OpenCloudOS-Kernel/drivers/gpu/drm/amd/amdkfd/kfd_device_queue_manager.c

1670 lines
41 KiB
C

/*
* Copyright 2014 Advanced Micro Devices, Inc.
*
* Permission is hereby granted, free of charge, to any person obtaining a
* copy of this software and associated documentation files (the "Software"),
* to deal in the Software without restriction, including without limitation
* the rights to use, copy, modify, merge, publish, distribute, sublicense,
* and/or sell copies of the Software, and to permit persons to whom the
* Software is furnished to do so, subject to the following conditions:
*
* The above copyright notice and this permission notice shall be included in
* all copies or substantial portions of the Software.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
* IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
* FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
* THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
* OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
* ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
* OTHER DEALINGS IN THE SOFTWARE.
*
*/
#include <linux/ratelimit.h>
#include <linux/printk.h>
#include <linux/slab.h>
#include <linux/list.h>
#include <linux/types.h>
#include <linux/bitops.h>
#include <linux/sched.h>
#include "kfd_priv.h"
#include "kfd_device_queue_manager.h"
#include "kfd_mqd_manager.h"
#include "cik_regs.h"
#include "kfd_kernel_queue.h"
/* Size of the per-pipe EOP queue */
#define CIK_HPD_EOP_BYTES_LOG2 11
#define CIK_HPD_EOP_BYTES (1U << CIK_HPD_EOP_BYTES_LOG2)
static int set_pasid_vmid_mapping(struct device_queue_manager *dqm,
unsigned int pasid, unsigned int vmid);
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd);
static int execute_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param);
static int unmap_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param);
static int map_queues_cpsch(struct device_queue_manager *dqm);
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd);
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int sdma_queue_id);
static inline
enum KFD_MQD_TYPE get_mqd_type_from_queue_type(enum kfd_queue_type type)
{
if (type == KFD_QUEUE_TYPE_SDMA)
return KFD_MQD_TYPE_SDMA;
return KFD_MQD_TYPE_CP;
}
static bool is_pipe_enabled(struct device_queue_manager *dqm, int mec, int pipe)
{
int i;
int pipe_offset = mec * dqm->dev->shared_resources.num_pipe_per_mec
+ pipe * dqm->dev->shared_resources.num_queue_per_pipe;
/* queue is available for KFD usage if bit is 1 */
for (i = 0; i < dqm->dev->shared_resources.num_queue_per_pipe; ++i)
if (test_bit(pipe_offset + i,
dqm->dev->shared_resources.queue_bitmap))
return true;
return false;
}
unsigned int get_queues_num(struct device_queue_manager *dqm)
{
return bitmap_weight(dqm->dev->shared_resources.queue_bitmap,
KGD_MAX_QUEUES);
}
unsigned int get_queues_per_pipe(struct device_queue_manager *dqm)
{
return dqm->dev->shared_resources.num_queue_per_pipe;
}
unsigned int get_pipes_per_mec(struct device_queue_manager *dqm)
{
return dqm->dev->shared_resources.num_pipe_per_mec;
}
void program_sh_mem_settings(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
return dqm->dev->kfd2kgd->program_sh_mem_settings(
dqm->dev->kgd, qpd->vmid,
qpd->sh_mem_config,
qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit,
qpd->sh_mem_bases);
}
static int allocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit, allocated_vmid;
if (dqm->vmid_bitmap == 0)
return -ENOMEM;
bit = ffs(dqm->vmid_bitmap) - 1;
dqm->vmid_bitmap &= ~(1 << bit);
allocated_vmid = bit + dqm->dev->vm_info.first_vmid_kfd;
pr_debug("vmid allocation %d\n", allocated_vmid);
qpd->vmid = allocated_vmid;
q->properties.vmid = allocated_vmid;
set_pasid_vmid_mapping(dqm, q->process->pasid, q->properties.vmid);
program_sh_mem_settings(dqm, qpd);
/* qpd->page_table_base is set earlier when register_process()
* is called, i.e. when the first queue is created.
*/
dqm->dev->kfd2kgd->set_vm_context_page_table_base(dqm->dev->kgd,
qpd->vmid,
qpd->page_table_base);
/* invalidate the VM context after pasid and vmid mapping is set up */
kfd_flush_tlb(qpd_to_pdd(qpd));
return 0;
}
static int flush_texture_cache_nocpsch(struct kfd_dev *kdev,
struct qcm_process_device *qpd)
{
uint32_t len;
if (!qpd->ib_kaddr)
return -ENOMEM;
len = pm_create_release_mem(qpd->ib_base, (uint32_t *)qpd->ib_kaddr);
return kdev->kfd2kgd->submit_ib(kdev->kgd, KGD_ENGINE_MEC1, qpd->vmid,
qpd->ib_base, (uint32_t *)qpd->ib_kaddr, len);
}
static void deallocate_vmid(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int bit = qpd->vmid - dqm->dev->vm_info.first_vmid_kfd;
/* On GFX v7, CP doesn't flush TC at dequeue */
if (q->device->device_info->asic_family == CHIP_HAWAII)
if (flush_texture_cache_nocpsch(q->device, qpd))
pr_err("Failed to flush TC\n");
kfd_flush_tlb(qpd_to_pdd(qpd));
/* Release the vmid mapping */
set_pasid_vmid_mapping(dqm, 0, qpd->vmid);
dqm->vmid_bitmap |= (1 << bit);
qpd->vmid = 0;
q->properties.vmid = 0;
}
static int create_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
int retval;
print_queue(q);
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
retval = -EPERM;
goto out_unlock;
}
if (list_empty(&qpd->queues_list)) {
retval = allocate_vmid(dqm, qpd, q);
if (retval)
goto out_unlock;
}
q->properties.vmid = qpd->vmid;
/*
* Eviction state logic: we only mark active queues as evicted
* to avoid the overhead of restoring inactive queues later
*/
if (qpd->evicted)
q->properties.is_evicted = (q->properties.queue_size > 0 &&
q->properties.queue_percent > 0 &&
q->properties.queue_address != 0);
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE)
retval = create_compute_queue_nocpsch(dqm, q, qpd);
else if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
retval = create_sdma_queue_nocpsch(dqm, q, qpd);
else
retval = -EINVAL;
if (retval) {
if (list_empty(&qpd->queues_list))
deallocate_vmid(dqm, qpd, q);
goto out_unlock;
}
list_add(&q->list, &qpd->queues_list);
qpd->queue_count++;
if (q->properties.is_active)
dqm->queue_count++;
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
dqm->sdma_queue_count++;
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
out_unlock:
mutex_unlock(&dqm->lock);
return retval;
}
static int allocate_hqd(struct device_queue_manager *dqm, struct queue *q)
{
bool set;
int pipe, bit, i;
set = false;
for (pipe = dqm->next_pipe_to_allocate, i = 0;
i < get_pipes_per_mec(dqm);
pipe = ((pipe + 1) % get_pipes_per_mec(dqm)), ++i) {
if (!is_pipe_enabled(dqm, 0, pipe))
continue;
if (dqm->allocated_queues[pipe] != 0) {
bit = ffs(dqm->allocated_queues[pipe]) - 1;
dqm->allocated_queues[pipe] &= ~(1 << bit);
q->pipe = pipe;
q->queue = bit;
set = true;
break;
}
}
if (!set)
return -EBUSY;
pr_debug("hqd slot - pipe %d, queue %d\n", q->pipe, q->queue);
/* horizontal hqd allocation */
dqm->next_pipe_to_allocate = (pipe + 1) % get_pipes_per_mec(dqm);
return 0;
}
static inline void deallocate_hqd(struct device_queue_manager *dqm,
struct queue *q)
{
dqm->allocated_queues[q->pipe] |= (1 << q->queue);
}
static int create_compute_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
int retval;
struct mqd_manager *mqd;
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_COMPUTE);
if (!mqd)
return -ENOMEM;
retval = allocate_hqd(dqm, q);
if (retval)
return retval;
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval)
goto out_deallocate_hqd;
pr_debug("Loading mqd to hqd on pipe %d, queue %d\n",
q->pipe, q->queue);
dqm->dev->kfd2kgd->set_scratch_backing_va(
dqm->dev->kgd, qpd->sh_hidden_private_base, qpd->vmid);
if (!q->properties.is_active)
return 0;
retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue, &q->properties,
q->process->mm);
if (retval)
goto out_uninit_mqd;
return 0;
out_uninit_mqd:
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
out_deallocate_hqd:
deallocate_hqd(dqm, q);
return retval;
}
/* Access to DQM has to be locked before calling destroy_queue_nocpsch_locked
* to avoid asynchronized access
*/
static int destroy_queue_nocpsch_locked(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd)
return -ENOMEM;
if (q->properties.type == KFD_QUEUE_TYPE_COMPUTE) {
deallocate_hqd(dqm, q);
} else if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
dqm->sdma_queue_count--;
deallocate_sdma_queue(dqm, q->sdma_id);
} else {
pr_debug("q->properties.type %d is invalid\n",
q->properties.type);
return -EINVAL;
}
dqm->total_queue_count--;
retval = mqd->destroy_mqd(mqd, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT_RESET,
KFD_UNMAP_LATENCY_MS,
q->pipe, q->queue);
if (retval == -ETIME)
qpd->reset_wavefronts = true;
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
list_del(&q->list);
if (list_empty(&qpd->queues_list)) {
if (qpd->reset_wavefronts) {
pr_warn("Resetting wave fronts (nocpsch) on dev %p\n",
dqm->dev);
/* dbgdev_wave_reset_wavefronts has to be called before
* deallocate_vmid(), i.e. when vmid is still in use.
*/
dbgdev_wave_reset_wavefronts(dqm->dev,
qpd->pqm->process);
qpd->reset_wavefronts = false;
}
deallocate_vmid(dqm, qpd, q);
}
qpd->queue_count--;
if (q->properties.is_active)
dqm->queue_count--;
return retval;
}
static int destroy_queue_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
mutex_lock(&dqm->lock);
retval = destroy_queue_nocpsch_locked(dqm, qpd, q);
mutex_unlock(&dqm->lock);
return retval;
}
static int update_queue(struct device_queue_manager *dqm, struct queue *q)
{
int retval;
struct mqd_manager *mqd;
struct kfd_process_device *pdd;
bool prev_active = false;
mutex_lock(&dqm->lock);
pdd = kfd_get_process_device_data(q->device, q->process);
if (!pdd) {
retval = -ENODEV;
goto out_unlock;
}
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) {
retval = -ENOMEM;
goto out_unlock;
}
/*
* Eviction state logic: we only mark active queues as evicted
* to avoid the overhead of restoring inactive queues later
*/
if (pdd->qpd.evicted)
q->properties.is_evicted = (q->properties.queue_size > 0 &&
q->properties.queue_percent > 0 &&
q->properties.queue_address != 0);
/* Save previous activity state for counters */
prev_active = q->properties.is_active;
/* Make sure the queue is unmapped before updating the MQD */
if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS) {
retval = unmap_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
if (retval) {
pr_err("unmap queue failed\n");
goto out_unlock;
}
} else if (prev_active &&
(q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA)) {
retval = mqd->destroy_mqd(mqd, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
if (retval) {
pr_err("destroy mqd failed\n");
goto out_unlock;
}
}
retval = mqd->update_mqd(mqd, q->mqd, &q->properties);
/*
* check active state vs. the previous state and modify
* counter accordingly. map_queues_cpsch uses the
* dqm->queue_count to determine whether a new runlist must be
* uploaded.
*/
if (q->properties.is_active && !prev_active)
dqm->queue_count++;
else if (!q->properties.is_active && prev_active)
dqm->queue_count--;
if (dqm->sched_policy != KFD_SCHED_POLICY_NO_HWS)
retval = map_queues_cpsch(dqm);
else if (q->properties.is_active &&
(q->properties.type == KFD_QUEUE_TYPE_COMPUTE ||
q->properties.type == KFD_QUEUE_TYPE_SDMA))
retval = mqd->load_mqd(mqd, q->mqd, q->pipe, q->queue,
&q->properties, q->process->mm);
out_unlock:
mutex_unlock(&dqm->lock);
return retval;
}
static struct mqd_manager *get_mqd_manager(
struct device_queue_manager *dqm, enum KFD_MQD_TYPE type)
{
struct mqd_manager *mqd;
if (WARN_ON(type >= KFD_MQD_TYPE_MAX))
return NULL;
pr_debug("mqd type %d\n", type);
mqd = dqm->mqds[type];
if (!mqd) {
mqd = mqd_manager_init(type, dqm->dev);
if (!mqd)
pr_err("mqd manager is NULL");
dqm->mqds[type] = mqd;
}
return mqd;
}
static int evict_process_queues_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct mqd_manager *mqd;
struct kfd_process_device *pdd;
int retval = 0;
mutex_lock(&dqm->lock);
if (qpd->evicted++ > 0) /* already evicted, do nothing */
goto out;
pdd = qpd_to_pdd(qpd);
pr_info_ratelimited("Evicting PASID %u queues\n",
pdd->process->pasid);
/* unactivate all active queues on the qpd */
list_for_each_entry(q, &qpd->queues_list, list) {
if (!q->properties.is_active)
continue;
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) { /* should not be here */
pr_err("Cannot evict queue, mqd mgr is NULL\n");
retval = -ENOMEM;
goto out;
}
q->properties.is_evicted = true;
q->properties.is_active = false;
retval = mqd->destroy_mqd(mqd, q->mqd,
KFD_PREEMPT_TYPE_WAVEFRONT_DRAIN,
KFD_UNMAP_LATENCY_MS, q->pipe, q->queue);
if (retval)
goto out;
dqm->queue_count--;
}
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int evict_process_queues_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct kfd_process_device *pdd;
int retval = 0;
mutex_lock(&dqm->lock);
if (qpd->evicted++ > 0) /* already evicted, do nothing */
goto out;
pdd = qpd_to_pdd(qpd);
pr_info_ratelimited("Evicting PASID %u queues\n",
pdd->process->pasid);
/* unactivate all active queues on the qpd */
list_for_each_entry(q, &qpd->queues_list, list) {
if (!q->properties.is_active)
continue;
q->properties.is_evicted = true;
q->properties.is_active = false;
dqm->queue_count--;
}
retval = execute_queues_cpsch(dqm,
qpd->is_debug ?
KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES :
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int restore_process_queues_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct mqd_manager *mqd;
struct kfd_process_device *pdd;
uint32_t pd_base;
int retval = 0;
pdd = qpd_to_pdd(qpd);
/* Retrieve PD base */
pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
mutex_lock(&dqm->lock);
if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
goto out;
if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
qpd->evicted--;
goto out;
}
pr_info_ratelimited("Restoring PASID %u queues\n",
pdd->process->pasid);
/* Update PD Base in QPD */
qpd->page_table_base = pd_base;
pr_debug("Updated PD address to 0x%08x\n", pd_base);
if (!list_empty(&qpd->queues_list)) {
dqm->dev->kfd2kgd->set_vm_context_page_table_base(
dqm->dev->kgd,
qpd->vmid,
qpd->page_table_base);
kfd_flush_tlb(pdd);
}
/* activate all active queues on the qpd */
list_for_each_entry(q, &qpd->queues_list, list) {
if (!q->properties.is_evicted)
continue;
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) { /* should not be here */
pr_err("Cannot restore queue, mqd mgr is NULL\n");
retval = -ENOMEM;
goto out;
}
q->properties.is_evicted = false;
q->properties.is_active = true;
retval = mqd->load_mqd(mqd, q->mqd, q->pipe,
q->queue, &q->properties,
q->process->mm);
if (retval)
goto out;
dqm->queue_count++;
}
qpd->evicted = 0;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int restore_process_queues_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q;
struct kfd_process_device *pdd;
uint32_t pd_base;
int retval = 0;
pdd = qpd_to_pdd(qpd);
/* Retrieve PD base */
pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
mutex_lock(&dqm->lock);
if (WARN_ON_ONCE(!qpd->evicted)) /* already restored, do nothing */
goto out;
if (qpd->evicted > 1) { /* ref count still > 0, decrement & quit */
qpd->evicted--;
goto out;
}
pr_info_ratelimited("Restoring PASID %u queues\n",
pdd->process->pasid);
/* Update PD Base in QPD */
qpd->page_table_base = pd_base;
pr_debug("Updated PD address to 0x%08x\n", pd_base);
/* activate all active queues on the qpd */
list_for_each_entry(q, &qpd->queues_list, list) {
if (!q->properties.is_evicted)
continue;
q->properties.is_evicted = false;
q->properties.is_active = true;
dqm->queue_count++;
}
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
if (!retval)
qpd->evicted = 0;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int register_process(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct device_process_node *n;
struct kfd_process_device *pdd;
uint32_t pd_base;
int retval;
n = kzalloc(sizeof(*n), GFP_KERNEL);
if (!n)
return -ENOMEM;
n->qpd = qpd;
pdd = qpd_to_pdd(qpd);
/* Retrieve PD base */
pd_base = dqm->dev->kfd2kgd->get_process_page_dir(pdd->vm);
mutex_lock(&dqm->lock);
list_add(&n->list, &dqm->queues);
/* Update PD Base in QPD */
qpd->page_table_base = pd_base;
retval = dqm->asic_ops.update_qpd(dqm, qpd);
dqm->processes_count++;
mutex_unlock(&dqm->lock);
return retval;
}
static int unregister_process(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct device_process_node *cur, *next;
pr_debug("qpd->queues_list is %s\n",
list_empty(&qpd->queues_list) ? "empty" : "not empty");
retval = 0;
mutex_lock(&dqm->lock);
list_for_each_entry_safe(cur, next, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
goto out;
}
}
/* qpd not found in dqm list */
retval = 1;
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int
set_pasid_vmid_mapping(struct device_queue_manager *dqm, unsigned int pasid,
unsigned int vmid)
{
uint32_t pasid_mapping;
pasid_mapping = (pasid == 0) ? 0 :
(uint32_t)pasid |
ATC_VMID_PASID_MAPPING_VALID;
return dqm->dev->kfd2kgd->set_pasid_vmid_mapping(
dqm->dev->kgd, pasid_mapping,
vmid);
}
static void init_interrupts(struct device_queue_manager *dqm)
{
unsigned int i;
for (i = 0 ; i < get_pipes_per_mec(dqm) ; i++)
if (is_pipe_enabled(dqm, 0, i))
dqm->dev->kfd2kgd->init_interrupts(dqm->dev->kgd, i);
}
static int initialize_nocpsch(struct device_queue_manager *dqm)
{
int pipe, queue;
pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
dqm->allocated_queues = kcalloc(get_pipes_per_mec(dqm),
sizeof(unsigned int), GFP_KERNEL);
if (!dqm->allocated_queues)
return -ENOMEM;
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->next_pipe_to_allocate = 0;
dqm->sdma_queue_count = 0;
for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
int pipe_offset = pipe * get_queues_per_pipe(dqm);
for (queue = 0; queue < get_queues_per_pipe(dqm); queue++)
if (test_bit(pipe_offset + queue,
dqm->dev->shared_resources.queue_bitmap))
dqm->allocated_queues[pipe] |= 1 << queue;
}
dqm->vmid_bitmap = (1 << dqm->dev->vm_info.vmid_num_kfd) - 1;
dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
return 0;
}
static void uninitialize(struct device_queue_manager *dqm)
{
int i;
WARN_ON(dqm->queue_count > 0 || dqm->processes_count > 0);
kfree(dqm->allocated_queues);
for (i = 0 ; i < KFD_MQD_TYPE_MAX ; i++)
kfree(dqm->mqds[i]);
mutex_destroy(&dqm->lock);
kfd_gtt_sa_free(dqm->dev, dqm->pipeline_mem);
}
static int start_nocpsch(struct device_queue_manager *dqm)
{
init_interrupts(dqm);
return pm_init(&dqm->packets, dqm);
}
static int stop_nocpsch(struct device_queue_manager *dqm)
{
pm_uninit(&dqm->packets);
return 0;
}
static int allocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int *sdma_queue_id)
{
int bit;
if (dqm->sdma_bitmap == 0)
return -ENOMEM;
bit = ffs(dqm->sdma_bitmap) - 1;
dqm->sdma_bitmap &= ~(1 << bit);
*sdma_queue_id = bit;
return 0;
}
static void deallocate_sdma_queue(struct device_queue_manager *dqm,
unsigned int sdma_queue_id)
{
if (sdma_queue_id >= CIK_SDMA_QUEUES)
return;
dqm->sdma_bitmap |= (1 << sdma_queue_id);
}
static int create_sdma_queue_nocpsch(struct device_queue_manager *dqm,
struct queue *q,
struct qcm_process_device *qpd)
{
struct mqd_manager *mqd;
int retval;
mqd = dqm->ops.get_mqd_manager(dqm, KFD_MQD_TYPE_SDMA);
if (!mqd)
return -ENOMEM;
retval = allocate_sdma_queue(dqm, &q->sdma_id);
if (retval)
return retval;
q->properties.sdma_queue_id = q->sdma_id / CIK_SDMA_QUEUES_PER_ENGINE;
q->properties.sdma_engine_id = q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
pr_debug("SDMA id is: %d\n", q->sdma_id);
pr_debug("SDMA queue id: %d\n", q->properties.sdma_queue_id);
pr_debug("SDMA engine id: %d\n", q->properties.sdma_engine_id);
dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval)
goto out_deallocate_sdma_queue;
retval = mqd->load_mqd(mqd, q->mqd, 0, 0, &q->properties, NULL);
if (retval)
goto out_uninit_mqd;
return 0;
out_uninit_mqd:
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
out_deallocate_sdma_queue:
deallocate_sdma_queue(dqm, q->sdma_id);
return retval;
}
/*
* Device Queue Manager implementation for cp scheduler
*/
static int set_sched_resources(struct device_queue_manager *dqm)
{
int i, mec;
struct scheduling_resources res;
res.vmid_mask = dqm->dev->shared_resources.compute_vmid_bitmap;
res.queue_mask = 0;
for (i = 0; i < KGD_MAX_QUEUES; ++i) {
mec = (i / dqm->dev->shared_resources.num_queue_per_pipe)
/ dqm->dev->shared_resources.num_pipe_per_mec;
if (!test_bit(i, dqm->dev->shared_resources.queue_bitmap))
continue;
/* only acquire queues from the first MEC */
if (mec > 0)
continue;
/* This situation may be hit in the future if a new HW
* generation exposes more than 64 queues. If so, the
* definition of res.queue_mask needs updating
*/
if (WARN_ON(i >= (sizeof(res.queue_mask)*8))) {
pr_err("Invalid queue enabled by amdgpu: %d\n", i);
break;
}
res.queue_mask |= (1ull << i);
}
res.gws_mask = res.oac_mask = res.gds_heap_base =
res.gds_heap_size = 0;
pr_debug("Scheduling resources:\n"
"vmid mask: 0x%8X\n"
"queue mask: 0x%8llX\n",
res.vmid_mask, res.queue_mask);
return pm_send_set_resources(&dqm->packets, &res);
}
static int initialize_cpsch(struct device_queue_manager *dqm)
{
pr_debug("num of pipes: %d\n", get_pipes_per_mec(dqm));
mutex_init(&dqm->lock);
INIT_LIST_HEAD(&dqm->queues);
dqm->queue_count = dqm->processes_count = 0;
dqm->sdma_queue_count = 0;
dqm->active_runlist = false;
dqm->sdma_bitmap = (1 << CIK_SDMA_QUEUES) - 1;
return 0;
}
static int start_cpsch(struct device_queue_manager *dqm)
{
int retval;
retval = 0;
retval = pm_init(&dqm->packets, dqm);
if (retval)
goto fail_packet_manager_init;
retval = set_sched_resources(dqm);
if (retval)
goto fail_set_sched_resources;
pr_debug("Allocating fence memory\n");
/* allocate fence memory on the gart */
retval = kfd_gtt_sa_allocate(dqm->dev, sizeof(*dqm->fence_addr),
&dqm->fence_mem);
if (retval)
goto fail_allocate_vidmem;
dqm->fence_addr = dqm->fence_mem->cpu_ptr;
dqm->fence_gpu_addr = dqm->fence_mem->gpu_addr;
init_interrupts(dqm);
mutex_lock(&dqm->lock);
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
mutex_unlock(&dqm->lock);
return 0;
fail_allocate_vidmem:
fail_set_sched_resources:
pm_uninit(&dqm->packets);
fail_packet_manager_init:
return retval;
}
static int stop_cpsch(struct device_queue_manager *dqm)
{
mutex_lock(&dqm->lock);
unmap_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
mutex_unlock(&dqm->lock);
kfd_gtt_sa_free(dqm->dev, dqm->fence_mem);
pm_uninit(&dqm->packets);
return 0;
}
static int create_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new kernel queue because %d queues were already created\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return -EPERM;
}
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
list_add(&kq->list, &qpd->priv_queue_list);
dqm->queue_count++;
qpd->is_debug = true;
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
mutex_unlock(&dqm->lock);
return 0;
}
static void destroy_kernel_queue_cpsch(struct device_queue_manager *dqm,
struct kernel_queue *kq,
struct qcm_process_device *qpd)
{
mutex_lock(&dqm->lock);
list_del(&kq->list);
dqm->queue_count--;
qpd->is_debug = false;
execute_queues_cpsch(dqm, KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES, 0);
/*
* Unconditionally decrement this counter, regardless of the queue's
* type.
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
}
static int create_queue_cpsch(struct device_queue_manager *dqm, struct queue *q,
struct qcm_process_device *qpd)
{
int retval;
struct mqd_manager *mqd;
retval = 0;
mutex_lock(&dqm->lock);
if (dqm->total_queue_count >= max_num_of_queues_per_device) {
pr_warn("Can't create new usermode queue because %d queues were already created\n",
dqm->total_queue_count);
retval = -EPERM;
goto out_unlock;
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
retval = allocate_sdma_queue(dqm, &q->sdma_id);
if (retval)
goto out_unlock;
q->properties.sdma_queue_id =
q->sdma_id / CIK_SDMA_QUEUES_PER_ENGINE;
q->properties.sdma_engine_id =
q->sdma_id % CIK_SDMA_QUEUES_PER_ENGINE;
}
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) {
retval = -ENOMEM;
goto out_deallocate_sdma_queue;
}
/*
* Eviction state logic: we only mark active queues as evicted
* to avoid the overhead of restoring inactive queues later
*/
if (qpd->evicted)
q->properties.is_evicted = (q->properties.queue_size > 0 &&
q->properties.queue_percent > 0 &&
q->properties.queue_address != 0);
dqm->asic_ops.init_sdma_vm(dqm, q, qpd);
q->properties.tba_addr = qpd->tba_addr;
q->properties.tma_addr = qpd->tma_addr;
retval = mqd->init_mqd(mqd, &q->mqd, &q->mqd_mem_obj,
&q->gart_mqd_addr, &q->properties);
if (retval)
goto out_deallocate_sdma_queue;
list_add(&q->list, &qpd->queues_list);
qpd->queue_count++;
if (q->properties.is_active) {
dqm->queue_count++;
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
dqm->sdma_queue_count++;
/*
* Unconditionally increment this counter, regardless of the queue's
* type or whether the queue is active.
*/
dqm->total_queue_count++;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return retval;
out_deallocate_sdma_queue:
if (q->properties.type == KFD_QUEUE_TYPE_SDMA)
deallocate_sdma_queue(dqm, q->sdma_id);
out_unlock:
mutex_unlock(&dqm->lock);
return retval;
}
int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
unsigned int fence_value,
unsigned int timeout_ms)
{
unsigned long end_jiffies = msecs_to_jiffies(timeout_ms) + jiffies;
while (*fence_addr != fence_value) {
if (time_after(jiffies, end_jiffies)) {
pr_err("qcm fence wait loop timeout expired\n");
return -ETIME;
}
schedule();
}
return 0;
}
static int unmap_sdma_queues(struct device_queue_manager *dqm,
unsigned int sdma_engine)
{
return pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_SDMA,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0, false,
sdma_engine);
}
/* dqm->lock mutex has to be locked before calling this function */
static int map_queues_cpsch(struct device_queue_manager *dqm)
{
int retval;
if (dqm->queue_count <= 0 || dqm->processes_count <= 0)
return 0;
if (dqm->active_runlist)
return 0;
retval = pm_send_runlist(&dqm->packets, &dqm->queues);
if (retval) {
pr_err("failed to execute runlist\n");
return retval;
}
dqm->active_runlist = true;
return retval;
}
/* dqm->lock mutex has to be locked before calling this function */
static int unmap_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param)
{
int retval = 0;
if (!dqm->active_runlist)
return retval;
pr_debug("Before destroying queues, sdma queue count is : %u\n",
dqm->sdma_queue_count);
if (dqm->sdma_queue_count > 0) {
unmap_sdma_queues(dqm, 0);
unmap_sdma_queues(dqm, 1);
}
retval = pm_send_unmap_queue(&dqm->packets, KFD_QUEUE_TYPE_COMPUTE,
filter, filter_param, false, 0);
if (retval)
return retval;
*dqm->fence_addr = KFD_FENCE_INIT;
pm_send_query_status(&dqm->packets, dqm->fence_gpu_addr,
KFD_FENCE_COMPLETED);
/* should be timed out */
retval = amdkfd_fence_wait_timeout(dqm->fence_addr, KFD_FENCE_COMPLETED,
QUEUE_PREEMPT_DEFAULT_TIMEOUT_MS);
if (retval)
return retval;
pm_release_ib(&dqm->packets);
dqm->active_runlist = false;
return retval;
}
/* dqm->lock mutex has to be locked before calling this function */
static int execute_queues_cpsch(struct device_queue_manager *dqm,
enum kfd_unmap_queues_filter filter,
uint32_t filter_param)
{
int retval;
retval = unmap_queues_cpsch(dqm, filter, filter_param);
if (retval) {
pr_err("The cp might be in an unrecoverable state due to an unsuccessful queues preemption\n");
return retval;
}
return map_queues_cpsch(dqm);
}
static int destroy_queue_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
struct queue *q)
{
int retval;
struct mqd_manager *mqd;
bool preempt_all_queues;
preempt_all_queues = false;
retval = 0;
/* remove queue from list to prevent rescheduling after preemption */
mutex_lock(&dqm->lock);
if (qpd->is_debug) {
/*
* error, currently we do not allow to destroy a queue
* of a currently debugged process
*/
retval = -EBUSY;
goto failed_try_destroy_debugged_queue;
}
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) {
retval = -ENOMEM;
goto failed;
}
if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
dqm->sdma_queue_count--;
deallocate_sdma_queue(dqm, q->sdma_id);
}
list_del(&q->list);
qpd->queue_count--;
if (q->properties.is_active) {
dqm->queue_count--;
retval = execute_queues_cpsch(dqm,
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES, 0);
if (retval == -ETIME)
qpd->reset_wavefronts = true;
}
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
/*
* Unconditionally decrement this counter, regardless of the queue's
* type
*/
dqm->total_queue_count--;
pr_debug("Total of %d queues are accountable so far\n",
dqm->total_queue_count);
mutex_unlock(&dqm->lock);
return retval;
failed:
failed_try_destroy_debugged_queue:
mutex_unlock(&dqm->lock);
return retval;
}
/*
* Low bits must be 0000/FFFF as required by HW, high bits must be 0 to
* stay in user mode.
*/
#define APE1_FIXED_BITS_MASK 0xFFFF80000000FFFFULL
/* APE1 limit is inclusive and 64K aligned. */
#define APE1_LIMIT_ALIGNMENT 0xFFFF
static bool set_cache_memory_policy(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
enum cache_policy default_policy,
enum cache_policy alternate_policy,
void __user *alternate_aperture_base,
uint64_t alternate_aperture_size)
{
bool retval;
mutex_lock(&dqm->lock);
if (alternate_aperture_size == 0) {
/* base > limit disables APE1 */
qpd->sh_mem_ape1_base = 1;
qpd->sh_mem_ape1_limit = 0;
} else {
/*
* In FSA64, APE1_Base[63:0] = { 16{SH_MEM_APE1_BASE[31]},
* SH_MEM_APE1_BASE[31:0], 0x0000 }
* APE1_Limit[63:0] = { 16{SH_MEM_APE1_LIMIT[31]},
* SH_MEM_APE1_LIMIT[31:0], 0xFFFF }
* Verify that the base and size parameters can be
* represented in this format and convert them.
* Additionally restrict APE1 to user-mode addresses.
*/
uint64_t base = (uintptr_t)alternate_aperture_base;
uint64_t limit = base + alternate_aperture_size - 1;
if (limit <= base || (base & APE1_FIXED_BITS_MASK) != 0 ||
(limit & APE1_FIXED_BITS_MASK) != APE1_LIMIT_ALIGNMENT) {
retval = false;
goto out;
}
qpd->sh_mem_ape1_base = base >> 16;
qpd->sh_mem_ape1_limit = limit >> 16;
}
retval = dqm->asic_ops.set_cache_memory_policy(
dqm,
qpd,
default_policy,
alternate_policy,
alternate_aperture_base,
alternate_aperture_size);
if ((dqm->sched_policy == KFD_SCHED_POLICY_NO_HWS) && (qpd->vmid != 0))
program_sh_mem_settings(dqm, qpd);
pr_debug("sh_mem_config: 0x%x, ape1_base: 0x%x, ape1_limit: 0x%x\n",
qpd->sh_mem_config, qpd->sh_mem_ape1_base,
qpd->sh_mem_ape1_limit);
out:
mutex_unlock(&dqm->lock);
return retval;
}
static int set_trap_handler(struct device_queue_manager *dqm,
struct qcm_process_device *qpd,
uint64_t tba_addr,
uint64_t tma_addr)
{
uint64_t *tma;
if (dqm->dev->cwsr_enabled) {
/* Jump from CWSR trap handler to user trap */
tma = (uint64_t *)(qpd->cwsr_kaddr + KFD_CWSR_TMA_OFFSET);
tma[0] = tba_addr;
tma[1] = tma_addr;
} else {
qpd->tba_addr = tba_addr;
qpd->tma_addr = tma_addr;
}
return 0;
}
static int process_termination_nocpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
struct queue *q, *next;
struct device_process_node *cur, *next_dpn;
int retval = 0;
mutex_lock(&dqm->lock);
/* Clear all user mode queues */
list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
int ret;
ret = destroy_queue_nocpsch_locked(dqm, qpd, q);
if (ret)
retval = ret;
}
/* Unregister process */
list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
break;
}
}
mutex_unlock(&dqm->lock);
return retval;
}
static int process_termination_cpsch(struct device_queue_manager *dqm,
struct qcm_process_device *qpd)
{
int retval;
struct queue *q, *next;
struct kernel_queue *kq, *kq_next;
struct mqd_manager *mqd;
struct device_process_node *cur, *next_dpn;
enum kfd_unmap_queues_filter filter =
KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES;
retval = 0;
mutex_lock(&dqm->lock);
/* Clean all kernel queues */
list_for_each_entry_safe(kq, kq_next, &qpd->priv_queue_list, list) {
list_del(&kq->list);
dqm->queue_count--;
qpd->is_debug = false;
dqm->total_queue_count--;
filter = KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES;
}
/* Clear all user mode queues */
list_for_each_entry(q, &qpd->queues_list, list) {
if (q->properties.type == KFD_QUEUE_TYPE_SDMA) {
dqm->sdma_queue_count--;
deallocate_sdma_queue(dqm, q->sdma_id);
}
if (q->properties.is_active)
dqm->queue_count--;
dqm->total_queue_count--;
}
/* Unregister process */
list_for_each_entry_safe(cur, next_dpn, &dqm->queues, list) {
if (qpd == cur->qpd) {
list_del(&cur->list);
kfree(cur);
dqm->processes_count--;
break;
}
}
retval = execute_queues_cpsch(dqm, filter, 0);
if (retval || qpd->reset_wavefronts) {
pr_warn("Resetting wave fronts (cpsch) on dev %p\n", dqm->dev);
dbgdev_wave_reset_wavefronts(dqm->dev, qpd->pqm->process);
qpd->reset_wavefronts = false;
}
/* lastly, free mqd resources */
list_for_each_entry_safe(q, next, &qpd->queues_list, list) {
mqd = dqm->ops.get_mqd_manager(dqm,
get_mqd_type_from_queue_type(q->properties.type));
if (!mqd) {
retval = -ENOMEM;
goto out;
}
list_del(&q->list);
qpd->queue_count--;
mqd->uninit_mqd(mqd, q->mqd, q->mqd_mem_obj);
}
out:
mutex_unlock(&dqm->lock);
return retval;
}
struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev)
{
struct device_queue_manager *dqm;
pr_debug("Loading device queue manager\n");
dqm = kzalloc(sizeof(*dqm), GFP_KERNEL);
if (!dqm)
return NULL;
switch (dev->device_info->asic_family) {
/* HWS is not available on Hawaii. */
case CHIP_HAWAII:
/* HWS depends on CWSR for timely dequeue. CWSR is not
* available on Tonga.
*
* FIXME: This argument also applies to Kaveri.
*/
case CHIP_TONGA:
dqm->sched_policy = KFD_SCHED_POLICY_NO_HWS;
break;
default:
dqm->sched_policy = sched_policy;
break;
}
dqm->dev = dev;
switch (dqm->sched_policy) {
case KFD_SCHED_POLICY_HWS:
case KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION:
/* initialize dqm for cp scheduling */
dqm->ops.create_queue = create_queue_cpsch;
dqm->ops.initialize = initialize_cpsch;
dqm->ops.start = start_cpsch;
dqm->ops.stop = stop_cpsch;
dqm->ops.destroy_queue = destroy_queue_cpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.get_mqd_manager = get_mqd_manager;
dqm->ops.register_process = register_process;
dqm->ops.unregister_process = unregister_process;
dqm->ops.uninitialize = uninitialize;
dqm->ops.create_kernel_queue = create_kernel_queue_cpsch;
dqm->ops.destroy_kernel_queue = destroy_kernel_queue_cpsch;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.set_trap_handler = set_trap_handler;
dqm->ops.process_termination = process_termination_cpsch;
dqm->ops.evict_process_queues = evict_process_queues_cpsch;
dqm->ops.restore_process_queues = restore_process_queues_cpsch;
break;
case KFD_SCHED_POLICY_NO_HWS:
/* initialize dqm for no cp scheduling */
dqm->ops.start = start_nocpsch;
dqm->ops.stop = stop_nocpsch;
dqm->ops.create_queue = create_queue_nocpsch;
dqm->ops.destroy_queue = destroy_queue_nocpsch;
dqm->ops.update_queue = update_queue;
dqm->ops.get_mqd_manager = get_mqd_manager;
dqm->ops.register_process = register_process;
dqm->ops.unregister_process = unregister_process;
dqm->ops.initialize = initialize_nocpsch;
dqm->ops.uninitialize = uninitialize;
dqm->ops.set_cache_memory_policy = set_cache_memory_policy;
dqm->ops.set_trap_handler = set_trap_handler;
dqm->ops.process_termination = process_termination_nocpsch;
dqm->ops.evict_process_queues = evict_process_queues_nocpsch;
dqm->ops.restore_process_queues =
restore_process_queues_nocpsch;
break;
default:
pr_err("Invalid scheduling policy %d\n", dqm->sched_policy);
goto out_free;
}
switch (dev->device_info->asic_family) {
case CHIP_CARRIZO:
device_queue_manager_init_vi(&dqm->asic_ops);
break;
case CHIP_KAVERI:
device_queue_manager_init_cik(&dqm->asic_ops);
break;
case CHIP_HAWAII:
device_queue_manager_init_cik_hawaii(&dqm->asic_ops);
break;
case CHIP_TONGA:
case CHIP_FIJI:
case CHIP_POLARIS10:
case CHIP_POLARIS11:
device_queue_manager_init_vi_tonga(&dqm->asic_ops);
break;
default:
WARN(1, "Unexpected ASIC family %u",
dev->device_info->asic_family);
goto out_free;
}
if (!dqm->ops.initialize(dqm))
return dqm;
out_free:
kfree(dqm);
return NULL;
}
void device_queue_manager_uninit(struct device_queue_manager *dqm)
{
dqm->ops.uninitialize(dqm);
kfree(dqm);
}
#if defined(CONFIG_DEBUG_FS)
static void seq_reg_dump(struct seq_file *m,
uint32_t (*dump)[2], uint32_t n_regs)
{
uint32_t i, count;
for (i = 0, count = 0; i < n_regs; i++) {
if (count == 0 ||
dump[i-1][0] + sizeof(uint32_t) != dump[i][0]) {
seq_printf(m, "%s %08x: %08x",
i ? "\n" : "",
dump[i][0], dump[i][1]);
count = 7;
} else {
seq_printf(m, " %08x", dump[i][1]);
count--;
}
}
seq_puts(m, "\n");
}
int dqm_debugfs_hqds(struct seq_file *m, void *data)
{
struct device_queue_manager *dqm = data;
uint32_t (*dump)[2], n_regs;
int pipe, queue;
int r = 0;
for (pipe = 0; pipe < get_pipes_per_mec(dqm); pipe++) {
int pipe_offset = pipe * get_queues_per_pipe(dqm);
for (queue = 0; queue < get_queues_per_pipe(dqm); queue++) {
if (!test_bit(pipe_offset + queue,
dqm->dev->shared_resources.queue_bitmap))
continue;
r = dqm->dev->kfd2kgd->hqd_dump(
dqm->dev->kgd, pipe, queue, &dump, &n_regs);
if (r)
break;
seq_printf(m, " CP Pipe %d, Queue %d\n",
pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
for (pipe = 0; pipe < CIK_SDMA_ENGINE_NUM; pipe++) {
for (queue = 0; queue < CIK_SDMA_QUEUES_PER_ENGINE; queue++) {
r = dqm->dev->kfd2kgd->hqd_sdma_dump(
dqm->dev->kgd, pipe, queue, &dump, &n_regs);
if (r)
break;
seq_printf(m, " SDMA Engine %d, RLC %d\n",
pipe, queue);
seq_reg_dump(m, dump, n_regs);
kfree(dump);
}
}
return r;
}
#endif