OpenCloudOS-Kernel/drivers/net/can/usb/esd_usb2.c

1133 lines
26 KiB
C

/*
* CAN driver for esd CAN-USB/2
*
* Copyright (C) 2010 Matthias Fuchs <matthias.fuchs@esd.eu>, esd gmbh
*
* This program is free software; you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published
* by the Free Software Foundation; version 2 of the License.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
#include <linux/init.h>
#include <linux/signal.h>
#include <linux/slab.h>
#include <linux/module.h>
#include <linux/netdevice.h>
#include <linux/usb.h>
#include <linux/can.h>
#include <linux/can/dev.h>
#include <linux/can/error.h>
MODULE_AUTHOR("Matthias Fuchs <matthias.fuchs@esd.eu>");
MODULE_DESCRIPTION("CAN driver for esd CAN-USB/2 interfaces");
MODULE_LICENSE("GPL v2");
/* Define these values to match your devices */
#define USB_ESDGMBH_VENDOR_ID 0x0ab4
#define USB_CANUSB2_PRODUCT_ID 0x0010
#define ESD_USB2_CAN_CLOCK 60000000
#define ESD_USB2_MAX_NETS 2
/* USB2 commands */
#define CMD_VERSION 1 /* also used for VERSION_REPLY */
#define CMD_CAN_RX 2 /* device to host only */
#define CMD_CAN_TX 3 /* also used for TX_DONE */
#define CMD_SETBAUD 4 /* also used for SETBAUD_REPLY */
#define CMD_TS 5 /* also used for TS_REPLY */
#define CMD_IDADD 6 /* also used for IDADD_REPLY */
/* esd CAN message flags - dlc field */
#define ESD_RTR 0x10
/* esd CAN message flags - id field */
#define ESD_EXTID 0x20000000
#define ESD_EVENT 0x40000000
#define ESD_IDMASK 0x1fffffff
/* esd CAN event ids used by this driver */
#define ESD_EV_CAN_ERROR_EXT 2
/* baudrate message flags */
#define ESD_USB2_UBR 0x80000000
#define ESD_USB2_LOM 0x40000000
#define ESD_USB2_NO_BAUDRATE 0x7fffffff
#define ESD_USB2_TSEG1_MIN 1
#define ESD_USB2_TSEG1_MAX 16
#define ESD_USB2_TSEG1_SHIFT 16
#define ESD_USB2_TSEG2_MIN 1
#define ESD_USB2_TSEG2_MAX 8
#define ESD_USB2_TSEG2_SHIFT 20
#define ESD_USB2_SJW_MAX 4
#define ESD_USB2_SJW_SHIFT 14
#define ESD_USB2_BRP_MIN 1
#define ESD_USB2_BRP_MAX 1024
#define ESD_USB2_BRP_INC 1
#define ESD_USB2_3_SAMPLES 0x00800000
/* esd IDADD message */
#define ESD_ID_ENABLE 0x80
#define ESD_MAX_ID_SEGMENT 64
/* SJA1000 ECC register (emulated by usb2 firmware) */
#define SJA1000_ECC_SEG 0x1F
#define SJA1000_ECC_DIR 0x20
#define SJA1000_ECC_ERR 0x06
#define SJA1000_ECC_BIT 0x00
#define SJA1000_ECC_FORM 0x40
#define SJA1000_ECC_STUFF 0x80
#define SJA1000_ECC_MASK 0xc0
/* esd bus state event codes */
#define ESD_BUSSTATE_MASK 0xc0
#define ESD_BUSSTATE_WARN 0x40
#define ESD_BUSSTATE_ERRPASSIVE 0x80
#define ESD_BUSSTATE_BUSOFF 0xc0
#define RX_BUFFER_SIZE 1024
#define MAX_RX_URBS 4
#define MAX_TX_URBS 16 /* must be power of 2 */
struct header_msg {
u8 len; /* len is always the total message length in 32bit words */
u8 cmd;
u8 rsvd[2];
};
struct version_msg {
u8 len;
u8 cmd;
u8 rsvd;
u8 flags;
__le32 drv_version;
};
struct version_reply_msg {
u8 len;
u8 cmd;
u8 nets;
u8 features;
__le32 version;
u8 name[16];
__le32 rsvd;
__le32 ts;
};
struct rx_msg {
u8 len;
u8 cmd;
u8 net;
u8 dlc;
__le32 ts;
__le32 id; /* upper 3 bits contain flags */
u8 data[8];
};
struct tx_msg {
u8 len;
u8 cmd;
u8 net;
u8 dlc;
__le32 hnd;
__le32 id; /* upper 3 bits contain flags */
u8 data[8];
};
struct tx_done_msg {
u8 len;
u8 cmd;
u8 net;
u8 status;
__le32 hnd;
__le32 ts;
};
struct id_filter_msg {
u8 len;
u8 cmd;
u8 net;
u8 option;
__le32 mask[ESD_MAX_ID_SEGMENT + 1];
};
struct set_baudrate_msg {
u8 len;
u8 cmd;
u8 net;
u8 rsvd;
__le32 baud;
};
/* Main message type used between library and application */
struct __attribute__ ((packed)) esd_usb2_msg {
union {
struct header_msg hdr;
struct version_msg version;
struct version_reply_msg version_reply;
struct rx_msg rx;
struct tx_msg tx;
struct tx_done_msg txdone;
struct set_baudrate_msg setbaud;
struct id_filter_msg filter;
} msg;
};
static struct usb_device_id esd_usb2_table[] = {
{USB_DEVICE(USB_ESDGMBH_VENDOR_ID, USB_CANUSB2_PRODUCT_ID)},
{}
};
MODULE_DEVICE_TABLE(usb, esd_usb2_table);
struct esd_usb2_net_priv;
struct esd_tx_urb_context {
struct esd_usb2_net_priv *priv;
u32 echo_index;
int dlc;
};
struct esd_usb2 {
struct usb_device *udev;
struct esd_usb2_net_priv *nets[ESD_USB2_MAX_NETS];
struct usb_anchor rx_submitted;
int net_count;
u32 version;
int rxinitdone;
};
struct esd_usb2_net_priv {
struct can_priv can; /* must be the first member */
atomic_t active_tx_jobs;
struct usb_anchor tx_submitted;
struct esd_tx_urb_context tx_contexts[MAX_TX_URBS];
int open_time;
struct esd_usb2 *usb2;
struct net_device *netdev;
int index;
u8 old_state;
struct can_berr_counter bec;
};
static void esd_usb2_rx_event(struct esd_usb2_net_priv *priv,
struct esd_usb2_msg *msg)
{
struct net_device_stats *stats = &priv->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
u32 id = le32_to_cpu(msg->msg.rx.id) & ESD_IDMASK;
if (id == ESD_EV_CAN_ERROR_EXT) {
u8 state = msg->msg.rx.data[0];
u8 ecc = msg->msg.rx.data[1];
u8 txerr = msg->msg.rx.data[2];
u8 rxerr = msg->msg.rx.data[3];
skb = alloc_can_err_skb(priv->netdev, &cf);
if (skb == NULL) {
stats->rx_dropped++;
return;
}
if (state != priv->old_state) {
priv->old_state = state;
switch (state & ESD_BUSSTATE_MASK) {
case ESD_BUSSTATE_BUSOFF:
priv->can.state = CAN_STATE_BUS_OFF;
cf->can_id |= CAN_ERR_BUSOFF;
can_bus_off(priv->netdev);
break;
case ESD_BUSSTATE_WARN:
priv->can.state = CAN_STATE_ERROR_WARNING;
priv->can.can_stats.error_warning++;
break;
case ESD_BUSSTATE_ERRPASSIVE:
priv->can.state = CAN_STATE_ERROR_PASSIVE;
priv->can.can_stats.error_passive++;
break;
default:
priv->can.state = CAN_STATE_ERROR_ACTIVE;
break;
}
} else {
priv->can.can_stats.bus_error++;
stats->rx_errors++;
cf->can_id |= CAN_ERR_PROT | CAN_ERR_BUSERROR;
switch (ecc & SJA1000_ECC_MASK) {
case SJA1000_ECC_BIT:
cf->data[2] |= CAN_ERR_PROT_BIT;
break;
case SJA1000_ECC_FORM:
cf->data[2] |= CAN_ERR_PROT_FORM;
break;
case SJA1000_ECC_STUFF:
cf->data[2] |= CAN_ERR_PROT_STUFF;
break;
default:
cf->data[2] |= CAN_ERR_PROT_UNSPEC;
cf->data[3] = ecc & SJA1000_ECC_SEG;
break;
}
/* Error occurred during transmission? */
if (!(ecc & SJA1000_ECC_DIR))
cf->data[2] |= CAN_ERR_PROT_TX;
if (priv->can.state == CAN_STATE_ERROR_WARNING ||
priv->can.state == CAN_STATE_ERROR_PASSIVE) {
cf->data[1] = (txerr > rxerr) ?
CAN_ERR_CRTL_TX_PASSIVE :
CAN_ERR_CRTL_RX_PASSIVE;
}
cf->data[6] = txerr;
cf->data[7] = rxerr;
}
netif_rx(skb);
priv->bec.txerr = txerr;
priv->bec.rxerr = rxerr;
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
}
static void esd_usb2_rx_can_msg(struct esd_usb2_net_priv *priv,
struct esd_usb2_msg *msg)
{
struct net_device_stats *stats = &priv->netdev->stats;
struct can_frame *cf;
struct sk_buff *skb;
int i;
u32 id;
if (!netif_device_present(priv->netdev))
return;
id = le32_to_cpu(msg->msg.rx.id);
if (id & ESD_EVENT) {
esd_usb2_rx_event(priv, msg);
} else {
skb = alloc_can_skb(priv->netdev, &cf);
if (skb == NULL) {
stats->rx_dropped++;
return;
}
cf->can_id = id & ESD_IDMASK;
cf->can_dlc = get_can_dlc(msg->msg.rx.dlc);
if (id & ESD_EXTID)
cf->can_id |= CAN_EFF_FLAG;
if (msg->msg.rx.dlc & ESD_RTR) {
cf->can_id |= CAN_RTR_FLAG;
} else {
for (i = 0; i < cf->can_dlc; i++)
cf->data[i] = msg->msg.rx.data[i];
}
netif_rx(skb);
stats->rx_packets++;
stats->rx_bytes += cf->can_dlc;
}
return;
}
static void esd_usb2_tx_done_msg(struct esd_usb2_net_priv *priv,
struct esd_usb2_msg *msg)
{
struct net_device_stats *stats = &priv->netdev->stats;
struct net_device *netdev = priv->netdev;
struct esd_tx_urb_context *context;
if (!netif_device_present(netdev))
return;
context = &priv->tx_contexts[msg->msg.txdone.hnd & (MAX_TX_URBS - 1)];
if (!msg->msg.txdone.status) {
stats->tx_packets++;
stats->tx_bytes += context->dlc;
can_get_echo_skb(netdev, context->echo_index);
} else {
stats->tx_errors++;
can_free_echo_skb(netdev, context->echo_index);
}
/* Release context */
context->echo_index = MAX_TX_URBS;
atomic_dec(&priv->active_tx_jobs);
netif_wake_queue(netdev);
}
static void esd_usb2_read_bulk_callback(struct urb *urb)
{
struct esd_usb2 *dev = urb->context;
int retval;
int pos = 0;
int i;
switch (urb->status) {
case 0: /* success */
break;
case -ENOENT:
case -ESHUTDOWN:
return;
default:
dev_info(dev->udev->dev.parent,
"Rx URB aborted (%d)\n", urb->status);
goto resubmit_urb;
}
while (pos < urb->actual_length) {
struct esd_usb2_msg *msg;
msg = (struct esd_usb2_msg *)(urb->transfer_buffer + pos);
switch (msg->msg.hdr.cmd) {
case CMD_CAN_RX:
esd_usb2_rx_can_msg(dev->nets[msg->msg.rx.net], msg);
break;
case CMD_CAN_TX:
esd_usb2_tx_done_msg(dev->nets[msg->msg.txdone.net],
msg);
break;
}
pos += msg->msg.hdr.len << 2;
if (pos > urb->actual_length) {
dev_err(dev->udev->dev.parent, "format error\n");
break;
}
}
resubmit_urb:
usb_fill_bulk_urb(urb, dev->udev, usb_rcvbulkpipe(dev->udev, 1),
urb->transfer_buffer, RX_BUFFER_SIZE,
esd_usb2_read_bulk_callback, dev);
retval = usb_submit_urb(urb, GFP_ATOMIC);
if (retval == -ENODEV) {
for (i = 0; i < dev->net_count; i++) {
if (dev->nets[i])
netif_device_detach(dev->nets[i]->netdev);
}
} else if (retval) {
dev_err(dev->udev->dev.parent,
"failed resubmitting read bulk urb: %d\n", retval);
}
return;
}
/*
* callback for bulk IN urb
*/
static void esd_usb2_write_bulk_callback(struct urb *urb)
{
struct esd_tx_urb_context *context = urb->context;
struct esd_usb2_net_priv *priv;
struct esd_usb2 *dev;
struct net_device *netdev;
size_t size = sizeof(struct esd_usb2_msg);
WARN_ON(!context);
priv = context->priv;
netdev = priv->netdev;
dev = priv->usb2;
/* free up our allocated buffer */
usb_free_coherent(urb->dev, size,
urb->transfer_buffer, urb->transfer_dma);
if (!netif_device_present(netdev))
return;
if (urb->status)
dev_info(netdev->dev.parent, "Tx URB aborted (%d)\n",
urb->status);
netdev->trans_start = jiffies;
}
static ssize_t show_firmware(struct device *d,
struct device_attribute *attr, char *buf)
{
struct usb_interface *intf = to_usb_interface(d);
struct esd_usb2 *dev = usb_get_intfdata(intf);
return sprintf(buf, "%d.%d.%d\n",
(dev->version >> 12) & 0xf,
(dev->version >> 8) & 0xf,
dev->version & 0xff);
}
static DEVICE_ATTR(firmware, S_IRUGO, show_firmware, NULL);
static ssize_t show_hardware(struct device *d,
struct device_attribute *attr, char *buf)
{
struct usb_interface *intf = to_usb_interface(d);
struct esd_usb2 *dev = usb_get_intfdata(intf);
return sprintf(buf, "%d.%d.%d\n",
(dev->version >> 28) & 0xf,
(dev->version >> 24) & 0xf,
(dev->version >> 16) & 0xff);
}
static DEVICE_ATTR(hardware, S_IRUGO, show_hardware, NULL);
static ssize_t show_nets(struct device *d,
struct device_attribute *attr, char *buf)
{
struct usb_interface *intf = to_usb_interface(d);
struct esd_usb2 *dev = usb_get_intfdata(intf);
return sprintf(buf, "%d", dev->net_count);
}
static DEVICE_ATTR(nets, S_IRUGO, show_nets, NULL);
static int esd_usb2_send_msg(struct esd_usb2 *dev, struct esd_usb2_msg *msg)
{
int actual_length;
return usb_bulk_msg(dev->udev,
usb_sndbulkpipe(dev->udev, 2),
msg,
msg->msg.hdr.len << 2,
&actual_length,
1000);
}
static int esd_usb2_wait_msg(struct esd_usb2 *dev,
struct esd_usb2_msg *msg)
{
int actual_length;
return usb_bulk_msg(dev->udev,
usb_rcvbulkpipe(dev->udev, 1),
msg,
sizeof(*msg),
&actual_length,
1000);
}
static int esd_usb2_setup_rx_urbs(struct esd_usb2 *dev)
{
int i, err = 0;
if (dev->rxinitdone)
return 0;
for (i = 0; i < MAX_RX_URBS; i++) {
struct urb *urb = NULL;
u8 *buf = NULL;
/* create a URB, and a buffer for it */
urb = usb_alloc_urb(0, GFP_KERNEL);
if (!urb) {
dev_warn(dev->udev->dev.parent,
"No memory left for URBs\n");
err = -ENOMEM;
break;
}
buf = usb_alloc_coherent(dev->udev, RX_BUFFER_SIZE, GFP_KERNEL,
&urb->transfer_dma);
if (!buf) {
dev_warn(dev->udev->dev.parent,
"No memory left for USB buffer\n");
err = -ENOMEM;
goto freeurb;
}
usb_fill_bulk_urb(urb, dev->udev,
usb_rcvbulkpipe(dev->udev, 1),
buf, RX_BUFFER_SIZE,
esd_usb2_read_bulk_callback, dev);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
usb_anchor_urb(urb, &dev->rx_submitted);
err = usb_submit_urb(urb, GFP_KERNEL);
if (err) {
usb_unanchor_urb(urb);
usb_free_coherent(dev->udev, RX_BUFFER_SIZE, buf,
urb->transfer_dma);
}
freeurb:
/* Drop reference, USB core will take care of freeing it */
usb_free_urb(urb);
if (err)
break;
}
/* Did we submit any URBs */
if (i == 0) {
dev_err(dev->udev->dev.parent, "couldn't setup read URBs\n");
return err;
}
/* Warn if we've couldn't transmit all the URBs */
if (i < MAX_RX_URBS) {
dev_warn(dev->udev->dev.parent,
"rx performance may be slow\n");
}
dev->rxinitdone = 1;
return 0;
}
/*
* Start interface
*/
static int esd_usb2_start(struct esd_usb2_net_priv *priv)
{
struct esd_usb2 *dev = priv->usb2;
struct net_device *netdev = priv->netdev;
struct esd_usb2_msg msg;
int err, i;
/*
* Enable all IDs
* The IDADD message takes up to 64 32 bit bitmasks (2048 bits).
* Each bit represents one 11 bit CAN identifier. A set bit
* enables reception of the corresponding CAN identifier. A cleared
* bit disabled this identifier. An additional bitmask value
* following the CAN 2.0A bits is used to enable reception of
* extended CAN frames. Only the LSB of this final mask is checked
* for the complete 29 bit ID range. The IDADD message also allows
* filter configuration for an ID subset. In this case you can add
* the number of the starting bitmask (0..64) to the filter.option
* field followed by only some bitmasks.
*/
msg.msg.hdr.cmd = CMD_IDADD;
msg.msg.hdr.len = 2 + ESD_MAX_ID_SEGMENT;
msg.msg.filter.net = priv->index;
msg.msg.filter.option = ESD_ID_ENABLE; /* start with segment 0 */
for (i = 0; i < ESD_MAX_ID_SEGMENT; i++)
msg.msg.filter.mask[i] = cpu_to_le32(0xffffffff);
/* enable 29bit extended IDs */
msg.msg.filter.mask[ESD_MAX_ID_SEGMENT] = cpu_to_le32(0x00000001);
err = esd_usb2_send_msg(dev, &msg);
if (err)
goto failed;
err = esd_usb2_setup_rx_urbs(dev);
if (err)
goto failed;
priv->can.state = CAN_STATE_ERROR_ACTIVE;
return 0;
failed:
if (err == -ENODEV)
netif_device_detach(netdev);
dev_err(netdev->dev.parent, "couldn't start device: %d\n", err);
return err;
}
static void unlink_all_urbs(struct esd_usb2 *dev)
{
struct esd_usb2_net_priv *priv;
int i, j;
usb_kill_anchored_urbs(&dev->rx_submitted);
for (i = 0; i < dev->net_count; i++) {
priv = dev->nets[i];
if (priv) {
usb_kill_anchored_urbs(&priv->tx_submitted);
atomic_set(&priv->active_tx_jobs, 0);
for (j = 0; j < MAX_TX_URBS; j++)
priv->tx_contexts[j].echo_index = MAX_TX_URBS;
}
}
}
static int esd_usb2_open(struct net_device *netdev)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
int err;
/* common open */
err = open_candev(netdev);
if (err)
return err;
/* finally start device */
err = esd_usb2_start(priv);
if (err) {
dev_warn(netdev->dev.parent,
"couldn't start device: %d\n", err);
close_candev(netdev);
return err;
}
priv->open_time = jiffies;
netif_start_queue(netdev);
return 0;
}
static netdev_tx_t esd_usb2_start_xmit(struct sk_buff *skb,
struct net_device *netdev)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
struct esd_usb2 *dev = priv->usb2;
struct esd_tx_urb_context *context = NULL;
struct net_device_stats *stats = &netdev->stats;
struct can_frame *cf = (struct can_frame *)skb->data;
struct esd_usb2_msg *msg;
struct urb *urb;
u8 *buf;
int i, err;
int ret = NETDEV_TX_OK;
size_t size = sizeof(struct esd_usb2_msg);
if (can_dropped_invalid_skb(netdev, skb))
return NETDEV_TX_OK;
/* create a URB, and a buffer for it, and copy the data to the URB */
urb = usb_alloc_urb(0, GFP_ATOMIC);
if (!urb) {
dev_err(netdev->dev.parent, "No memory left for URBs\n");
stats->tx_dropped++;
dev_kfree_skb(skb);
goto nourbmem;
}
buf = usb_alloc_coherent(dev->udev, size, GFP_ATOMIC,
&urb->transfer_dma);
if (!buf) {
dev_err(netdev->dev.parent, "No memory left for USB buffer\n");
stats->tx_dropped++;
dev_kfree_skb(skb);
goto nobufmem;
}
msg = (struct esd_usb2_msg *)buf;
msg->msg.hdr.len = 3; /* minimal length */
msg->msg.hdr.cmd = CMD_CAN_TX;
msg->msg.tx.net = priv->index;
msg->msg.tx.dlc = cf->can_dlc;
msg->msg.tx.id = cpu_to_le32(cf->can_id & CAN_ERR_MASK);
if (cf->can_id & CAN_RTR_FLAG)
msg->msg.tx.dlc |= ESD_RTR;
if (cf->can_id & CAN_EFF_FLAG)
msg->msg.tx.id |= cpu_to_le32(ESD_EXTID);
for (i = 0; i < cf->can_dlc; i++)
msg->msg.tx.data[i] = cf->data[i];
msg->msg.hdr.len += (cf->can_dlc + 3) >> 2;
for (i = 0; i < MAX_TX_URBS; i++) {
if (priv->tx_contexts[i].echo_index == MAX_TX_URBS) {
context = &priv->tx_contexts[i];
break;
}
}
/*
* This may never happen.
*/
if (!context) {
dev_warn(netdev->dev.parent, "couldn't find free context\n");
ret = NETDEV_TX_BUSY;
goto releasebuf;
}
context->priv = priv;
context->echo_index = i;
context->dlc = cf->can_dlc;
/* hnd must not be 0 - MSB is stripped in txdone handling */
msg->msg.tx.hnd = 0x80000000 | i; /* returned in TX done message */
usb_fill_bulk_urb(urb, dev->udev, usb_sndbulkpipe(dev->udev, 2), buf,
msg->msg.hdr.len << 2,
esd_usb2_write_bulk_callback, context);
urb->transfer_flags |= URB_NO_TRANSFER_DMA_MAP;
usb_anchor_urb(urb, &priv->tx_submitted);
can_put_echo_skb(skb, netdev, context->echo_index);
atomic_inc(&priv->active_tx_jobs);
/* Slow down tx path */
if (atomic_read(&priv->active_tx_jobs) >= MAX_TX_URBS)
netif_stop_queue(netdev);
err = usb_submit_urb(urb, GFP_ATOMIC);
if (err) {
can_free_echo_skb(netdev, context->echo_index);
atomic_dec(&priv->active_tx_jobs);
usb_unanchor_urb(urb);
stats->tx_dropped++;
if (err == -ENODEV)
netif_device_detach(netdev);
else
dev_warn(netdev->dev.parent, "failed tx_urb %d\n", err);
goto releasebuf;
}
netdev->trans_start = jiffies;
/*
* Release our reference to this URB, the USB core will eventually free
* it entirely.
*/
usb_free_urb(urb);
return NETDEV_TX_OK;
releasebuf:
usb_free_coherent(dev->udev, size, buf, urb->transfer_dma);
nobufmem:
usb_free_urb(urb);
nourbmem:
return ret;
}
static int esd_usb2_close(struct net_device *netdev)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
struct esd_usb2_msg msg;
int i;
/* Disable all IDs (see esd_usb2_start()) */
msg.msg.hdr.cmd = CMD_IDADD;
msg.msg.hdr.len = 2 + ESD_MAX_ID_SEGMENT;
msg.msg.filter.net = priv->index;
msg.msg.filter.option = ESD_ID_ENABLE; /* start with segment 0 */
for (i = 0; i <= ESD_MAX_ID_SEGMENT; i++)
msg.msg.filter.mask[i] = 0;
if (esd_usb2_send_msg(priv->usb2, &msg) < 0)
dev_err(netdev->dev.parent, "sending idadd message failed\n");
/* set CAN controller to reset mode */
msg.msg.hdr.len = 2;
msg.msg.hdr.cmd = CMD_SETBAUD;
msg.msg.setbaud.net = priv->index;
msg.msg.setbaud.rsvd = 0;
msg.msg.setbaud.baud = cpu_to_le32(ESD_USB2_NO_BAUDRATE);
if (esd_usb2_send_msg(priv->usb2, &msg) < 0)
dev_err(netdev->dev.parent, "sending setbaud message failed\n");
priv->can.state = CAN_STATE_STOPPED;
netif_stop_queue(netdev);
close_candev(netdev);
priv->open_time = 0;
return 0;
}
static const struct net_device_ops esd_usb2_netdev_ops = {
.ndo_open = esd_usb2_open,
.ndo_stop = esd_usb2_close,
.ndo_start_xmit = esd_usb2_start_xmit,
};
static struct can_bittiming_const esd_usb2_bittiming_const = {
.name = "esd_usb2",
.tseg1_min = ESD_USB2_TSEG1_MIN,
.tseg1_max = ESD_USB2_TSEG1_MAX,
.tseg2_min = ESD_USB2_TSEG2_MIN,
.tseg2_max = ESD_USB2_TSEG2_MAX,
.sjw_max = ESD_USB2_SJW_MAX,
.brp_min = ESD_USB2_BRP_MIN,
.brp_max = ESD_USB2_BRP_MAX,
.brp_inc = ESD_USB2_BRP_INC,
};
static int esd_usb2_set_bittiming(struct net_device *netdev)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
struct can_bittiming *bt = &priv->can.bittiming;
struct esd_usb2_msg msg;
u32 canbtr;
canbtr = ESD_USB2_UBR;
canbtr |= (bt->brp - 1) & (ESD_USB2_BRP_MAX - 1);
canbtr |= ((bt->sjw - 1) & (ESD_USB2_SJW_MAX - 1))
<< ESD_USB2_SJW_SHIFT;
canbtr |= ((bt->prop_seg + bt->phase_seg1 - 1)
& (ESD_USB2_TSEG1_MAX - 1))
<< ESD_USB2_TSEG1_SHIFT;
canbtr |= ((bt->phase_seg2 - 1) & (ESD_USB2_TSEG2_MAX - 1))
<< ESD_USB2_TSEG2_SHIFT;
if (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES)
canbtr |= ESD_USB2_3_SAMPLES;
msg.msg.hdr.len = 2;
msg.msg.hdr.cmd = CMD_SETBAUD;
msg.msg.setbaud.net = priv->index;
msg.msg.setbaud.rsvd = 0;
msg.msg.setbaud.baud = cpu_to_le32(canbtr);
dev_info(netdev->dev.parent, "setting BTR=%#x\n", canbtr);
return esd_usb2_send_msg(priv->usb2, &msg);
}
static int esd_usb2_get_berr_counter(const struct net_device *netdev,
struct can_berr_counter *bec)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
bec->txerr = priv->bec.txerr;
bec->rxerr = priv->bec.rxerr;
return 0;
}
static int esd_usb2_set_mode(struct net_device *netdev, enum can_mode mode)
{
struct esd_usb2_net_priv *priv = netdev_priv(netdev);
if (!priv->open_time)
return -EINVAL;
switch (mode) {
case CAN_MODE_START:
netif_wake_queue(netdev);
break;
default:
return -EOPNOTSUPP;
}
return 0;
}
static int esd_usb2_probe_one_net(struct usb_interface *intf, int index)
{
struct esd_usb2 *dev = usb_get_intfdata(intf);
struct net_device *netdev;
struct esd_usb2_net_priv *priv;
int err = 0;
int i;
netdev = alloc_candev(sizeof(*priv), MAX_TX_URBS);
if (!netdev) {
dev_err(&intf->dev, "couldn't alloc candev\n");
err = -ENOMEM;
goto done;
}
priv = netdev_priv(netdev);
init_usb_anchor(&priv->tx_submitted);
atomic_set(&priv->active_tx_jobs, 0);
for (i = 0; i < MAX_TX_URBS; i++)
priv->tx_contexts[i].echo_index = MAX_TX_URBS;
priv->usb2 = dev;
priv->netdev = netdev;
priv->index = index;
priv->can.state = CAN_STATE_STOPPED;
priv->can.clock.freq = ESD_USB2_CAN_CLOCK;
priv->can.bittiming_const = &esd_usb2_bittiming_const;
priv->can.do_set_bittiming = esd_usb2_set_bittiming;
priv->can.do_set_mode = esd_usb2_set_mode;
priv->can.do_get_berr_counter = esd_usb2_get_berr_counter;
priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES;
netdev->flags |= IFF_ECHO; /* we support local echo */
netdev->netdev_ops = &esd_usb2_netdev_ops;
SET_NETDEV_DEV(netdev, &intf->dev);
err = register_candev(netdev);
if (err) {
dev_err(&intf->dev,
"couldn't register CAN device: %d\n", err);
free_candev(netdev);
err = -ENOMEM;
goto done;
}
dev->nets[index] = priv;
dev_info(netdev->dev.parent, "device %s registered\n", netdev->name);
done:
return err;
}
/*
* probe function for new USB2 devices
*
* check version information and number of available
* CAN interfaces
*/
static int esd_usb2_probe(struct usb_interface *intf,
const struct usb_device_id *id)
{
struct esd_usb2 *dev;
struct esd_usb2_msg msg;
int i, err;
dev = kzalloc(sizeof(*dev), GFP_KERNEL);
if (!dev) {
err = -ENOMEM;
goto done;
}
dev->udev = interface_to_usbdev(intf);
init_usb_anchor(&dev->rx_submitted);
usb_set_intfdata(intf, dev);
/* query number of CAN interfaces (nets) */
msg.msg.hdr.cmd = CMD_VERSION;
msg.msg.hdr.len = 2;
msg.msg.version.rsvd = 0;
msg.msg.version.flags = 0;
msg.msg.version.drv_version = 0;
err = esd_usb2_send_msg(dev, &msg);
if (err < 0) {
dev_err(&intf->dev, "sending version message failed\n");
goto free_dev;
}
err = esd_usb2_wait_msg(dev, &msg);
if (err < 0) {
dev_err(&intf->dev, "no version message answer\n");
goto free_dev;
}
dev->net_count = (int)msg.msg.version_reply.nets;
dev->version = le32_to_cpu(msg.msg.version_reply.version);
if (device_create_file(&intf->dev, &dev_attr_firmware))
dev_err(&intf->dev,
"Couldn't create device file for firmware\n");
if (device_create_file(&intf->dev, &dev_attr_hardware))
dev_err(&intf->dev,
"Couldn't create device file for hardware\n");
if (device_create_file(&intf->dev, &dev_attr_nets))
dev_err(&intf->dev,
"Couldn't create device file for nets\n");
/* do per device probing */
for (i = 0; i < dev->net_count; i++)
esd_usb2_probe_one_net(intf, i);
return 0;
free_dev:
kfree(dev);
done:
return err;
}
/*
* called by the usb core when the device is removed from the system
*/
static void esd_usb2_disconnect(struct usb_interface *intf)
{
struct esd_usb2 *dev = usb_get_intfdata(intf);
struct net_device *netdev;
int i;
device_remove_file(&intf->dev, &dev_attr_firmware);
device_remove_file(&intf->dev, &dev_attr_hardware);
device_remove_file(&intf->dev, &dev_attr_nets);
usb_set_intfdata(intf, NULL);
if (dev) {
for (i = 0; i < dev->net_count; i++) {
if (dev->nets[i]) {
netdev = dev->nets[i]->netdev;
unregister_netdev(netdev);
free_candev(netdev);
}
}
unlink_all_urbs(dev);
}
}
/* usb specific object needed to register this driver with the usb subsystem */
static struct usb_driver esd_usb2_driver = {
.name = "esd_usb2",
.probe = esd_usb2_probe,
.disconnect = esd_usb2_disconnect,
.id_table = esd_usb2_table,
};
static int __init esd_usb2_init(void)
{
int err;
/* register this driver with the USB subsystem */
err = usb_register(&esd_usb2_driver);
if (err) {
err("usb_register failed. Error number %d\n", err);
return err;
}
return 0;
}
module_init(esd_usb2_init);
static void __exit esd_usb2_exit(void)
{
/* deregister this driver with the USB subsystem */
usb_deregister(&esd_usb2_driver);
}
module_exit(esd_usb2_exit);