682 lines
18 KiB
C
682 lines
18 KiB
C
/* SPDX-License-Identifier: GPL-2.0-only */
|
|
/*
|
|
*
|
|
* Copyright SUSE Linux Products GmbH 2010
|
|
*
|
|
* Authors: Alexander Graf <agraf@suse.de>
|
|
*/
|
|
|
|
#ifndef __ASM_KVM_BOOK3S_64_H__
|
|
#define __ASM_KVM_BOOK3S_64_H__
|
|
|
|
#include <linux/string.h>
|
|
#include <asm/bitops.h>
|
|
#include <asm/book3s/64/mmu-hash.h>
|
|
#include <asm/cpu_has_feature.h>
|
|
#include <asm/ppc-opcode.h>
|
|
#include <asm/pte-walk.h>
|
|
|
|
#ifdef CONFIG_PPC_PSERIES
|
|
static inline bool kvmhv_on_pseries(void)
|
|
{
|
|
return !cpu_has_feature(CPU_FTR_HVMODE);
|
|
}
|
|
#else
|
|
static inline bool kvmhv_on_pseries(void)
|
|
{
|
|
return false;
|
|
}
|
|
#endif
|
|
|
|
/*
|
|
* Structure for a nested guest, that is, for a guest that is managed by
|
|
* one of our guests.
|
|
*/
|
|
struct kvm_nested_guest {
|
|
struct kvm *l1_host; /* L1 VM that owns this nested guest */
|
|
int l1_lpid; /* lpid L1 guest thinks this guest is */
|
|
int shadow_lpid; /* real lpid of this nested guest */
|
|
pgd_t *shadow_pgtable; /* our page table for this guest */
|
|
u64 l1_gr_to_hr; /* L1's addr of part'n-scoped table */
|
|
u64 process_table; /* process table entry for this guest */
|
|
long refcnt; /* number of pointers to this struct */
|
|
struct mutex tlb_lock; /* serialize page faults and tlbies */
|
|
struct kvm_nested_guest *next;
|
|
cpumask_t need_tlb_flush;
|
|
cpumask_t cpu_in_guest;
|
|
short prev_cpu[NR_CPUS];
|
|
u8 radix; /* is this nested guest radix */
|
|
};
|
|
|
|
/*
|
|
* We define a nested rmap entry as a single 64-bit quantity
|
|
* 0xFFF0000000000000 12-bit lpid field
|
|
* 0x000FFFFFFFFFF000 40-bit guest 4k page frame number
|
|
* 0x0000000000000001 1-bit single entry flag
|
|
*/
|
|
#define RMAP_NESTED_LPID_MASK 0xFFF0000000000000UL
|
|
#define RMAP_NESTED_LPID_SHIFT (52)
|
|
#define RMAP_NESTED_GPA_MASK 0x000FFFFFFFFFF000UL
|
|
#define RMAP_NESTED_IS_SINGLE_ENTRY 0x0000000000000001UL
|
|
|
|
/* Structure for a nested guest rmap entry */
|
|
struct rmap_nested {
|
|
struct llist_node list;
|
|
u64 rmap;
|
|
};
|
|
|
|
/*
|
|
* for_each_nest_rmap_safe - iterate over the list of nested rmap entries
|
|
* safe against removal of the list entry or NULL list
|
|
* @pos: a (struct rmap_nested *) to use as a loop cursor
|
|
* @node: pointer to the first entry
|
|
* NOTE: this can be NULL
|
|
* @rmapp: an (unsigned long *) in which to return the rmap entries on each
|
|
* iteration
|
|
* NOTE: this must point to already allocated memory
|
|
*
|
|
* The nested_rmap is a llist of (struct rmap_nested) entries pointed to by the
|
|
* rmap entry in the memslot. The list is always terminated by a "single entry"
|
|
* stored in the list element of the final entry of the llist. If there is ONLY
|
|
* a single entry then this is itself in the rmap entry of the memslot, not a
|
|
* llist head pointer.
|
|
*
|
|
* Note that the iterator below assumes that a nested rmap entry is always
|
|
* non-zero. This is true for our usage because the LPID field is always
|
|
* non-zero (zero is reserved for the host).
|
|
*
|
|
* This should be used to iterate over the list of rmap_nested entries with
|
|
* processing done on the u64 rmap value given by each iteration. This is safe
|
|
* against removal of list entries and it is always safe to call free on (pos).
|
|
*
|
|
* e.g.
|
|
* struct rmap_nested *cursor;
|
|
* struct llist_node *first;
|
|
* unsigned long rmap;
|
|
* for_each_nest_rmap_safe(cursor, first, &rmap) {
|
|
* do_something(rmap);
|
|
* free(cursor);
|
|
* }
|
|
*/
|
|
#define for_each_nest_rmap_safe(pos, node, rmapp) \
|
|
for ((pos) = llist_entry((node), typeof(*(pos)), list); \
|
|
(node) && \
|
|
(*(rmapp) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
|
|
((u64) (node)) : ((pos)->rmap))) && \
|
|
(((node) = ((RMAP_NESTED_IS_SINGLE_ENTRY & ((u64) (node))) ? \
|
|
((struct llist_node *) ((pos) = NULL)) : \
|
|
(pos)->list.next)), true); \
|
|
(pos) = llist_entry((node), typeof(*(pos)), list))
|
|
|
|
struct kvm_nested_guest *kvmhv_get_nested(struct kvm *kvm, int l1_lpid,
|
|
bool create);
|
|
void kvmhv_put_nested(struct kvm_nested_guest *gp);
|
|
int kvmhv_nested_next_lpid(struct kvm *kvm, int lpid);
|
|
|
|
/* Encoding of first parameter for H_TLB_INVALIDATE */
|
|
#define H_TLBIE_P1_ENC(ric, prs, r) (___PPC_RIC(ric) | ___PPC_PRS(prs) | \
|
|
___PPC_R(r))
|
|
|
|
/* Power architecture requires HPT is at least 256kiB, at most 64TiB */
|
|
#define PPC_MIN_HPT_ORDER 18
|
|
#define PPC_MAX_HPT_ORDER 46
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_PR_POSSIBLE
|
|
static inline struct kvmppc_book3s_shadow_vcpu *svcpu_get(struct kvm_vcpu *vcpu)
|
|
{
|
|
preempt_disable();
|
|
return &get_paca()->shadow_vcpu;
|
|
}
|
|
|
|
static inline void svcpu_put(struct kvmppc_book3s_shadow_vcpu *svcpu)
|
|
{
|
|
preempt_enable();
|
|
}
|
|
#endif
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
|
|
static inline bool kvm_is_radix(struct kvm *kvm)
|
|
{
|
|
return kvm->arch.radix;
|
|
}
|
|
|
|
static inline bool kvmhv_vcpu_is_radix(struct kvm_vcpu *vcpu)
|
|
{
|
|
bool radix;
|
|
|
|
if (vcpu->arch.nested)
|
|
radix = vcpu->arch.nested->radix;
|
|
else
|
|
radix = kvm_is_radix(vcpu->kvm);
|
|
|
|
return radix;
|
|
}
|
|
|
|
#define KVM_DEFAULT_HPT_ORDER 24 /* 16MB HPT by default */
|
|
#endif
|
|
|
|
/*
|
|
* We use a lock bit in HPTE dword 0 to synchronize updates and
|
|
* accesses to each HPTE, and another bit to indicate non-present
|
|
* HPTEs.
|
|
*/
|
|
#define HPTE_V_HVLOCK 0x40UL
|
|
#define HPTE_V_ABSENT 0x20UL
|
|
|
|
/*
|
|
* We use this bit in the guest_rpte field of the revmap entry
|
|
* to indicate a modified HPTE.
|
|
*/
|
|
#define HPTE_GR_MODIFIED (1ul << 62)
|
|
|
|
/* These bits are reserved in the guest view of the HPTE */
|
|
#define HPTE_GR_RESERVED HPTE_GR_MODIFIED
|
|
|
|
static inline long try_lock_hpte(__be64 *hpte, unsigned long bits)
|
|
{
|
|
unsigned long tmp, old;
|
|
__be64 be_lockbit, be_bits;
|
|
|
|
/*
|
|
* We load/store in native endian, but the HTAB is in big endian. If
|
|
* we byte swap all data we apply on the PTE we're implicitly correct
|
|
* again.
|
|
*/
|
|
be_lockbit = cpu_to_be64(HPTE_V_HVLOCK);
|
|
be_bits = cpu_to_be64(bits);
|
|
|
|
asm volatile(" ldarx %0,0,%2\n"
|
|
" and. %1,%0,%3\n"
|
|
" bne 2f\n"
|
|
" or %0,%0,%4\n"
|
|
" stdcx. %0,0,%2\n"
|
|
" beq+ 2f\n"
|
|
" mr %1,%3\n"
|
|
"2: isync"
|
|
: "=&r" (tmp), "=&r" (old)
|
|
: "r" (hpte), "r" (be_bits), "r" (be_lockbit)
|
|
: "cc", "memory");
|
|
return old == 0;
|
|
}
|
|
|
|
static inline void unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
asm volatile(PPC_RELEASE_BARRIER "" : : : "memory");
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/* Without barrier */
|
|
static inline void __unlock_hpte(__be64 *hpte, unsigned long hpte_v)
|
|
{
|
|
hpte_v &= ~HPTE_V_HVLOCK;
|
|
hpte[0] = cpu_to_be64(hpte_v);
|
|
}
|
|
|
|
/*
|
|
* These functions encode knowledge of the POWER7/8/9 hardware
|
|
* interpretations of the HPTE LP (large page size) field.
|
|
*/
|
|
static inline int kvmppc_hpte_page_shifts(unsigned long h, unsigned long l)
|
|
{
|
|
unsigned int lphi;
|
|
|
|
if (!(h & HPTE_V_LARGE))
|
|
return 12; /* 4kB */
|
|
lphi = (l >> 16) & 0xf;
|
|
switch ((l >> 12) & 0xf) {
|
|
case 0:
|
|
return !lphi ? 24 : 0; /* 16MB */
|
|
break;
|
|
case 1:
|
|
return 16; /* 64kB */
|
|
break;
|
|
case 3:
|
|
return !lphi ? 34 : 0; /* 16GB */
|
|
break;
|
|
case 7:
|
|
return (16 << 8) + 12; /* 64kB in 4kB */
|
|
break;
|
|
case 8:
|
|
if (!lphi)
|
|
return (24 << 8) + 16; /* 16MB in 64kkB */
|
|
if (lphi == 3)
|
|
return (24 << 8) + 12; /* 16MB in 4kB */
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_base_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
return kvmppc_hpte_page_shifts(h, l) & 0xff;
|
|
}
|
|
|
|
static inline int kvmppc_hpte_actual_page_shift(unsigned long h, unsigned long l)
|
|
{
|
|
int tmp = kvmppc_hpte_page_shifts(h, l);
|
|
|
|
if (tmp >= 0x100)
|
|
tmp >>= 8;
|
|
return tmp;
|
|
}
|
|
|
|
static inline unsigned long kvmppc_actual_pgsz(unsigned long v, unsigned long r)
|
|
{
|
|
int shift = kvmppc_hpte_actual_page_shift(v, r);
|
|
|
|
if (shift)
|
|
return 1ul << shift;
|
|
return 0;
|
|
}
|
|
|
|
static inline int kvmppc_pgsize_lp_encoding(int base_shift, int actual_shift)
|
|
{
|
|
switch (base_shift) {
|
|
case 12:
|
|
switch (actual_shift) {
|
|
case 12:
|
|
return 0;
|
|
case 16:
|
|
return 7;
|
|
case 24:
|
|
return 0x38;
|
|
}
|
|
break;
|
|
case 16:
|
|
switch (actual_shift) {
|
|
case 16:
|
|
return 1;
|
|
case 24:
|
|
return 8;
|
|
}
|
|
break;
|
|
case 24:
|
|
return 0;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
static inline unsigned long compute_tlbie_rb(unsigned long v, unsigned long r,
|
|
unsigned long pte_index)
|
|
{
|
|
int a_pgshift, b_pgshift;
|
|
unsigned long rb = 0, va_low, sllp;
|
|
|
|
b_pgshift = a_pgshift = kvmppc_hpte_page_shifts(v, r);
|
|
if (a_pgshift >= 0x100) {
|
|
b_pgshift &= 0xff;
|
|
a_pgshift >>= 8;
|
|
}
|
|
|
|
/*
|
|
* Ignore the top 14 bits of va
|
|
* v have top two bits covering segment size, hence move
|
|
* by 16 bits, Also clear the lower HPTE_V_AVPN_SHIFT (7) bits.
|
|
* AVA field in v also have the lower 23 bits ignored.
|
|
* For base page size 4K we need 14 .. 65 bits (so need to
|
|
* collect extra 11 bits)
|
|
* For others we need 14..14+i
|
|
*/
|
|
/* This covers 14..54 bits of va*/
|
|
rb = (v & ~0x7fUL) << 16; /* AVA field */
|
|
|
|
/*
|
|
* AVA in v had cleared lower 23 bits. We need to derive
|
|
* that from pteg index
|
|
*/
|
|
va_low = pte_index >> 3;
|
|
if (v & HPTE_V_SECONDARY)
|
|
va_low = ~va_low;
|
|
/*
|
|
* get the vpn bits from va_low using reverse of hashing.
|
|
* In v we have va with 23 bits dropped and then left shifted
|
|
* HPTE_V_AVPN_SHIFT (7) bits. Now to find vsid we need
|
|
* right shift it with (SID_SHIFT - (23 - 7))
|
|
*/
|
|
if (!(v & HPTE_V_1TB_SEG))
|
|
va_low ^= v >> (SID_SHIFT - 16);
|
|
else
|
|
va_low ^= v >> (SID_SHIFT_1T - 16);
|
|
va_low &= 0x7ff;
|
|
|
|
if (b_pgshift <= 12) {
|
|
if (a_pgshift > 12) {
|
|
sllp = (a_pgshift == 16) ? 5 : 4;
|
|
rb |= sllp << 5; /* AP field */
|
|
}
|
|
rb |= (va_low & 0x7ff) << 12; /* remaining 11 bits of AVA */
|
|
} else {
|
|
int aval_shift;
|
|
/*
|
|
* remaining bits of AVA/LP fields
|
|
* Also contain the rr bits of LP
|
|
*/
|
|
rb |= (va_low << b_pgshift) & 0x7ff000;
|
|
/*
|
|
* Now clear not needed LP bits based on actual psize
|
|
*/
|
|
rb &= ~((1ul << a_pgshift) - 1);
|
|
/*
|
|
* AVAL field 58..77 - base_page_shift bits of va
|
|
* we have space for 58..64 bits, Missing bits should
|
|
* be zero filled. +1 is to take care of L bit shift
|
|
*/
|
|
aval_shift = 64 - (77 - b_pgshift) + 1;
|
|
rb |= ((va_low << aval_shift) & 0xfe);
|
|
|
|
rb |= 1; /* L field */
|
|
rb |= r & 0xff000 & ((1ul << a_pgshift) - 1); /* LP field */
|
|
}
|
|
rb |= (v >> HPTE_V_SSIZE_SHIFT) << 8; /* B field */
|
|
return rb;
|
|
}
|
|
|
|
static inline unsigned long hpte_rpn(unsigned long ptel, unsigned long psize)
|
|
{
|
|
return ((ptel & HPTE_R_RPN) & ~(psize - 1)) >> PAGE_SHIFT;
|
|
}
|
|
|
|
static inline int hpte_is_writable(unsigned long ptel)
|
|
{
|
|
unsigned long pp = ptel & (HPTE_R_PP0 | HPTE_R_PP);
|
|
|
|
return pp != PP_RXRX && pp != PP_RXXX;
|
|
}
|
|
|
|
static inline unsigned long hpte_make_readonly(unsigned long ptel)
|
|
{
|
|
if ((ptel & HPTE_R_PP0) || (ptel & HPTE_R_PP) == PP_RWXX)
|
|
ptel = (ptel & ~HPTE_R_PP) | PP_RXXX;
|
|
else
|
|
ptel |= PP_RXRX;
|
|
return ptel;
|
|
}
|
|
|
|
static inline bool hpte_cache_flags_ok(unsigned long hptel, bool is_ci)
|
|
{
|
|
unsigned int wimg = hptel & HPTE_R_WIMG;
|
|
|
|
/* Handle SAO */
|
|
if (wimg == (HPTE_R_W | HPTE_R_I | HPTE_R_M) &&
|
|
cpu_has_feature(CPU_FTR_ARCH_206))
|
|
wimg = HPTE_R_M;
|
|
|
|
if (!is_ci)
|
|
return wimg == HPTE_R_M;
|
|
/*
|
|
* if host is mapped cache inhibited, make sure hptel also have
|
|
* cache inhibited.
|
|
*/
|
|
if (wimg & HPTE_R_W) /* FIXME!! is this ok for all guest. ? */
|
|
return false;
|
|
return !!(wimg & HPTE_R_I);
|
|
}
|
|
|
|
/*
|
|
* If it's present and writable, atomically set dirty and referenced bits and
|
|
* return the PTE, otherwise return 0.
|
|
*/
|
|
static inline pte_t kvmppc_read_update_linux_pte(pte_t *ptep, int writing)
|
|
{
|
|
pte_t old_pte, new_pte = __pte(0);
|
|
|
|
while (1) {
|
|
/*
|
|
* Make sure we don't reload from ptep
|
|
*/
|
|
old_pte = READ_ONCE(*ptep);
|
|
/*
|
|
* wait until H_PAGE_BUSY is clear then set it atomically
|
|
*/
|
|
if (unlikely(pte_val(old_pte) & H_PAGE_BUSY)) {
|
|
cpu_relax();
|
|
continue;
|
|
}
|
|
/* If pte is not present return None */
|
|
if (unlikely(!pte_present(old_pte)))
|
|
return __pte(0);
|
|
|
|
new_pte = pte_mkyoung(old_pte);
|
|
if (writing && pte_write(old_pte))
|
|
new_pte = pte_mkdirty(new_pte);
|
|
|
|
if (pte_xchg(ptep, old_pte, new_pte))
|
|
break;
|
|
}
|
|
return new_pte;
|
|
}
|
|
|
|
static inline bool hpte_read_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return PP_RWRX <= pp && pp <= PP_RXRX;
|
|
return true;
|
|
}
|
|
|
|
static inline bool hpte_write_permission(unsigned long pp, unsigned long key)
|
|
{
|
|
if (key)
|
|
return pp == PP_RWRW;
|
|
return pp <= PP_RWRW;
|
|
}
|
|
|
|
static inline int hpte_get_skey_perm(unsigned long hpte_r, unsigned long amr)
|
|
{
|
|
unsigned long skey;
|
|
|
|
skey = ((hpte_r & HPTE_R_KEY_HI) >> 57) |
|
|
((hpte_r & HPTE_R_KEY_LO) >> 9);
|
|
return (amr >> (62 - 2 * skey)) & 3;
|
|
}
|
|
|
|
static inline void lock_rmap(unsigned long *rmap)
|
|
{
|
|
do {
|
|
while (test_bit(KVMPPC_RMAP_LOCK_BIT, rmap))
|
|
cpu_relax();
|
|
} while (test_and_set_bit_lock(KVMPPC_RMAP_LOCK_BIT, rmap));
|
|
}
|
|
|
|
static inline void unlock_rmap(unsigned long *rmap)
|
|
{
|
|
__clear_bit_unlock(KVMPPC_RMAP_LOCK_BIT, rmap);
|
|
}
|
|
|
|
static inline bool slot_is_aligned(struct kvm_memory_slot *memslot,
|
|
unsigned long pagesize)
|
|
{
|
|
unsigned long mask = (pagesize >> PAGE_SHIFT) - 1;
|
|
|
|
if (pagesize <= PAGE_SIZE)
|
|
return true;
|
|
return !(memslot->base_gfn & mask) && !(memslot->npages & mask);
|
|
}
|
|
|
|
/*
|
|
* This works for 4k, 64k and 16M pages on POWER7,
|
|
* and 4k and 16M pages on PPC970.
|
|
*/
|
|
static inline unsigned long slb_pgsize_encoding(unsigned long psize)
|
|
{
|
|
unsigned long senc = 0;
|
|
|
|
if (psize > 0x1000) {
|
|
senc = SLB_VSID_L;
|
|
if (psize == 0x10000)
|
|
senc |= SLB_VSID_LP_01;
|
|
}
|
|
return senc;
|
|
}
|
|
|
|
static inline int is_vrma_hpte(unsigned long hpte_v)
|
|
{
|
|
return (hpte_v & ~0xffffffUL) ==
|
|
(HPTE_V_1TB_SEG | (VRMA_VSID << (40 - 16)));
|
|
}
|
|
|
|
#ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
|
|
/*
|
|
* Note modification of an HPTE; set the HPTE modified bit
|
|
* if anyone is interested.
|
|
*/
|
|
static inline void note_hpte_modification(struct kvm *kvm,
|
|
struct revmap_entry *rev)
|
|
{
|
|
if (atomic_read(&kvm->arch.hpte_mod_interest))
|
|
rev->guest_rpte |= HPTE_GR_MODIFIED;
|
|
}
|
|
|
|
/*
|
|
* Like kvm_memslots(), but for use in real mode when we can't do
|
|
* any RCU stuff (since the secondary threads are offline from the
|
|
* kernel's point of view), and we can't print anything.
|
|
* Thus we use rcu_dereference_raw() rather than rcu_dereference_check().
|
|
*/
|
|
static inline struct kvm_memslots *kvm_memslots_raw(struct kvm *kvm)
|
|
{
|
|
return rcu_dereference_raw_check(kvm->memslots[0]);
|
|
}
|
|
|
|
extern void kvmppc_mmu_debugfs_init(struct kvm *kvm);
|
|
extern void kvmhv_radix_debugfs_init(struct kvm *kvm);
|
|
|
|
extern void kvmhv_rm_send_ipi(int cpu);
|
|
|
|
static inline unsigned long kvmppc_hpt_npte(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* HPTEs are 2**4 bytes long */
|
|
return 1UL << (hpt->order - 4);
|
|
}
|
|
|
|
static inline unsigned long kvmppc_hpt_mask(struct kvm_hpt_info *hpt)
|
|
{
|
|
/* 128 (2**7) bytes in each HPTEG */
|
|
return (1UL << (hpt->order - 7)) - 1;
|
|
}
|
|
|
|
/* Set bits in a dirty bitmap, which is in LE format */
|
|
static inline void set_dirty_bits(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
__set_bit_le(i, map);
|
|
}
|
|
|
|
static inline void set_dirty_bits_atomic(unsigned long *map, unsigned long i,
|
|
unsigned long npages)
|
|
{
|
|
if (npages >= 8)
|
|
memset((char *)map + i / 8, 0xff, npages / 8);
|
|
else
|
|
for (; npages; ++i, --npages)
|
|
set_bit_le(i, map);
|
|
}
|
|
|
|
static inline u64 sanitize_msr(u64 msr)
|
|
{
|
|
msr &= ~MSR_HV;
|
|
msr |= MSR_ME;
|
|
return msr;
|
|
}
|
|
|
|
#ifdef CONFIG_PPC_TRANSACTIONAL_MEM
|
|
static inline void copy_from_checkpoint(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.regs.ccr = vcpu->arch.cr_tm;
|
|
vcpu->arch.regs.xer = vcpu->arch.xer_tm;
|
|
vcpu->arch.regs.link = vcpu->arch.lr_tm;
|
|
vcpu->arch.regs.ctr = vcpu->arch.ctr_tm;
|
|
vcpu->arch.amr = vcpu->arch.amr_tm;
|
|
vcpu->arch.ppr = vcpu->arch.ppr_tm;
|
|
vcpu->arch.dscr = vcpu->arch.dscr_tm;
|
|
vcpu->arch.tar = vcpu->arch.tar_tm;
|
|
memcpy(vcpu->arch.regs.gpr, vcpu->arch.gpr_tm,
|
|
sizeof(vcpu->arch.regs.gpr));
|
|
vcpu->arch.fp = vcpu->arch.fp_tm;
|
|
vcpu->arch.vr = vcpu->arch.vr_tm;
|
|
vcpu->arch.vrsave = vcpu->arch.vrsave_tm;
|
|
}
|
|
|
|
static inline void copy_to_checkpoint(struct kvm_vcpu *vcpu)
|
|
{
|
|
vcpu->arch.cr_tm = vcpu->arch.regs.ccr;
|
|
vcpu->arch.xer_tm = vcpu->arch.regs.xer;
|
|
vcpu->arch.lr_tm = vcpu->arch.regs.link;
|
|
vcpu->arch.ctr_tm = vcpu->arch.regs.ctr;
|
|
vcpu->arch.amr_tm = vcpu->arch.amr;
|
|
vcpu->arch.ppr_tm = vcpu->arch.ppr;
|
|
vcpu->arch.dscr_tm = vcpu->arch.dscr;
|
|
vcpu->arch.tar_tm = vcpu->arch.tar;
|
|
memcpy(vcpu->arch.gpr_tm, vcpu->arch.regs.gpr,
|
|
sizeof(vcpu->arch.regs.gpr));
|
|
vcpu->arch.fp_tm = vcpu->arch.fp;
|
|
vcpu->arch.vr_tm = vcpu->arch.vr;
|
|
vcpu->arch.vrsave_tm = vcpu->arch.vrsave;
|
|
}
|
|
#endif /* CONFIG_PPC_TRANSACTIONAL_MEM */
|
|
|
|
extern int kvmppc_create_pte(struct kvm *kvm, pgd_t *pgtable, pte_t pte,
|
|
unsigned long gpa, unsigned int level,
|
|
unsigned long mmu_seq, unsigned int lpid,
|
|
unsigned long *rmapp, struct rmap_nested **n_rmap);
|
|
extern void kvmhv_insert_nest_rmap(struct kvm *kvm, unsigned long *rmapp,
|
|
struct rmap_nested **n_rmap);
|
|
extern void kvmhv_update_nest_rmap_rc_list(struct kvm *kvm, unsigned long *rmapp,
|
|
unsigned long clr, unsigned long set,
|
|
unsigned long hpa, unsigned long nbytes);
|
|
extern void kvmhv_remove_nest_rmap_range(struct kvm *kvm,
|
|
const struct kvm_memory_slot *memslot,
|
|
unsigned long gpa, unsigned long hpa,
|
|
unsigned long nbytes);
|
|
|
|
static inline pte_t *
|
|
find_kvm_secondary_pte_unlocked(struct kvm *kvm, unsigned long ea,
|
|
unsigned *hshift)
|
|
{
|
|
pte_t *pte;
|
|
|
|
pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t *find_kvm_secondary_pte(struct kvm *kvm, unsigned long ea,
|
|
unsigned *hshift)
|
|
{
|
|
pte_t *pte;
|
|
|
|
VM_WARN(!spin_is_locked(&kvm->mmu_lock),
|
|
"%s called with kvm mmu_lock not held \n", __func__);
|
|
pte = __find_linux_pte(kvm->arch.pgtable, ea, NULL, hshift);
|
|
|
|
return pte;
|
|
}
|
|
|
|
static inline pte_t *find_kvm_host_pte(struct kvm *kvm, unsigned long mmu_seq,
|
|
unsigned long ea, unsigned *hshift)
|
|
{
|
|
pte_t *pte;
|
|
|
|
VM_WARN(!spin_is_locked(&kvm->mmu_lock),
|
|
"%s called with kvm mmu_lock not held \n", __func__);
|
|
|
|
if (mmu_notifier_retry(kvm, mmu_seq))
|
|
return NULL;
|
|
|
|
pte = __find_linux_pte(kvm->mm->pgd, ea, NULL, hshift);
|
|
|
|
return pte;
|
|
}
|
|
|
|
extern pte_t *find_kvm_nested_guest_pte(struct kvm *kvm, unsigned long lpid,
|
|
unsigned long ea, unsigned *hshift);
|
|
|
|
#endif /* CONFIG_KVM_BOOK3S_HV_POSSIBLE */
|
|
|
|
#endif /* __ASM_KVM_BOOK3S_64_H__ */
|