset + length - 1) >> blkbits;
struct ext4_map_blocks map;
int ret;
if (WARN_ON_ONCE(ext4_has_inline_data(inode)))
return -ERANGE;
map.m_lblk = first_block;
map.m_len = last_block - first_block + 1;
if (!(flags & IOMAP_WRITE)) {
ret = ext4_map_blocks(NULL, inode, &map, 0);
} else {
int dio_credits;
handle_t *handle;
int retries = 0;
/* Trim mapping request to maximum we can map at once for DIO */
if (map.m_len > DIO_MAX_BLOCKS)
map.m_len = DIO_MAX_BLOCKS;
dio_credits = ext4_chunk_trans_blocks(inode, map.m_len);
retry:
/*
* Either we allocate blocks and then we don't get unwritten
* extent so we have reserved enough credits, or the blocks
* are already allocated and unwritten and in that case
* extent conversion fits in the credits as well.
*/
handle = ext4_journal_start(inode, EXT4_HT_MAP_BLOCKS,
dio_credits);
if (IS_ERR(handle))
return PTR_ERR(handle);
ret = ext4_map_blocks(handle, inode, &map,
EXT4_GET_BLOCKS_CREATE_ZERO);
if (ret < 0) {
ext4_journal_stop(handle);
if (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry;
return ret;
}
/*
* If we added blocks beyond i_size, we need to make sure they
* will get truncated if we crash before updating i_size in
* ext4_iomap_end(). For faults we don't need to do that (and
* even cannot because for orphan list operations inode_lock is
* required) - if we happen to instantiate block beyond i_size,
* it is because we race with truncate which has already added
* the inode to the orphan list.
*/
if (!(flags & IOMAP_FAULT) && first_block + map.m_len >
(i_size_read(inode) + (1 << blkbits) - 1) >> blkbits) {
int err;
err = ext4_orphan_add(handle, inode);
if (err < 0) {
ext4_journal_stop(handle);
return err;
}
}
ext4_journal_stop(handle);
}
iomap->flags = 0;
iomap->bdev = inode->i_sb->s_bdev;
iomap->offset = first_block << blkbits;
if (ret == 0) {
iomap->type = IOMAP_HOLE;
iomap->blkno = IOMAP_NULL_BLOCK;
iomap->length = (u64)map.m_len << blkbits;
} else {
if (map.m_flags & EXT4_MAP_MAPPED) {
iomap->type = IOMAP_MAPPED;
} else if (map.m_flags & EXT4_MAP_UNWRITTEN) {
iomap->type = IOMAP_UNWRITTEN;
} else {
WARN_ON_ONCE(1);
return -EIO;
}
iomap->blkno = (sector_t)map.m_pblk << (blkbits - 9);
iomap->length = (u64)map.m_len << blkbits;
}
if (map.m_flags & EXT4_MAP_NEW)
iomap->flags |= IOMAP_F_NEW;
return 0;
}
static int ext4_iomap_end(struct inode *inode, loff_t offset, loff_t length,
ssize_t written, unsigned flags, struct iomap *iomap)
{
int ret = 0;
handle_t *handle;
int blkbits = inode->i_blkbits;
bool truncate = false;
if (!(flags & IOMAP_WRITE) || (flags & IOMAP_FAULT))
return 0;
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto orphan_del;
}
if (ext4_update_inode_size(inode, offset + written))
ext4_mark_inode_dirty(handle, inode);
/*
* We may need to truncate allocated but not written blocks beyond EOF.
*/
if (iomap->offset + iomap->length >
ALIGN(inode->i_size, 1 << blkbits)) {
ext4_lblk_t written_blk, end_blk;
written_blk = (offset + written) >> blkbits;
end_blk = (offset + length) >> blkbits;
if (written_blk < end_blk && ext4_can_truncate(inode))
truncate = true;
}
/*
* Remove inode from orphan list if we were extending a inode and
* everything went fine.
*/
if (!truncate && inode->i_nlink &&
!list_empty(&EXT4_I(inode)->i_orphan))
ext4_orphan_del(handle, inode);
ext4_journal_stop(handle);
if (truncate) {
ext4_truncate_failed_write(inode);
orphan_del:
/*
* If truncate failed early the inode might still be on the
* orphan list; we need to make sure the inode is removed from
* the orphan list in that case.
*/
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
}
return ret;
}
struct iomap_ops ext4_iomap_ops = {
.iomap_begin = ext4_iomap_begin,
.iomap_end = ext4_iomap_end,
};
#endif
static int ext4_end_io_dio(struct kiocb *iocb, loff_t offset,
ssize_t size, void *private)
{
ext4_io_end_t *io_end = private;
/* if not async direct IO just return */
if (!io_end)
return 0;
ext_debug("ext4_end_io_dio(): io_end 0x%p "
"for inode %lu, iocb 0x%p, offset %llu, size %zd\n",
io_end, io_end->inode->i_ino, iocb, offset, size);
/*
* Error during AIO DIO. We cannot convert unwritten extents as the
* data was not written. Just clear the unwritten flag and drop io_end.
*/
if (size <= 0) {
ext4_clear_io_unwritten_flag(io_end);
size = 0;
}
io_end->offset = offset;
io_end->size = size;
ext4_put_io_end(io_end);
return 0;
}
/*
* Handling of direct IO writes.
*
* For ext4 extent files, ext4 will do direct-io write even to holes,
* preallocated extents, and those write extend the file, no need to
* fall back to buffered IO.
*
* For holes, we fallocate those blocks, mark them as unwritten
* If those blocks were preallocated, we mark sure they are split, but
* still keep the range to write as unwritten.
*
* The unwritten extents will be converted to written when DIO is completed.
* For async direct IO, since the IO may still pending when return, we
* set up an end_io call back function, which will do the conversion
* when async direct IO completed.
*
* If the O_DIRECT write will extend the file then add this inode to the
* orphan list. So recovery will truncate it back to the original size
* if the machine crashes during the write.
*
*/
static ssize_t ext4_direct_IO_write(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
struct ext4_inode_info *ei = EXT4_I(inode);
ssize_t ret;
loff_t offset = iocb->ki_pos;
size_t count = iov_iter_count(iter);
int overwrite = 0;
get_block_t *get_block_func = NULL;
int dio_flags = 0;
loff_t final_size = offset + count;
int orphan = 0;
handle_t *handle;
if (final_size > inode->i_size) {
/* Credits for sb + inode write */
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
goto out;
}
ret = ext4_orphan_add(handle, inode);
if (ret) {
ext4_journal_stop(handle);
goto out;
}
orphan = 1;
ei->i_disksize = inode->i_size;
ext4_journal_stop(handle);
}
BUG_ON(iocb->private == NULL);
/*
* Make all waiters for direct IO properly wait also for extent
* conversion. This also disallows race between truncate() and
* overwrite DIO as i_dio_count needs to be incremented under i_mutex.
*/
inode_dio_begin(inode);
/* If we do a overwrite dio, i_mutex locking can be released */
overwrite = *((int *)iocb->private);
if (overwrite)
inode_unlock(inode);
/*
* For extent mapped files we could direct write to holes and fallocate.
*
* Allocated blocks to fill the hole are marked as unwritten to prevent
* parallel buffered read to expose the stale data before DIO complete
* the data IO.
*
* As to previously fallocated extents, ext4 get_block will just simply
* mark the buffer mapped but still keep the extents unwritten.
*
* For non AIO case, we will convert those unwritten extents to written
* after return back from blockdev_direct_IO. That way we save us from
* allocating io_end structure and also the overhead of offloading
* the extent convertion to a workqueue.
*
* For async DIO, the conversion needs to be deferred when the
* IO is completed. The ext4 end_io callback function will be
* called to take care of the conversion work. Here for async
* case, we allocate an io_end structure to hook to the iocb.
*/
iocb->private = NULL;
if (overwrite)
get_block_func = ext4_dio_get_block_overwrite;
else if (!ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS) ||
round_down(offset, 1 << inode->i_blkbits) >= inode->i_size) {
get_block_func = ext4_dio_get_block;
dio_flags = DIO_LOCKING | DIO_SKIP_HOLES;
} else if (is_sync_kiocb(iocb)) {
get_block_func = ext4_dio_get_block_unwritten_sync;
dio_flags = DIO_LOCKING;
} else {
get_block_func = ext4_dio_get_block_unwritten_async;
dio_flags = DIO_LOCKING;
}
#ifdef CONFIG_EXT4_FS_ENCRYPTION
BUG_ON(ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode));
#endif
ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev, iter,
get_block_func, ext4_end_io_dio, NULL,
dio_flags);
if (ret > 0 && !overwrite && ext4_test_inode_state(inode,
EXT4_STATE_DIO_UNWRITTEN)) {
int err;
/*
* for non AIO case, since the IO is already
* completed, we could do the conversion right here
*/
err = ext4_convert_unwritten_extents(NULL, inode,
offset, ret);
if (err < 0)
ret = err;
ext4_clear_inode_state(inode, EXT4_STATE_DIO_UNWRITTEN);
}
inode_dio_end(inode);
/* take i_mutex locking again if we do a ovewrite dio */
if (overwrite)
inode_lock(inode);
if (ret < 0 && final_size > inode->i_size)
ext4_truncate_failed_write(inode);
/* Handle extending of i_size after direct IO write */
if (orphan) {
int err;
/* Credits for sb + inode write */
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
if (IS_ERR(handle)) {
/* This is really bad luck. We've written the data
* but cannot extend i_size. Bail out and pretend
* the write failed... */
ret = PTR_ERR(handle);
if (inode->i_nlink)
ext4_orphan_del(NULL, inode);
goto out;
}
if (inode->i_nlink)
ext4_orphan_del(handle, inode);
if (ret > 0) {
loff_t end = offset + ret;
if (end > inode->i_size) {
ei->i_disksize = end;
i_size_write(inode, end);
/*
* We're going to return a positive `ret'
* here due to non-zero-length I/O, so there's
* no way of reporting error returns from
* ext4_mark_inode_dirty() to userspace. So
* ignore it.
*/
ext4_mark_inode_dirty(handle, inode);
}
}
err = ext4_journal_stop(handle);
if (ret == 0)
ret = err;
}
out:
return ret;
}
static ssize_t ext4_direct_IO_read(struct kiocb *iocb, struct iov_iter *iter)
{
struct address_space *mapping = iocb->ki_filp->f_mapping;
struct inode *inode = mapping->host;
size_t count = iov_iter_count(iter);
ssize_t ret;
/*
* Shared inode_lock is enough for us - it protects against concurrent
* writes & truncates and since we take care of writing back page cache,
* we are protected against page writeback as well.
*/
inode_lock_shared(inode);
ret = filemap_write_and_wait_range(mapping, iocb->ki_pos,
iocb->ki_pos + count);
if (ret)
goto out_unlock;
ret = __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
iter, ext4_dio_get_block, NULL, NULL, 0);
out_unlock:
inode_unlock_shared(inode);
return ret;
}
static ssize_t ext4_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
{
struct file *file = iocb->ki_filp;
struct inode *inode = file->f_mapping->host;
size_t count = iov_iter_count(iter);
loff_t offset = iocb->ki_pos;
ssize_t ret;
#ifdef CONFIG_EXT4_FS_ENCRYPTION
if (ext4_encrypted_inode(inode) && S_ISREG(inode->i_mode))
return 0;
#endif
/*
* If we are doing data journalling we don't support O_DIRECT
*/
if (ext4_should_journal_data(inode))
return 0;
/* Let buffer I/O handle the inline data case. */
if (ext4_has_inline_data(inode))
return 0;
/* DAX uses iomap path now */
if (WARN_ON_ONCE(IS_DAX(inode)))
return 0;
trace_ext4_direct_IO_enter(inode, offset, count, iov_iter_rw(iter));
if (iov_iter_rw(iter) == READ)
ret = ext4_direct_IO_read(iocb, iter);
else
ret = ext4_direct_IO_write(iocb, iter);
trace_ext4_direct_IO_exit(inode, offset, count, iov_iter_rw(iter), ret);
return ret;
}
/*
* Pages can be marked dirty completely asynchronously from ext4's journalling
* activity. By filemap_sync_pte(), try_to_unmap_one(), etc. We cannot do
* much here because ->set_page_dirty is called under VFS locks. The page is
* not necessarily locked.
*
* We cannot just dirty the page and leave attached buffers clean, because the
* buffers' dirty state is "definitive". We cannot just set the buffers dirty
* or jbddirty because all the journalling code will explode.
*
* So what we do is to mark the page "pending dirty" and next time writepage
* is called, propagate that into the buffers appropriately.
*/
static int ext4_journalled_set_page_dirty(struct page *page)
{
SetPageChecked(page);
return __set_page_dirty_nobuffers(page);
}
static int ext4_set_page_dirty(struct page *page)
{
WARN_ON_ONCE(!PageLocked(page) && !PageDirty(page));
WARN_ON_ONCE(!page_has_buffers(page));
return __set_page_dirty_buffers(page);
}
static const struct address_space_operations ext4_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.writepages = ext4_writepages,
.write_begin = ext4_write_begin,
.write_end = ext4_write_end,
.set_page_dirty = ext4_set_page_dirty,
.bmap = ext4_bmap,
.invalidatepage = ext4_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations ext4_journalled_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.writepages = ext4_writepages,
.write_begin = ext4_write_begin,
.write_end = ext4_journalled_write_end,
.set_page_dirty = ext4_journalled_set_page_dirty,
.bmap = ext4_bmap,
.invalidatepage = ext4_journalled_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
static const struct address_space_operations ext4_da_aops = {
.readpage = ext4_readpage,
.readpages = ext4_readpages,
.writepage = ext4_writepage,
.writepages = ext4_writepages,
.write_begin = ext4_da_write_begin,
.write_end = ext4_da_write_end,
.set_page_dirty = ext4_set_page_dirty,
.bmap = ext4_bmap,
.invalidatepage = ext4_da_invalidatepage,
.releasepage = ext4_releasepage,
.direct_IO = ext4_direct_IO,
.migratepage = buffer_migrate_page,
.is_partially_uptodate = block_is_partially_uptodate,
.error_remove_page = generic_error_remove_page,
};
void ext4_set_aops(struct inode *inode)
{
switch (ext4_inode_journal_mode(inode)) {
case EXT4_INODE_ORDERED_DATA_MODE:
case EXT4_INODE_WRITEBACK_DATA_MODE:
break;
case EXT4_INODE_JOURNAL_DATA_MODE:
inode->i_mapping->a_ops = &ext4_journalled_aops;
return;
default:
BUG();
}
if (test_opt(inode->i_sb, DELALLOC))
inode->i_mapping->a_ops = &ext4_da_aops;
else
inode->i_mapping->a_ops = &ext4_aops;
}
static int __ext4_block_zero_page_range(handle_t *handle,
struct address_space *mapping, loff_t from, loff_t length)
{
ext4_fsblk_t index = from >> PAGE_SHIFT;
unsigned offset = from & (PAGE_SIZE-1);
unsigned blocksize, pos;
ext4_lblk_t iblock;
struct inode *inode = mapping->host;
struct buffer_head *bh;
struct page *page;
int err = 0;
page = find_or_create_page(mapping, from >> PAGE_SHIFT,
mapping_gfp_constraint(mapping, ~__GFP_FS));
if (!page)
return -ENOMEM;
blocksize = inode->i_sb->s_blocksize;
iblock = index << (PAGE_SHIFT - inode->i_sb->s_blocksize_bits);
if (!page_has_buffers(page))
create_empty_buffers(page, blocksize, 0);
/* Find the buffer that contains "offset" */
bh = page_buffers(page);
pos = blocksize;
while (offset >= pos) {
bh = bh->b_this_page;
iblock++;
pos += blocksize;
}
if (buffer_freed(bh)) {
BUFFER_TRACE(bh, "freed: skip");
goto unlock;
}
if (!buffer_mapped(bh)) {
BUFFER_TRACE(bh, "unmapped");
ext4_get_block(inode, iblock, bh, 0);
/* unmapped? It's a hole - nothing to do */
if (!buffer_mapped(bh)) {
BUFFER_TRACE(bh, "still unmapped");
goto unlock;
}
}
/* Ok, it's mapped. Make sure it's up-to-date */
if (PageUptodate(page))
set_buffer_uptodate(bh);
if (!buffer_uptodate(bh)) {
err = -EIO;
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
wait_on_buffer(bh);
/* Uhhuh. Read error. Complain and punt. */
if (!buffer_uptodate(bh))
goto unlock;
if (S_ISREG(inode->i_mode) &&
ext4_encrypted_inode(inode)) {
/* We expect the key to be set. */
BUG_ON(!fscrypt_has_encryption_key(inode));
BUG_ON(blocksize != PAGE_SIZE);
WARN_ON_ONCE(fscrypt_decrypt_page(page->mapping->host,
page, PAGE_SIZE, 0, page->index));
}
}
if (ext4_should_journal_data(inode)) {
BUFFER_TRACE(bh, "get write access");
err = ext4_journal_get_write_access(handle, bh);
if (err)
goto unlock;
}
zero_user(page, offset, length);
BUFFER_TRACE(bh, "zeroed end of block");
if (ext4_should_journal_data(inode)) {
err = ext4_handle_dirty_metadata(handle, inode, bh);
} else {
err = 0;
mark_buffer_dirty(bh);
if (ext4_should_order_data(inode))
err = ext4_jbd2_inode_add_write(handle, inode);
}
unlock:
unlock_page(page);
put_page(page);
return err;
}
/*
* ext4_block_zero_page_range() zeros out a mapping of length 'length'
* starting from file offset 'from'. The range to be zero'd must
* be contained with in one block. If the specified range exceeds
* the end of the block it will be shortened to end of the block
* that cooresponds to 'from'
*/
static int ext4_block_zero_page_range(handle_t *handle,
struct address_space *mapping, loff_t from, loff_t length)
{
struct inode *inode = mapping->host;
unsigned offset = from & (PAGE_SIZE-1);
unsigned blocksize = inode->i_sb->s_blocksize;
unsigned max = blocksize - (offset & (blocksize - 1));
/*
* correct length if it does not fall between
* 'from' and the end of the block
*/
if (length > max || length < 0)
length = max;
if (IS_DAX(inode)) {
return iomap_zero_range(inode, from, length, NULL,
&ext4_iomap_ops);
}
return __ext4_block_zero_page_range(handle, mapping, from, length);
}
/*
* ext4_block_truncate_page() zeroes out a mapping from file offset `from'
* up to the end of the block which corresponds to `from'.
* This required during truncate. We need to physically zero the tail end
* of that block so it doesn't yield old data if the file is later grown.
*/
static int ext4_block_truncate_page(handle_t *handle,
struct address_space *mapping, loff_t from)
{
unsigned offset = from & (PAGE_SIZE-1);
unsigned length;
unsigned blocksize;
struct inode *inode = mapping->host;
blocksize = inode->i_sb->s_blocksize;
length = blocksize - (offset & (blocksize - 1));
return ext4_block_zero_page_range(handle, mapping, from, length);
}
int ext4_zero_partial_blocks(handle_t *handle, struct inode *inode,
loff_t lstart, loff_t length)
{
struct super_block *sb = inode->i_sb;
struct address_space *mapping = inode->i_mapping;
unsigned partial_start, partial_end;
ext4_fsblk_t start, end;
loff_t byte_end = (lstart + length - 1);
int err = 0;
partial_start = lstart & (sb->s_blocksize - 1);
partial_end = byte_end & (sb->s_blocksize - 1);
start = lstart >> sb->s_blocksize_bits;
end = byte_end >> sb->s_blocksize_bits;
/* Handle partial zero within the single block */
if (start == end &&
(partial_start || (partial_end != sb->s_blocksize - 1))) {
err = ext4_block_zero_page_range(handle, mapping,
lstart, length);
return err;
}
/* Handle partial zero out on the start of the range */
if (partial_start) {
err = ext4_block_zero_page_range(handle, mapping,
lstart, sb->s_blocksize);
if (err)
return err;
}
/* Handle partial zero out on the end of the range */
if (partial_end != sb->s_blocksize - 1)
err = ext4_block_zero_page_range(handle, mapping,
byte_end - partial_end,
partial_end + 1);
return err;
}
int ext4_can_truncate(struct inode *inode)
{
if (S_ISREG(inode->i_mode))
return 1;
if (S_ISDIR(inode->i_mode))
return 1;
if (S_ISLNK(inode->i_mode))
return !ext4_inode_is_fast_symlink(inode);
return 0;
}
/*
* We have to make sure i_disksize gets properly updated before we truncate
* page cache due to hole punching or zero range. Otherwise i_disksize update
* can get lost as it may have been postponed to submission of writeback but
* that will never happen after we truncate page cache.
*/
int ext4_update_disksize_before_punch(struct inode *inode, loff_t offset,
loff_t len)
{
handle_t *handle;
loff_t size = i_size_read(inode);
WARN_ON(!inode_is_locked(inode));
if (offset > size || offset + len < size)
return 0;
if (EXT4_I(inode)->i_disksize >= size)
return 0;
handle = ext4_journal_start(inode, EXT4_HT_MISC, 1);
if (IS_ERR(handle))
return PTR_ERR(handle);
ext4_update_i_disksize(inode, size);
ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
return 0;
}
/*
* ext4_punch_hole: punches a hole in a file by releasing the blocks
* associated with the given offset and length
*
* @inode: File inode
* @offset: The offset where the hole will begin
* @len: The length of the hole
*
* Returns: 0 on success or negative on failure
*/
int ext4_punch_hole(struct inode *inode, loff_t offset, loff_t length)
{
struct super_block *sb = inode->i_sb;
ext4_lblk_t first_block, stop_block;
struct address_space *mapping = inode->i_mapping;
loff_t first_block_offset, last_block_offset;
handle_t *handle;
unsigned int credits;
int ret = 0;
if (!S_ISREG(inode->i_mode))
return -EOPNOTSUPP;
trace_ext4_punch_hole(inode, offset, length, 0);
/*
* Write out all dirty pages to avoid race conditions
* Then release them.
*/
if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
ret = filemap_write_and_wait_range(mapping, offset,
offset + length - 1);
if (ret)
return ret;
}
inode_lock(inode);
/* No need to punch hole beyond i_size */
if (offset >= inode->i_size)
goto out_mutex;
/*
* If the hole extends beyond i_size, set the hole
* to end after the page that contains i_size
*/
if (offset + length > inode->i_size) {
length = inode->i_size +
PAGE_SIZE - (inode->i_size & (PAGE_SIZE - 1)) -
offset;
}
if (offset & (sb->s_blocksize - 1) ||
(offset + length) & (sb->s_blocksize - 1)) {
/*
* Attach jinode to inode for jbd2 if we do any zeroing of
* partial block
*/
ret = ext4_inode_attach_jinode(inode);
if (ret < 0)
goto out_mutex;
}
/* Wait all existing dio workers, newcomers will block on i_mutex */
ext4_inode_block_unlocked_dio(inode);
inode_dio_wait(inode);
/*
* Prevent page faults from reinstantiating pages we have released from
* page cache.
*/
down_write(&EXT4_I(inode)->i_mmap_sem);
first_block_offset = round_up(offset, sb->s_blocksize);
last_block_offset = round_down((offset + length), sb->s_blocksize) - 1;
/* Now release the pages and zero block aligned part of pages*/
if (last_block_offset > first_block_offset) {
ret = ext4_update_disksize_before_punch(inode, offset, length);
if (ret)
goto out_dio;
truncate_pagecache_range(inode, first_block_offset,
last_block_offset);
}
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
credits = ext4_writepage_trans_blocks(inode);
else
credits = ext4_blocks_for_truncate(inode);
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
if (IS_ERR(handle)) {
ret = PTR_ERR(handle);
ext4_std_error(sb, ret);
goto out_dio;
}
ret = ext4_zero_partial_blocks(handle, inode, offset,
length);
if (ret)
goto out_stop;
first_block = (offset + sb->s_blocksize - 1) >>
EXT4_BLOCK_SIZE_BITS(sb);
stop_block = (offset + length) >> EXT4_BLOCK_SIZE_BITS(sb);
/* If there are no blocks to remove, return now */
if (first_block >= stop_block)
goto out_stop;
down_write(&EXT4_I(inode)->i_data_sem);
ext4_discard_preallocations(inode);
ret = ext4_es_remove_extent(inode, first_block,
stop_block - first_block);
if (ret) {
up_write(&EXT4_I(inode)->i_data_sem);
goto out_stop;
}
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
ret = ext4_ext_remove_space(inode, first_block,
stop_block - 1);
else
ret = ext4_ind_remove_space(handle, inode, first_block,
stop_block);
up_write(&EXT4_I(inode)->i_data_sem);
if (IS_SYNC(inode))
ext4_handle_sync(handle);
inode->i_mtime = inode->i_ctime = current_time(inode);
ext4_mark_inode_dirty(handle, inode);
out_stop:
ext4_journal_stop(handle);
out_dio:
up_write(&EXT4_I(inode)->i_mmap_sem);
ext4_inode_resume_unlocked_dio(inode);
out_mutex:
inode_unlock(inode);
return ret;
}
int ext4_inode_attach_jinode(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
struct jbd2_inode *jinode;
if (ei->jinode || !EXT4_SB(inode->i_sb)->s_journal)
return 0;
jinode = jbd2_alloc_inode(GFP_KERNEL);
spin_lock(&inode->i_lock);
if (!ei->jinode) {
if (!jinode) {
spin_unlock(&inode->i_lock);
return -ENOMEM;
}
ei->jinode = jinode;
jbd2_journal_init_jbd_inode(ei->jinode, inode);
jinode = NULL;
}
spin_unlock(&inode->i_lock);
if (unlikely(jinode != NULL))
jbd2_free_inode(jinode);
return 0;
}
/*
* ext4_truncate()
*
* We block out ext4_get_block() block instantiations across the entire
* transaction, and VFS/VM ensures that ext4_truncate() cannot run
* simultaneously on behalf of the same inode.
*
* As we work through the truncate and commit bits of it to the journal there
* is one core, guiding principle: the file's tree must always be consistent on
* disk. We must be able to restart the truncate after a crash.
*
* The file's tree may be transiently inconsistent in memory (although it
* probably isn't), but whenever we close off and commit a journal transaction,
* the contents of (the filesystem + the journal) must be consistent and
* restartable. It's pretty simple, really: bottom up, right to left (although
* left-to-right works OK too).
*
* Note that at recovery time, journal replay occurs *before* the restart of
* truncate against the orphan inode list.
*
* The committed inode has the new, desired i_size (which is the same as
* i_disksize in this case). After a crash, ext4_orphan_cleanup() will see
* that this inode's truncate did not complete and it will again call
* ext4_truncate() to have another go. So there will be instantiated blocks
* to the right of the truncation point in a crashed ext4 filesystem. But
* that's fine - as long as they are linked from the inode, the post-crash
* ext4_truncate() run will find them and release them.
*/
int ext4_truncate(struct inode *inode)
{
struct ext4_inode_info *ei = EXT4_I(inode);
unsigned int credits;
int err = 0;
handle_t *handle;
struct address_space *mapping = inode->i_mapping;
/*
* There is a possibility that we're either freeing the inode
* or it's a completely new inode. In those cases we might not
* have i_mutex locked because it's not necessary.
*/
if (!(inode->i_state & (I_NEW|I_FREEING)))
WARN_ON(!inode_is_locked(inode));
trace_ext4_truncate_enter(inode);
if (!ext4_can_truncate(inode))
return 0;
ext4_clear_inode_flag(inode, EXT4_INODE_EOFBLOCKS);
if (inode->i_size == 0 && !test_opt(inode->i_sb, NO_AUTO_DA_ALLOC))
ext4_set_inode_state(inode, EXT4_STATE_DA_ALLOC_CLOSE);
if (ext4_has_inline_data(inode)) {
int has_inline = 1;
ext4_inline_data_truncate(inode, &has_inline);
if (has_inline)
return 0;
}
/* If we zero-out tail of the page, we have to create jinode for jbd2 */
if (inode->i_size & (inode->i_sb->s_blocksize - 1)) {
if (ext4_inode_attach_jinode(inode) < 0)
return 0;
}
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
credits = ext4_writepage_trans_blocks(inode);
else
credits = ext4_blocks_for_truncate(inode);
handle = ext4_journal_start(inode, EXT4_HT_TRUNCATE, credits);
if (IS_ERR(handle))
return PTR_ERR(handle);
if (inode->i_size & (inode->i_sb->s_blocksize - 1))
ext4_block_truncate_page(handle, mapping, inode->i_size);
/*
* We add the inode to the orphan list, so that if this
* truncate spans multiple transactions, and we crash, we will
* resume the truncate when the filesystem recovers. It also
* marks the inode dirty, to catch the new size.
*
* Implication: the file must always be in a sane, consistent
* truncatable state while each transaction commits.
*/
err = ext4_orphan_add(handle, inode);
if (err)
goto out_stop;
down_write(&EXT4_I(inode)->i_data_sem);
ext4_discard_preallocations(inode);
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))
err = ext4_ext_truncate(handle, inode);
else
ext4_ind_truncate(handle, inode);
up_write(&ei->i_data_sem);
if (err)
goto out_stop;
if (IS_SYNC(inode))
ext4_handle_sync(handle);
out_stop:
/*
* If this was a simple ftruncate() and the file will remain alive,
* then we need to clear up the orphan record which we created above.
* However, if this was a real unlink then we were called by
* ext4_evict_inode(), and we allow that function to clean up the
* orphan info for us.
*/
if (inode->i_nlink)
ext4_orphan_del(handle, inode);
inode->i_mtime = inode->i_ctime = current_time(inode);
ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
trace_ext4_truncate_exit(inode);
return err;
}
/*
* ext4_get_inode_loc returns with an extra refcount against the inode's
* underlying buffer_head on success. If 'in_mem' is true, we have all
* data in memory that is needed to recreate the on-disk version of this
* inode.
*/
static int __ext4_get_inode_loc(struct inode *inode,
struct ext4_iloc *iloc, int in_mem)
{
struct ext4_group_desc *gdp;
struct buffer_head *bh;
struct super_block *sb = inode->i_sb;
ext4_fsblk_t block;
int inodes_per_block, inode_offset;
iloc->bh = NULL;
if (!ext4_valid_inum(sb, inode->i_ino))
return -EFSCORRUPTED;
iloc->block_group = (inode->i_ino - 1) / EXT4_INODES_PER_GROUP(sb);
gdp = ext4_get_group_desc(sb, iloc->block_group, NULL);
if (!gdp)
return -EIO;
/*
* Figure out the offset within the block group inode table
*/
inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
inode_offset = ((inode->i_ino - 1) %
EXT4_INODES_PER_GROUP(sb));
block = ext4_inode_table(sb, gdp) + (inode_offset / inodes_per_block);
iloc->offset = (inode_offset % inodes_per_block) * EXT4_INODE_SIZE(sb);
bh = sb_getblk(sb, block);
if (unlikely(!bh))
return -ENOMEM;
if (!buffer_uptodate(bh)) {
lock_buffer(bh);
/*
* If the buffer has the write error flag, we have failed
* to write out another inode in the same block. In this
* case, we don't have to read the block because we may
* read the old inode data successfully.
*/
if (buffer_write_io_error(bh) && !buffer_uptodate(bh))
set_buffer_uptodate(bh);
if (buffer_uptodate(bh)) {
/* someone brought it uptodate while we waited */
unlock_buffer(bh);
goto has_buffer;
}
/*
* If we have all information of the inode in memory and this
* is the only valid inode in the block, we need not read the
* block.
*/
if (in_mem) {
struct buffer_head *bitmap_bh;
int i, start;
start = inode_offset & ~(inodes_per_block - 1);
/* Is the inode bitmap in cache? */
bitmap_bh = sb_getblk(sb, ext4_inode_bitmap(sb, gdp));
if (unlikely(!bitmap_bh))
goto make_io;
/*
* If the inode bitmap isn't in cache then the
* optimisation may end up performing two reads instead
* of one, so skip it.
*/
if (!buffer_uptodate(bitmap_bh)) {
brelse(bitmap_bh);
goto make_io;
}
for (i = start; i < start + inodes_per_block; i++) {
if (i == inode_offset)
continue;
if (ext4_test_bit(i, bitmap_bh->b_data))
break;
}
brelse(bitmap_bh);
if (i == start + inodes_per_block) {
/* all other inodes are free, so skip I/O */
memset(bh->b_data, 0, bh->b_size);
set_buffer_uptodate(bh);
unlock_buffer(bh);
goto has_buffer;
}
}
make_io:
/*
* If we need to do any I/O, try to pre-readahead extra
* blocks from the inode table.
*/
if (EXT4_SB(sb)->s_inode_readahead_blks) {
ext4_fsblk_t b, end, table;
unsigned num;
__u32 ra_blks = EXT4_SB(sb)->s_inode_readahead_blks;
table = ext4_inode_table(sb, gdp);
/* s_inode_readahead_blks is always a power of 2 */
b = block & ~((ext4_fsblk_t) ra_blks - 1);
if (table > b)
b = table;
end = b + ra_blks;
num = EXT4_INODES_PER_GROUP(sb);
if (ext4_has_group_desc_csum(sb))
num -= ext4_itable_unused_count(sb, gdp);
table += num / inodes_per_block;
if (end > table)
end = table;
while (b <= end)
sb_breadahead(sb, b++);
}
/*
* There are other valid inodes in the buffer, this inode
* has in-inode xattrs, or we don't have this inode in memory.
* Read the block from disk.
*/
trace_ext4_load_inode(inode);
get_bh(bh);
bh->b_end_io = end_buffer_read_sync;
submit_bh(REQ_OP_READ, REQ_META | REQ_PRIO, bh);
wait_on_buffer(bh);
if (!buffer_uptodate(bh)) {
EXT4_ERROR_INODE_BLOCK(inode, block,
"unable to read itable block");
brelse(bh);
return -EIO;
}
}
has_buffer:
iloc->bh = bh;
return 0;
}
int ext4_get_inode_loc(struct inode *inode, struct ext4_iloc *iloc)
{
/* We have all inode data except xattrs in memory here. */
return __ext4_get_inode_loc(inode, iloc,
!ext4_test_inode_state(inode, EXT4_STATE_XATTR));
}
void ext4_set_inode_flags(struct inode *inode)
{
unsigned int flags = EXT4_I(inode)->i_flags;
unsigned int new_fl = 0;
if (flags & EXT4_SYNC_FL)
new_fl |= S_SYNC;
if (flags & EXT4_APPEND_FL)
new_fl |= S_APPEND;
if (flags & EXT4_IMMUTABLE_FL)
new_fl |= S_IMMUTABLE;
if (flags & EXT4_NOATIME_FL)
new_fl |= S_NOATIME;
if (flags & EXT4_DIRSYNC_FL)
new_fl |= S_DIRSYNC;
if (test_opt(inode->i_sb, DAX) && S_ISREG(inode->i_mode) &&
!ext4_should_journal_data(inode) && !ext4_has_inline_data(inode) &&
!ext4_encrypted_inode(inode))
new_fl |= S_DAX;
inode_set_flags(inode, new_fl,
S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC|S_DAX);
}
/* Propagate flags from i_flags to EXT4_I(inode)->i_flags */
void ext4_get_inode_flags(struct ext4_inode_info *ei)
{
unsigned int vfs_fl;
unsigned long old_fl, new_fl;
do {
vfs_fl = ei->vfs_inode.i_flags;
old_fl = ei->i_flags;
new_fl = old_fl & ~(EXT4_SYNC_FL|EXT4_APPEND_FL|
EXT4_IMMUTABLE_FL|EXT4_NOATIME_FL|
EXT4_DIRSYNC_FL);
if (vfs_fl & S_SYNC)
new_fl |= EXT4_SYNC_FL;
if (vfs_fl & S_APPEND)
new_fl |= EXT4_APPEND_FL;
if (vfs_fl & S_IMMUTABLE)
new_fl |= EXT4_IMMUTABLE_FL;
if (vfs_fl & S_NOATIME)
new_fl |= EXT4_NOATIME_FL;
if (vfs_fl & S_DIRSYNC)
new_fl |= EXT4_DIRSYNC_FL;
} while (cmpxchg(&ei->i_flags, old_fl, new_fl) != old_fl);
}
static blkcnt_t ext4_inode_blocks(struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
blkcnt_t i_blocks ;
struct inode *inode = &(ei->vfs_inode);
struct super_block *sb = inode->i_sb;
if (ext4_has_feature_huge_file(sb)) {
/* we are using combined 48 bit field */
i_blocks = ((u64)le16_to_cpu(raw_inode->i_blocks_high)) << 32 |
le32_to_cpu(raw_inode->i_blocks_lo);
if (ext4_test_inode_flag(inode, EXT4_INODE_HUGE_FILE)) {
/* i_blocks represent file system block size */
return i_blocks << (inode->i_blkbits - 9);
} else {
return i_blocks;
}
} else {
return le32_to_cpu(raw_inode->i_blocks_lo);
}
}
static inline void ext4_iget_extra_inode(struct inode *inode,
struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
__le32 *magic = (void *)raw_inode +
EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize;
if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize + sizeof(__le32) <=
EXT4_INODE_SIZE(inode->i_sb) &&
*magic == cpu_to_le32(EXT4_XATTR_MAGIC)) {
ext4_set_inode_state(inode, EXT4_STATE_XATTR);
ext4_find_inline_data_nolock(inode);
} else
EXT4_I(inode)->i_inline_off = 0;
}
int ext4_get_projid(struct inode *inode, kprojid_t *projid)
{
if (!ext4_has_feature_project(inode->i_sb))
return -EOPNOTSUPP;
*projid = EXT4_I(inode)->i_projid;
return 0;
}
struct inode *ext4_iget(struct super_block *sb, unsigned long ino)
{
struct ext4_iloc iloc;
struct ext4_inode *raw_inode;
struct ext4_inode_info *ei;
struct inode *inode;
journal_t *journal = EXT4_SB(sb)->s_journal;
long ret;
loff_t size;
int block;
uid_t i_uid;
gid_t i_gid;
projid_t i_projid;
inode = iget_locked(sb, ino);
if (!inode)
return ERR_PTR(-ENOMEM);
if (!(inode->i_state & I_NEW))
return inode;
ei = EXT4_I(inode);
iloc.bh = NULL;
ret = __ext4_get_inode_loc(inode, &iloc, 0);
if (ret < 0)
goto bad_inode;
raw_inode = ext4_raw_inode(&iloc);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
ei->i_extra_isize = le16_to_cpu(raw_inode->i_extra_isize);
if (EXT4_GOOD_OLD_INODE_SIZE + ei->i_extra_isize >
EXT4_INODE_SIZE(inode->i_sb) ||
(ei->i_extra_isize & 3)) {
EXT4_ERROR_INODE(inode,
"bad extra_isize %u (inode size %u)",
ei->i_extra_isize,
EXT4_INODE_SIZE(inode->i_sb));
ret = -EFSCORRUPTED;
goto bad_inode;
}
} else
ei->i_extra_isize = 0;
/* Precompute checksum seed for inode metadata */
if (ext4_has_metadata_csum(sb)) {
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
__u32 csum;
__le32 inum = cpu_to_le32(inode->i_ino);
__le32 gen = raw_inode->i_generation;
csum = ext4_chksum(sbi, sbi->s_csum_seed, (__u8 *)&inum,
sizeof(inum));
ei->i_csum_seed = ext4_chksum(sbi, csum, (__u8 *)&gen,
sizeof(gen));
}
if (!ext4_inode_csum_verify(inode, raw_inode, ei)) {
EXT4_ERROR_INODE(inode, "checksum invalid");
ret = -EFSBADCRC;
goto bad_inode;
}
inode->i_mode = le16_to_cpu(raw_inode->i_mode);
i_uid = (uid_t)le16_to_cpu(raw_inode->i_uid_low);
i_gid = (gid_t)le16_to_cpu(raw_inode->i_gid_low);
if (ext4_has_feature_project(sb) &&
EXT4_INODE_SIZE(sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
i_projid = (projid_t)le32_to_cpu(raw_inode->i_projid);
else
i_projid = EXT4_DEF_PROJID;
if (!(test_opt(inode->i_sb, NO_UID32))) {
i_uid |= le16_to_cpu(raw_inode->i_uid_high) << 16;
i_gid |= le16_to_cpu(raw_inode->i_gid_high) << 16;
}
i_uid_write(inode, i_uid);
i_gid_write(inode, i_gid);
ei->i_projid = make_kprojid(&init_user_ns, i_projid);
set_nlink(inode, le16_to_cpu(raw_inode->i_links_count));
ext4_clear_state_flags(ei); /* Only relevant on 32-bit archs */
ei->i_inline_off = 0;
ei->i_dir_start_lookup = 0;
ei->i_dtime = le32_to_cpu(raw_inode->i_dtime);
/* We now have enough fields to check if the inode was active or not.
* This is needed because nfsd might try to access dead inodes
* the test is that same one that e2fsck uses
* NeilBrown 1999oct15
*/
if (inode->i_nlink == 0) {
if ((inode->i_mode == 0 ||
!(EXT4_SB(inode->i_sb)->s_mount_state & EXT4_ORPHAN_FS)) &&
ino != EXT4_BOOT_LOADER_INO) {
/* this inode is deleted */
ret = -ESTALE;
goto bad_inode;
}
/* The only unlinked inodes we let through here have
* valid i_mode and are being read by the orphan
* recovery code: that's fine, we're about to complete
* the process of deleting those.
* OR it is the EXT4_BOOT_LOADER_INO which is
* not initialized on a new filesystem. */
}
ei->i_flags = le32_to_cpu(raw_inode->i_flags);
inode->i_blocks = ext4_inode_blocks(raw_inode, ei);
ei->i_file_acl = le32_to_cpu(raw_inode->i_file_acl_lo);
if (ext4_has_feature_64bit(sb))
ei->i_file_acl |=
((__u64)le16_to_cpu(raw_inode->i_file_acl_high)) << 32;
inode->i_size = ext4_isize(raw_inode);
if ((size = i_size_read(inode)) < 0) {
EXT4_ERROR_INODE(inode, "bad i_size value: %lld", size);
ret = -EFSCORRUPTED;
goto bad_inode;
}
ei->i_disksize = inode->i_size;
#ifdef CONFIG_QUOTA
ei->i_reserved_quota = 0;
#endif
inode->i_generation = le32_to_cpu(raw_inode->i_generation);
ei->i_block_group = iloc.block_group;
ei->i_last_alloc_group = ~0;
/*
* NOTE! The in-memory inode i_data array is in little-endian order
* even on big-endian machines: we do NOT byteswap the block numbers!
*/
for (block = 0; block < EXT4_N_BLOCKS; block++)
ei->i_data[block] = raw_inode->i_block[block];
INIT_LIST_HEAD(&ei->i_orphan);
/*
* Set transaction id's of transactions that have to be committed
* to finish f[data]sync. We set them to currently running transaction
* as we cannot be sure that the inode or some of its metadata isn't
* part of the transaction - the inode could have been reclaimed and
* now it is reread from disk.
*/
if (journal) {
transaction_t *transaction;
tid_t tid;
read_lock(&journal->j_state_lock);
if (journal->j_running_transaction)
transaction = journal->j_running_transaction;
else
transaction = journal->j_committing_transaction;
if (transaction)
tid = transaction->t_tid;
else
tid = journal->j_commit_sequence;
read_unlock(&journal->j_state_lock);
ei->i_sync_tid = tid;
ei->i_datasync_tid = tid;
}
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
if (ei->i_extra_isize == 0) {
/* The extra space is currently unused. Use it. */
BUILD_BUG_ON(sizeof(struct ext4_inode) & 3);
ei->i_extra_isize = sizeof(struct ext4_inode) -
EXT4_GOOD_OLD_INODE_SIZE;
} else {
ext4_iget_extra_inode(inode, raw_inode, ei);
}
}
EXT4_INODE_GET_XTIME(i_ctime, inode, raw_inode);
EXT4_INODE_GET_XTIME(i_mtime, inode, raw_inode);
EXT4_INODE_GET_XTIME(i_atime, inode, raw_inode);
EXT4_EINODE_GET_XTIME(i_crtime, ei, raw_inode);
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
inode->i_version = le32_to_cpu(raw_inode->i_disk_version);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE) {
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
inode->i_version |=
(__u64)(le32_to_cpu(raw_inode->i_version_hi)) << 32;
}
}
ret = 0;
if (ei->i_file_acl &&
!ext4_data_block_valid(EXT4_SB(sb), ei->i_file_acl, 1)) {
EXT4_ERROR_INODE(inode, "bad extended attribute block %llu",
ei->i_file_acl);
ret = -EFSCORRUPTED;
goto bad_inode;
} else if (!ext4_has_inline_data(inode)) {
if (ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)) {
if ((S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
(S_ISLNK(inode->i_mode) &&
!ext4_inode_is_fast_symlink(inode))))
/* Validate extent which is part of inode */
ret = ext4_ext_check_inode(inode);
} else if (S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
(S_ISLNK(inode->i_mode) &&
!ext4_inode_is_fast_symlink(inode))) {
/* Validate block references which are part of inode */
ret = ext4_ind_check_inode(inode);
}
}
if (ret)
goto bad_inode;
if (S_ISREG(inode->i_mode)) {
inode->i_op = &ext4_file_inode_operations;
inode->i_fop = &ext4_file_operations;
ext4_set_aops(inode);
} else if (S_ISDIR(inode->i_mode)) {
inode->i_op = &ext4_dir_inode_operations;
inode->i_fop = &ext4_dir_operations;
} else if (S_ISLNK(inode->i_mode)) {
if (ext4_encrypted_inode(inode)) {
inode->i_op = &ext4_encrypted_symlink_inode_operations;
ext4_set_aops(inode);
} else if (ext4_inode_is_fast_symlink(inode)) {
inode->i_link = (char *)ei->i_data;
inode->i_op = &ext4_fast_symlink_inode_operations;
nd_terminate_link(ei->i_data, inode->i_size,
sizeof(ei->i_data) - 1);
} else {
inode->i_op = &ext4_symlink_inode_operations;
ext4_set_aops(inode);
}
inode_nohighmem(inode);
} else if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode) ||
S_ISFIFO(inode->i_mode) || S_ISSOCK(inode->i_mode)) {
inode->i_op = &ext4_special_inode_operations;
if (raw_inode->i_block[0])
init_special_inode(inode, inode->i_mode,
old_decode_dev(le32_to_cpu(raw_inode->i_block[0])));
else
init_special_inode(inode, inode->i_mode,
new_decode_dev(le32_to_cpu(raw_inode->i_block[1])));
} else if (ino == EXT4_BOOT_LOADER_INO) {
make_bad_inode(inode);
} else {
ret = -EFSCORRUPTED;
EXT4_ERROR_INODE(inode, "bogus i_mode (%o)", inode->i_mode);
goto bad_inode;
}
brelse(iloc.bh);
ext4_set_inode_flags(inode);
unlock_new_inode(inode);
return inode;
bad_inode:
brelse(iloc.bh);
iget_failed(inode);
return ERR_PTR(ret);
}
struct inode *ext4_iget_normal(struct super_block *sb, unsigned long ino)
{
if (ino < EXT4_FIRST_INO(sb) && ino != EXT4_ROOT_INO)
return ERR_PTR(-EFSCORRUPTED);
return ext4_iget(sb, ino);
}
static int ext4_inode_blocks_set(handle_t *handle,
struct ext4_inode *raw_inode,
struct ext4_inode_info *ei)
{
struct inode *inode = &(ei->vfs_inode);
u64 i_blocks = inode->i_blocks;
struct super_block *sb = inode->i_sb;
if (i_blocks <= ~0U) {
/*
* i_blocks can be represented in a 32 bit variable
* as multiple of 512 bytes
*/
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = 0;
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
return 0;
}
if (!ext4_has_feature_huge_file(sb))
return -EFBIG;
if (i_blocks <= 0xffffffffffffULL) {
/*
* i_blocks can be represented in a 48 bit variable
* as multiple of 512 bytes
*/
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
ext4_clear_inode_flag(inode, EXT4_INODE_HUGE_FILE);
} else {
ext4_set_inode_flag(inode, EXT4_INODE_HUGE_FILE);
/* i_block is stored in file system block size */
i_blocks = i_blocks >> (inode->i_blkbits - 9);
raw_inode->i_blocks_lo = cpu_to_le32(i_blocks);
raw_inode->i_blocks_high = cpu_to_le16(i_blocks >> 32);
}
return 0;
}
struct other_inode {
unsigned long orig_ino;
struct ext4_inode *raw_inode;
};
static int other_inode_match(struct inode * inode, unsigned long ino,
void *data)
{
struct other_inode *oi = (struct other_inode *) data;
if ((inode->i_ino != ino) ||
(inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
I_DIRTY_SYNC | I_DIRTY_DATASYNC)) ||
((inode->i_state & I_DIRTY_TIME) == 0))
return 0;
spin_lock(&inode->i_lock);
if (((inode->i_state & (I_FREEING | I_WILL_FREE | I_NEW |
I_DIRTY_SYNC | I_DIRTY_DATASYNC)) == 0) &&
(inode->i_state & I_DIRTY_TIME)) {
struct ext4_inode_info *ei = EXT4_I(inode);
inode->i_state &= ~(I_DIRTY_TIME | I_DIRTY_TIME_EXPIRED);
spin_unlock(&inode->i_lock);
spin_lock(&ei->i_raw_lock);
EXT4_INODE_SET_XTIME(i_ctime, inode, oi->raw_inode);
EXT4_INODE_SET_XTIME(i_mtime, inode, oi->raw_inode);
EXT4_INODE_SET_XTIME(i_atime, inode, oi->raw_inode);
ext4_inode_csum_set(inode, oi->raw_inode, ei);
spin_unlock(&ei->i_raw_lock);
trace_ext4_other_inode_update_time(inode, oi->orig_ino);
return -1;
}
spin_unlock(&inode->i_lock);
return -1;
}
/*
* Opportunistically update the other time fields for other inodes in
* the same inode table block.
*/
static void ext4_update_other_inodes_time(struct super_block *sb,
unsigned long orig_ino, char *buf)
{
struct other_inode oi;
unsigned long ino;
int i, inodes_per_block = EXT4_SB(sb)->s_inodes_per_block;
int inode_size = EXT4_INODE_SIZE(sb);
oi.orig_ino = orig_ino;
/*
* Calculate the first inode in the inode table block. Inode
* numbers are one-based. That is, the first inode in a block
* (assuming 4k blocks and 256 byte inodes) is (n*16 + 1).
*/
ino = ((orig_ino - 1) & ~(inodes_per_block - 1)) + 1;
for (i = 0; i < inodes_per_block; i++, ino++, buf += inode_size) {
if (ino == orig_ino)
continue;
oi.raw_inode = (struct ext4_inode *) buf;
(void) find_inode_nowait(sb, ino, other_inode_match, &oi);
}
}
/*
* Post the struct inode info into an on-disk inode location in the
* buffer-cache. This gobbles the caller's reference to the
* buffer_head in the inode location struct.
*
* The caller must have write access to iloc->bh.
*/
static int ext4_do_update_inode(handle_t *handle,
struct inode *inode,
struct ext4_iloc *iloc)
{
struct ext4_inode *raw_inode = ext4_raw_inode(iloc);
struct ext4_inode_info *ei = EXT4_I(inode);
struct buffer_head *bh = iloc->bh;
struct super_block *sb = inode->i_sb;
int err = 0, rc, block;
int need_datasync = 0, set_large_file = 0;
uid_t i_uid;
gid_t i_gid;
projid_t i_projid;
spin_lock(&ei->i_raw_lock);
/* For fields not tracked in the in-memory inode,
* initialise them to zero for new inodes. */
if (ext4_test_inode_state(inode, EXT4_STATE_NEW))
memset(raw_inode, 0, EXT4_SB(inode->i_sb)->s_inode_size);
ext4_get_inode_flags(ei);
raw_inode->i_mode = cpu_to_le16(inode->i_mode);
i_uid = i_uid_read(inode);
i_gid = i_gid_read(inode);
i_projid = from_kprojid(&init_user_ns, ei->i_projid);
if (!(test_opt(inode->i_sb, NO_UID32))) {
raw_inode->i_uid_low = cpu_to_le16(low_16_bits(i_uid));
raw_inode->i_gid_low = cpu_to_le16(low_16_bits(i_gid));
/*
* Fix up interoperability with old kernels. Otherwise, old inodes get
* re-used with the upper 16 bits of the uid/gid intact
*/
if (ei->i_dtime && list_empty(&ei->i_orphan)) {
raw_inode->i_uid_high = 0;
raw_inode->i_gid_high = 0;
} else {
raw_inode->i_uid_high =
cpu_to_le16(high_16_bits(i_uid));
raw_inode->i_gid_high =
cpu_to_le16(high_16_bits(i_gid));
}
} else {
raw_inode->i_uid_low = cpu_to_le16(fs_high2lowuid(i_uid));
raw_inode->i_gid_low = cpu_to_le16(fs_high2lowgid(i_gid));
raw_inode->i_uid_high = 0;
raw_inode->i_gid_high = 0;
}
raw_inode->i_links_count = cpu_to_le16(inode->i_nlink);
EXT4_INODE_SET_XTIME(i_ctime, inode, raw_inode);
EXT4_INODE_SET_XTIME(i_mtime, inode, raw_inode);
EXT4_INODE_SET_XTIME(i_atime, inode, raw_inode);
EXT4_EINODE_SET_XTIME(i_crtime, ei, raw_inode);
err = ext4_inode_blocks_set(handle, raw_inode, ei);
if (err) {
spin_unlock(&ei->i_raw_lock);
goto out_brelse;
}
raw_inode->i_dtime = cpu_to_le32(ei->i_dtime);
raw_inode->i_flags = cpu_to_le32(ei->i_flags & 0xFFFFFFFF);
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT)))
raw_inode->i_file_acl_high =
cpu_to_le16(ei->i_file_acl >> 32);
raw_inode->i_file_acl_lo = cpu_to_le32(ei->i_file_acl);
if (ei->i_disksize != ext4_isize(raw_inode)) {
ext4_isize_set(raw_inode, ei->i_disksize);
need_datasync = 1;
}
if (ei->i_disksize > 0x7fffffffULL) {
if (!ext4_has_feature_large_file(sb) ||
EXT4_SB(sb)->s_es->s_rev_level ==
cpu_to_le32(EXT4_GOOD_OLD_REV))
set_large_file = 1;
}
raw_inode->i_generation = cpu_to_le32(inode->i_generation);
if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
if (old_valid_dev(inode->i_rdev)) {
raw_inode->i_block[0] =
cpu_to_le32(old_encode_dev(inode->i_rdev));
raw_inode->i_block[1] = 0;
} else {
raw_inode->i_block[0] = 0;
raw_inode->i_block[1] =
cpu_to_le32(new_encode_dev(inode->i_rdev));
raw_inode->i_block[2] = 0;
}
} else if (!ext4_has_inline_data(inode)) {
for (block = 0; block < EXT4_N_BLOCKS; block++)
raw_inode->i_block[block] = ei->i_data[block];
}
if (likely(!test_opt2(inode->i_sb, HURD_COMPAT))) {
raw_inode->i_disk_version = cpu_to_le32(inode->i_version);
if (ei->i_extra_isize) {
if (EXT4_FITS_IN_INODE(raw_inode, ei, i_version_hi))
raw_inode->i_version_hi =
cpu_to_le32(inode->i_version >> 32);
raw_inode->i_extra_isize =
cpu_to_le16(ei->i_extra_isize);
}
}
BUG_ON(!ext4_has_feature_project(inode->i_sb) &&
i_projid != EXT4_DEF_PROJID);
if (EXT4_INODE_SIZE(inode->i_sb) > EXT4_GOOD_OLD_INODE_SIZE &&
EXT4_FITS_IN_INODE(raw_inode, ei, i_projid))
raw_inode->i_projid = cpu_to_le32(i_projid);
ext4_inode_csum_set(inode, raw_inode, ei);
spin_unlock(&ei->i_raw_lock);
if (inode->i_sb->s_flags & MS_LAZYTIME)
ext4_update_other_inodes_time(inode->i_sb, inode->i_ino,
bh->b_data);
BUFFER_TRACE(bh, "call ext4_handle_dirty_metadata");
rc = ext4_handle_dirty_metadata(handle, NULL, bh);
if (!err)
err = rc;
ext4_clear_inode_state(inode, EXT4_STATE_NEW);
if (set_large_file) {
BUFFER_TRACE(EXT4_SB(sb)->s_sbh, "get write access");
err = ext4_journal_get_write_access(handle, EXT4_SB(sb)->s_sbh);
if (err)
goto out_brelse;
ext4_update_dynamic_rev(sb);
ext4_set_feature_large_file(sb);
ext4_handle_sync(handle);
err = ext4_handle_dirty_super(handle, sb);
}
ext4_update_inode_fsync_trans(handle, inode, need_datasync);
out_brelse:
brelse(bh);
ext4_std_error(inode->i_sb, err);
return err;
}
/*
* ext4_write_inode()
*
* We are called from a few places:
*
* - Within generic_file_aio_write() -> generic_write_sync() for O_SYNC files.
* Here, there will be no transaction running. We wait for any running
* transaction to commit.
*
* - Within flush work (sys_sync(), kupdate and such).
* We wait on commit, if told to.
*
* - Within iput_final() -> write_inode_now()
* We wait on commit, if told to.
*
* In all cases it is actually safe for us to return without doing anything,
* because the inode has been copied into a raw inode buffer in
* ext4_mark_inode_dirty(). This is a correctness thing for WB_SYNC_ALL
* writeback.
*
* Note that we are absolutely dependent upon all inode dirtiers doing the
* right thing: they *must* call mark_inode_dirty() after dirtying info in
* which we are interested.
*
* It would be a bug for them to not do this. The code:
*
* mark_inode_dirty(inode)
* stuff();
* inode->i_size = expr;
*
* is in error because write_inode() could occur while `stuff()' is running,
* and the new i_size will be lost. Plus the inode will no longer be on the
* superblock's dirty inode list.
*/
int ext4_write_inode(struct inode *inode, struct writeback_control *wbc)
{
int err;
if (WARN_ON_ONCE(current->flags & PF_MEMALLOC))
return 0;
if (EXT4_SB(inode->i_sb)->s_journal) {
if (ext4_journal_current_handle()) {
jbd_debug(1, "called recursively, non-PF_MEMALLOC!\n");
dump_stack();
return -EIO;
}
/*
* No need to force transaction in WB_SYNC_NONE mode. Also
* ext4_sync_fs() will force the commit after everything is
* written.
*/
if (wbc->sync_mode != WB_SYNC_ALL || wbc->for_sync)
return 0;
err = ext4_force_commit(inode->i_sb);
} else {
struct ext4_iloc iloc;
err = __ext4_get_inode_loc(inode, &iloc, 0);
if (err)
return err;
/*
* sync(2) will flush the whole buffer cache. No need to do
* it here separately for each inode.
*/
if (wbc->sync_mode == WB_SYNC_ALL && !wbc->for_sync)
sync_dirty_buffer(iloc.bh);
if (buffer_req(iloc.bh) && !buffer_uptodate(iloc.bh)) {
EXT4_ERROR_INODE_BLOCK(inode, iloc.bh->b_blocknr,
"IO error syncing inode");
err = -EIO;
}
brelse(iloc.bh);
}
return err;
}
/*
* In data=journal mode ext4_journalled_invalidatepage() may fail to invalidate
* buffers that are attached to a page stradding i_size and are undergoing
* commit. In that case we have to wait for commit to finish and try again.
*/
static void ext4_wait_for_tail_page_commit(struct inode *inode)
{
struct page *page;
unsigned offset;
journal_t *journal = EXT4_SB(inode->i_sb)->s_journal;
tid_t commit_tid = 0;
int ret;
offset = inode->i_size & (PAGE_SIZE - 1);
/*
* All buffers in the last page remain valid? Then there's nothing to
* do. We do the check mainly to optimize the common PAGE_SIZE ==
* blocksize case
*/
if (offset > PAGE_SIZE - (1 << inode->i_blkbits))
return;
while (1) {
page = find_lock_page(inode->i_mapping,
inode->i_size >> PAGE_SHIFT);
if (!page)
return;
ret = __ext4_journalled_invalidatepage(page, offset,
PAGE_SIZE - offset);
unlock_page(page);
put_page(page);
if (ret != -EBUSY)
return;
commit_tid = 0;
read_lock(&journal->j_state_lock);
if (journal->j_committing_transaction)
commit_tid = journal->j_committing_transaction->t_tid;
read_unlock(&journal->j_state_lock);
if (commit_tid)
jbd2_log_wait_commit(journal, commit_tid);
}
}
/*
* ext4_setattr()
*
* Called from notify_change.
*
* We want to trap VFS attempts to truncate the file as soon as
* possible. In particular, we want to make sure that when the VFS
* shrinks i_size, we put the inode on the orphan list and modify
* i_disksize immediately, so that during the subsequent flushing of
* dirty pages and freeing of disk blocks, we can guarantee that any
* commit will leave the blocks being flushed in an unused state on
* disk. (On recovery, the inode will get truncated and the blocks will
* be freed, so we have a strong guarantee that no future commit will
* leave these blocks visible to the user.)
*
* Another thing we have to assure is that if we are in ordered mode
* and inode is still attached to the committing transaction, we must
* we start writeout of all the dirty pages which are being truncated.
* This way we are sure that all the data written in the previous
* transaction are already on disk (truncate waits for pages under
* writeback).
*
* Called with inode->i_mutex down.
*/
int ext4_setattr(struct dentry *dentry, struct iattr *attr)
{
struct inode *inode = d_inode(dentry);
int error, rc = 0;
int orphan = 0;
const unsigned int ia_valid = attr->ia_valid;
error = setattr_prepare(dentry, attr);
if (error)
return error;
if (is_quota_modification(inode, attr)) {
error = dquot_initialize(inode);
if (error)
return error;
}
if ((ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) ||
(ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) {
handle_t *handle;
/* (user+group)*(old+new) structure, inode write (sb,
* inode block, ? - but truncate inode update has it) */
handle = ext4_journal_start(inode, EXT4_HT_QUOTA,
(EXT4_MAXQUOTAS_INIT_BLOCKS(inode->i_sb) +
EXT4_MAXQUOTAS_DEL_BLOCKS(inode->i_sb)) + 3);
if (IS_ERR(handle)) {
error = PTR_ERR(handle);
goto err_out;
}
error = dquot_transfer(inode, attr);
if (error) {
ext4_journal_stop(handle);
return error;
}
/* Update corresponding info in inode so that everything is in
* one transaction */
if (attr->ia_valid & ATTR_UID)
inode->i_uid = attr->ia_uid;
if (attr->ia_valid & ATTR_GID)
inode->i_gid = attr->ia_gid;
error = ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
}
if (attr->ia_valid & ATTR_SIZE) {
handle_t *handle;
loff_t oldsize = inode->i_size;
int shrink = (attr->ia_size <= inode->i_size);
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS))) {
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
if (attr->ia_size > sbi->s_bitmap_maxbytes)
return -EFBIG;
}
if (!S_ISREG(inode->i_mode))
return -EINVAL;
if (IS_I_VERSION(inode) && attr->ia_size != inode->i_size)
inode_inc_iversion(inode);
if (ext4_should_order_data(inode) &&
(attr->ia_size < inode->i_size)) {
error = ext4_begin_ordered_truncate(inode,
attr->ia_size);
if (error)
goto err_out;
}
if (attr->ia_size != inode->i_size) {
handle = ext4_journal_start(inode, EXT4_HT_INODE, 3);
if (IS_ERR(handle)) {
error = PTR_ERR(handle);
goto err_out;
}
if (ext4_handle_valid(handle) && shrink) {
error = ext4_orphan_add(handle, inode);
orphan = 1;
}
/*
* Update c/mtime on truncate up, ext4_truncate() will
* update c/mtime in shrink case below
*/
if (!shrink) {
inode->i_mtime = current_time(inode);
inode->i_ctime = inode->i_mtime;
}
down_write(&EXT4_I(inode)->i_data_sem);
EXT4_I(inode)->i_disksize = attr->ia_size;
rc = ext4_mark_inode_dirty(handle, inode);
if (!error)
error = rc;
/*
* We have to update i_size under i_data_sem together
* with i_disksize to avoid races with writeback code
* running ext4_wb_update_i_disksize().
*/
if (!error)
i_size_write(inode, attr->ia_size);
up_write(&EXT4_I(inode)->i_data_sem);
ext4_journal_stop(handle);
if (error) {
if (orphan)
ext4_orphan_del(NULL, inode);
goto err_out;
}
}
if (!shrink)
pagecache_isize_extended(inode, oldsize, inode->i_size);
/*
* Blocks are going to be removed from the inode. Wait
* for dio in flight. Temporarily disable
* dioread_nolock to prevent livelock.
*/
if (orphan) {
if (!ext4_should_journal_data(inode)) {
ext4_inode_block_unlocked_dio(inode);
inode_dio_wait(inode);
ext4_inode_resume_unlocked_dio(inode);
} else
ext4_wait_for_tail_page_commit(inode);
}
down_write(&EXT4_I(inode)->i_mmap_sem);
/*
* Truncate pagecache after we've waited for commit
* in data=journal mode to make pages freeable.
*/
truncate_pagecache(inode, inode->i_size);
if (shrink) {
rc = ext4_truncate(inode);
if (rc)
error = rc;
}
up_write(&EXT4_I(inode)->i_mmap_sem);
}
if (!error) {
setattr_copy(inode, attr);
mark_inode_dirty(inode);
}
/*
* If the call to ext4_truncate failed to get a transaction handle at
* all, we need to clean up the in-core orphan list manually.
*/
if (orphan && inode->i_nlink)
ext4_orphan_del(NULL, inode);
if (!error && (ia_valid & ATTR_MODE))
rc = posix_acl_chmod(inode, inode->i_mode);
err_out:
ext4_std_error(inode->i_sb, error);
if (!error)
error = rc;
return error;
}
int ext4_getattr(struct vfsmount *mnt, struct dentry *dentry,
struct kstat *stat)
{
struct inode *inode;
unsigned long long delalloc_blocks;
inode = d_inode(dentry);
generic_fillattr(inode, stat);
/*
* If there is inline data in the inode, the inode will normally not
* have data blocks allocated (it may have an external xattr block).
* Report at least one sector for such files, so tools like tar, rsync,
* others doen't incorrectly think the file is completely sparse.
*/
if (unlikely(ext4_has_inline_data(inode)))
stat->blocks += (stat->size + 511) >> 9;
/*
* We can't update i_blocks if the block allocation is delayed
* otherwise in the case of system crash before the real block
* allocation is done, we will have i_blocks inconsistent with
* on-disk file blocks.
* We always keep i_blocks updated together with real
* allocation. But to not confuse with user, stat
* will return the blocks that include the delayed allocation
* blocks for this file.
*/
delalloc_blocks = EXT4_C2B(EXT4_SB(inode->i_sb),
EXT4_I(inode)->i_reserved_data_blocks);
stat->blocks += delalloc_blocks << (inode->i_sb->s_blocksize_bits - 9);
return 0;
}
static int ext4_index_trans_blocks(struct inode *inode, int lblocks,
int pextents)
{
if (!(ext4_test_inode_flag(inode, EXT4_INODE_EXTENTS)))
return ext4_ind_trans_blocks(inode, lblocks);
return ext4_ext_index_trans_blocks(inode, pextents);
}
/*
* Account for index blocks, block groups bitmaps and block group
* descriptor blocks if modify datablocks and index blocks
* worse case, the indexs blocks spread over different block groups
*
* If datablocks are discontiguous, they are possible to spread over
* different block groups too. If they are contiguous, with flexbg,
* they could still across block group boundary.
*
* Also account for superblock, inode, quota and xattr blocks
*/
static int ext4_meta_trans_blocks(struct inode *inode, int lblocks,
int pextents)
{
ext4_group_t groups, ngroups = ext4_get_groups_count(inode->i_sb);
int gdpblocks;
int idxblocks;
int ret = 0;
/*
* How many index blocks need to touch to map @lblocks logical blocks
* to @pextents physical extents?
*/
idxblocks = ext4_index_trans_blocks(inode, lblocks, pextents);
ret = idxblocks;
/*
* Now let's see how many group bitmaps and group descriptors need
* to account
*/
groups = idxblocks + pextents;
gdpblocks = groups;
if (groups > ngroups)
groups = ngroups;
if (groups > EXT4_SB(inode->i_sb)->s_gdb_count)
gdpblocks = EXT4_SB(inode->i_sb)->s_gdb_count;
/* bitmaps and block group descriptor blocks */
ret += groups + gdpblocks;
/* Blocks for super block, inode, quota and xattr blocks */
ret += EXT4_META_TRANS_BLOCKS(inode->i_sb);
return ret;
}
/*
* Calculate the total number of credits to reserve to fit
* the modification of a single pages into a single transaction,
* which may include multiple chunks of block allocations.
*
* This could be called via ext4_write_begin()
*
* We need to consider the worse case, when
* one new block per extent.
*/
int ext4_writepage_trans_blocks(struct inode *inode)
{
int bpp = ext4_journal_blocks_per_page(inode);
int ret;
ret = ext4_meta_trans_blocks(inode, bpp, bpp);
/* Account for data blocks for journalled mode */
if (ext4_should_journal_data(inode))
ret += bpp;
return ret;
}
/*
* Calculate the journal credits for a chunk of data modification.
*
* This is called from DIO, fallocate or whoever calling
* ext4_map_blocks() to map/allocate a chunk of contiguous disk blocks.
*
* journal buffers for data blocks are not included here, as DIO
* and fallocate do no need to journal data buffers.
*/
int ext4_chunk_trans_blocks(struct inode *inode, int nrblocks)
{
return ext4_meta_trans_blocks(inode, nrblocks, 1);
}
/*
* The caller must have previously called ext4_reserve_inode_write().
* Give this, we know that the caller already has write access to iloc->bh.
*/
int ext4_mark_iloc_dirty(handle_t *handle,
struct inode *inode, struct ext4_iloc *iloc)
{
int err = 0;
if (IS_I_VERSION(inode))
inode_inc_iversion(inode);
/* the do_update_inode consumes one bh->b_count */
get_bh(iloc->bh);
/* ext4_do_update_inode() does jbd2_journal_dirty_metadata */
err = ext4_do_update_inode(handle, inode, iloc);
put_bh(iloc->bh);
return err;
}
/*
* On success, We end up with an outstanding reference count against
* iloc->bh. This _must_ be cleaned up later.
*/
int
ext4_reserve_inode_write(handle_t *handle, struct inode *inode,
struct ext4_iloc *iloc)
{
int err;
err = ext4_get_inode_loc(inode, iloc);
if (!err) {
BUFFER_TRACE(iloc->bh, "get_write_access");
err = ext4_journal_get_write_access(handle, iloc->bh);
if (err) {
brelse(iloc->bh);
iloc->bh = NULL;
}
}
ext4_std_error(inode->i_sb, err);
return err;
}
/*
* Expand an inode by new_extra_isize bytes.
* Returns 0 on success or negative error number on failure.
*/
static int ext4_expand_extra_isize(struct inode *inode,
unsigned int new_extra_isize,
struct ext4_iloc iloc,
handle_t *handle)
{
struct ext4_inode *raw_inode;
struct ext4_xattr_ibody_header *header;
if (EXT4_I(inode)->i_extra_isize >= new_extra_isize)
return 0;
raw_inode = ext4_raw_inode(&iloc);
header = IHDR(inode, raw_inode);
/* No extended attributes present */
if (!ext4_test_inode_state(inode, EXT4_STATE_XATTR) ||
header->h_magic != cpu_to_le32(EXT4_XATTR_MAGIC)) {
memset((void *)raw_inode + EXT4_GOOD_OLD_INODE_SIZE, 0,
new_extra_isize);
EXT4_I(inode)->i_extra_isize = new_extra_isize;
return 0;
}
/* try to expand with EAs present */
return ext4_expand_extra_isize_ea(inode, new_extra_isize,
raw_inode, handle);
}
/*
* What we do here is to mark the in-core inode as clean with respect to inode
* dirtiness (it may still be data-dirty).
* This means that the in-core inode may be reaped by prune_icache
* without having to perform any I/O. This is a very good thing,
* because *any* task may call prune_icache - even ones which
* have a transaction open against a different journal.
*
* Is this cheating? Not really. Sure, we haven't written the
* inode out, but prune_icache isn't a user-visible syncing function.
* Whenever the user wants stuff synced (sys_sync, sys_msync, sys_fsync)
* we start and wait on commits.
*/
int ext4_mark_inode_dirty(handle_t *handle, struct inode *inode)
{
struct ext4_iloc iloc;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
static unsigned int mnt_count;
int err, ret;
might_sleep();
trace_ext4_mark_inode_dirty(inode, _RET_IP_);
err = ext4_reserve_inode_write(handle, inode, &iloc);
if (err)
return err;
if (EXT4_I(inode)->i_extra_isize < sbi->s_want_extra_isize &&
!ext4_test_inode_state(inode, EXT4_STATE_NO_EXPAND)) {
/*
* In nojournal mode, we can immediately attempt to expand
* the inode. When journaled, we first need to obtain extra
* buffer credits since we may write into the EA block
* with this same handle. If journal_extend fails, then it will
* only result in a minor loss of functionality for that inode.
* If this is felt to be critical, then e2fsck should be run to
* force a large enough s_min_extra_isize.
*/
if (!ext4_handle_valid(handle) ||
jbd2_journal_extend(handle,
EXT4_DATA_TRANS_BLOCKS(inode->i_sb)) == 0) {
ret = ext4_expand_extra_isize(inode,
sbi->s_want_extra_isize,
iloc, handle);
if (ret) {
if (mnt_count !=
le16_to_cpu(sbi->s_es->s_mnt_count)) {
ext4_warning(inode->i_sb,
"Unable to expand inode %lu. Delete"
" some EAs or run e2fsck.",
inode->i_ino);
mnt_count =
le16_to_cpu(sbi->s_es->s_mnt_count);
}
}
}
}
return ext4_mark_iloc_dirty(handle, inode, &iloc);
}
/*
* ext4_dirty_inode() is called from __mark_inode_dirty()
*
* We're really interested in the case where a file is being extended.
* i_size has been changed by generic_commit_write() and we thus need
* to include the updated inode in the current transaction.
*
* Also, dquot_alloc_block() will always dirty the inode when blocks
* are allocated to the file.
*
* If the inode is marked synchronous, we don't honour that here - doing
* so would cause a commit on atime updates, which we don't bother doing.
* We handle synchronous inodes at the highest possible level.
*
* If only the I_DIRTY_TIME flag is set, we can skip everything. If
* I_DIRTY_TIME and I_DIRTY_SYNC is set, the only inode fields we need
* to copy into the on-disk inode structure are the timestamp files.
*/
void ext4_dirty_inode(struct inode *inode, int flags)
{
handle_t *handle;
if (flags == I_DIRTY_TIME)
return;
handle = ext4_journal_start(inode, EXT4_HT_INODE, 2);
if (IS_ERR(handle))
goto out;
ext4_mark_inode_dirty(handle, inode);
ext4_journal_stop(handle);
out:
return;
}
#if 0
/*
* Bind an inode's backing buffer_head into this transaction, to prevent
* it from being flushed to disk early. Unlike
* ext4_reserve_inode_write, this leaves behind no bh reference and
* returns no iloc structure, so the caller needs to repeat the iloc
* lookup to mark the inode dirty later.
*/
static int ext4_pin_inode(handle_t *handle, struct inode *inode)
{
struct ext4_iloc iloc;
int err = 0;
if (handle) {
err = ext4_get_inode_loc(inode, &iloc);
if (!err) {
BUFFER_TRACE(iloc.bh, "get_write_access");
err = jbd2_journal_get_write_access(handle, iloc.bh);
if (!err)
err = ext4_handle_dirty_metadata(handle,
NULL,
iloc.bh);
brelse(iloc.bh);
}
}
ext4_std_error(inode->i_sb, err);
return err;
}
#endif
int ext4_change_inode_journal_flag(struct inode *inode, int val)
{
journal_t *journal;
handle_t *handle;
int err;
struct ext4_sb_info *sbi = EXT4_SB(inode->i_sb);
/*
* We have to be very careful here: changing a data block's
* journaling status dynamically is dangerous. If we write a
* data block to the journal, change the status and then delete
* that block, we risk forgetting to revoke the old log record
* from the journal and so a subsequent replay can corrupt data.
* So, first we make sure that the journal is empty and that
* nobody is changing anything.
*/
journal = EXT4_JOURNAL(inode);
if (!journal)
return 0;
if (is_journal_aborted(journal))
return -EROFS;
/* Wait for all existing dio workers */
ext4_inode_block_unlocked_dio(inode);
inode_dio_wait(inode);
/*
* Before flushing the journal and switching inode's aops, we have
* to flush all dirty data the inode has. There can be outstanding
* delayed allocations, there can be unwritten extents created by
* fallocate or buffered writes in dioread_nolock mode covered by
* dirty data which can be converted only after flushing the dirty
* data (and journalled aops don't know how to handle these cases).
*/
if (val) {
down_write(&EXT4_I(inode)->i_mmap_sem);
err = filemap_write_and_wait(inode->i_mapping);
if (err < 0) {
up_write(&EXT4_I(inode)->i_mmap_sem);
ext4_inode_resume_unlocked_dio(inode);
return err;
}
}
percpu_down_write(&sbi->s_journal_flag_rwsem);
jbd2_journal_lock_updates(journal);
/*
* OK, there are no updates running now, and all cached data is
* synced to disk. We are now in a completely consistent state
* which doesn't have anything in the journal, and we know that
* no filesystem updates are running, so it is safe to modify
* the inode's in-core data-journaling state flag now.
*/
if (val)
ext4_set_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
else {
err = jbd2_journal_flush(journal);
if (err < 0) {
jbd2_journal_unlock_updates(journal);
percpu_up_write(&sbi->s_journal_flag_rwsem);
ext4_inode_resume_unlocked_dio(inode);
return err;
}
ext4_clear_inode_flag(inode, EXT4_INODE_JOURNAL_DATA);
}
ext4_set_aops(inode);
/*
* Update inode->i_flags after EXT4_INODE_JOURNAL_DATA was updated.
* E.g. S_DAX may get cleared / set.
*/
ext4_set_inode_flags(inode);
jbd2_journal_unlock_updates(journal);
percpu_up_write(&sbi->s_journal_flag_rwsem);
if (val)
up_write(&EXT4_I(inode)->i_mmap_sem);
ext4_inode_resume_unlocked_dio(inode);
/* Finally we can mark the inode as dirty. */
handle = ext4_journal_start(inode, EXT4_HT_INODE, 1);
if (IS_ERR(handle))
return PTR_ERR(handle);
err = ext4_mark_inode_dirty(handle, inode);
ext4_handle_sync(handle);
ext4_journal_stop(handle);
ext4_std_error(inode->i_sb, err);
return err;
}
static int ext4_bh_unmapped(handle_t *handle, struct buffer_head *bh)
{
return !buffer_mapped(bh);
}
int ext4_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct page *page = vmf->page;
loff_t size;
unsigned long len;
int ret;
struct file *file = vma->vm_file;
struct inode *inode = file_inode(file);
struct address_space *mapping = inode->i_mapping;
handle_t *handle;
get_block_t *get_block;
int retries = 0;
sb_start_pagefault(inode->i_sb);
file_update_time(vma->vm_file);
down_read(&EXT4_I(inode)->i_mmap_sem);
/* Delalloc case is easy... */
if (test_opt(inode->i_sb, DELALLOC) &&
!ext4_should_journal_data(inode) &&
!ext4_nonda_switch(inode->i_sb)) {
do {
ret = block_page_mkwrite(vma, vmf,
ext4_da_get_block_prep);
} while (ret == -ENOSPC &&
ext4_should_retry_alloc(inode->i_sb, &retries));
goto out_ret;
}
lock_page(page);
size = i_size_read(inode);
/* Page got truncated from under us? */
if (page->mapping != mapping || page_offset(page) > size) {
unlock_page(page);
ret = VM_FAULT_NOPAGE;
goto out;
}
if (page->index == size >> PAGE_SHIFT)
len = size & ~PAGE_MASK;
else
len = PAGE_SIZE;
/*
* Return if we have all the buffers mapped. This avoids the need to do
* journal_start/journal_stop which can block and take a long time
*/
if (page_has_buffers(page)) {
if (!ext4_walk_page_buffers(NULL, page_buffers(page),
0, len, NULL,
ext4_bh_unmapped)) {
/* Wait so that we don't change page under IO */
wait_for_stable_page(page);
ret = VM_FAULT_LOCKED;
goto out;
}
}
unlock_page(page);
/* OK, we need to fill the hole... */
if (ext4_should_dioread_nolock(inode))
get_block = ext4_get_block_unwritten;
else
get_block = ext4_get_block;
retry_alloc:
handle = ext4_journal_start(inode, EXT4_HT_WRITE_PAGE,
ext4_writepage_trans_blocks(inode));
if (IS_ERR(handle)) {
ret = VM_FAULT_SIGBUS;
goto out;
}
ret = block_page_mkwrite(vma, vmf, get_block);
if (!ret && ext4_should_journal_data(inode)) {
if (ext4_walk_page_buffers(handle, page_buffers(page), 0,
PAGE_SIZE, NULL, do_journal_get_write_access)) {
unlock_page(page);
ret = VM_FAULT_SIGBUS;
ext4_journal_stop(handle);
goto out;
}
ext4_set_inode_state(inode, EXT4_STATE_JDATA);
}
ext4_journal_stop(handle);
if (ret == -ENOSPC && ext4_should_retry_alloc(inode->i_sb, &retries))
goto retry_alloc;
out_ret:
ret = block_page_mkwrite_return(ret);
out:
up_read(&EXT4_I(inode)->i_mmap_sem);
sb_end_pagefault(inode->i_sb);
return ret;
}
int ext4_filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
{
struct inode *inode = file_inode(vma->vm_file);
int err;
down_read(&EXT4_I(inode)->i_mmap_sem);
err = filemap_fault(vma, vmf);
up_read(&EXT4_I(inode)->i_mmap_sem);
return err;
}
/*
* Find the first extent at or after @lblk in an inode that is not a hole.
* Search for @map_len blocks at most. The extent is returned in @result.
*
* The function returns 1 if we found an extent. The function returns 0 in
* case there is no extent at or after @lblk and in that case also sets
* @result->es_len to 0. In case of error, the error code is returned.
*/
int ext4_get_next_extent(struct inode *inode, ext4_lblk_t lblk,
unsigned int map_len, struct extent_status *result)
{
struct ext4_map_blocks map;
struct extent_status es = {};
int ret;
map.m_lblk = lblk;
map.m_len = map_len;
/*
* For non-extent based files this loop may iterate several times since
* we do not determine full hole size.
*/
while (map.m_len > 0) {
ret = ext4_map_blocks(NULL, inode, &map, 0);
if (ret < 0)
return ret;
/* There's extent covering m_lblk? Just return it. */
if (ret > 0) {
int status;
ext4_es_store_pblock(result, map.m_pblk);
result->es_lblk = map.m_lblk;
result->es_len = map.m_len;
if (map.m_flags & EXT4_MAP_UNWRITTEN)
status = EXTENT_STATUS_UNWRITTEN;
else
status = EXTENT_STATUS_WRITTEN;
ext4_es_store_status(result, status);
return 1;
}
ext4_es_find_delayed_extent_range(inode, map.m_lblk,
map.m_lblk + map.m_len - 1,
&es);
/* Is delalloc data before next block in extent tree? */
if (es.es_len && es.es_lblk < map.m_lblk + map.m_len) {
ext4_lblk_t offset = 0;
if (es.es_lblk < lblk)
offset = lblk - es.es_lblk;
result->es_lblk = es.es_lblk + offset;
ext4_es_store_pblock(result,
ext4_es_pblock(&es) + offset);
result->es_len = es.es_len - offset;
ext4_es_store_status(result, ext4_es_status(&es));
return 1;
}
/* There's a hole at m_lblk, advance us after it */
map.m_lblk += map.m_len;
map_len -= map.m_len;
map.m_len = map_len;
cond_resched();
}
result->es_len = 0;
return 0;
}