620 lines
16 KiB
C
620 lines
16 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/****************************************************************************
|
|
* Driver for Solarflare network controllers and boards
|
|
* Copyright 2018 Solarflare Communications Inc.
|
|
* Copyright 2019-2020 Xilinx Inc.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify it
|
|
* under the terms of the GNU General Public License version 2 as published
|
|
* by the Free Software Foundation, incorporated herein by reference.
|
|
*/
|
|
|
|
#include "ef100_nic.h"
|
|
#include "efx_common.h"
|
|
#include "efx_channels.h"
|
|
#include "io.h"
|
|
#include "selftest.h"
|
|
#include "ef100_regs.h"
|
|
#include "mcdi.h"
|
|
#include "mcdi_pcol.h"
|
|
#include "mcdi_port_common.h"
|
|
#include "mcdi_functions.h"
|
|
#include "mcdi_filters.h"
|
|
#include "ef100_rx.h"
|
|
#include "ef100_tx.h"
|
|
#include "ef100_netdev.h"
|
|
|
|
#define EF100_MAX_VIS 4096
|
|
#define EF100_NUM_MCDI_BUFFERS 1
|
|
#define MCDI_BUF_LEN (8 + MCDI_CTL_SDU_LEN_MAX)
|
|
|
|
#define EF100_RESET_PORT ((ETH_RESET_MAC | ETH_RESET_PHY) << ETH_RESET_SHARED_SHIFT)
|
|
|
|
/* MCDI
|
|
*/
|
|
static u8 *ef100_mcdi_buf(struct efx_nic *efx, u8 bufid, dma_addr_t *dma_addr)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (dma_addr)
|
|
*dma_addr = nic_data->mcdi_buf.dma_addr +
|
|
bufid * ALIGN(MCDI_BUF_LEN, 256);
|
|
return nic_data->mcdi_buf.addr + bufid * ALIGN(MCDI_BUF_LEN, 256);
|
|
}
|
|
|
|
static int ef100_get_warm_boot_count(struct efx_nic *efx)
|
|
{
|
|
efx_dword_t reg;
|
|
|
|
efx_readd(efx, ®, efx_reg(efx, ER_GZ_MC_SFT_STATUS));
|
|
|
|
if (EFX_DWORD_FIELD(reg, EFX_DWORD_0) == 0xffffffff) {
|
|
netif_err(efx, hw, efx->net_dev, "Hardware unavailable\n");
|
|
efx->state = STATE_DISABLED;
|
|
return -ENETDOWN;
|
|
} else {
|
|
return EFX_DWORD_FIELD(reg, EFX_WORD_1) == 0xb007 ?
|
|
EFX_DWORD_FIELD(reg, EFX_WORD_0) : -EIO;
|
|
}
|
|
}
|
|
|
|
static void ef100_mcdi_request(struct efx_nic *efx,
|
|
const efx_dword_t *hdr, size_t hdr_len,
|
|
const efx_dword_t *sdu, size_t sdu_len)
|
|
{
|
|
dma_addr_t dma_addr;
|
|
u8 *pdu = ef100_mcdi_buf(efx, 0, &dma_addr);
|
|
|
|
memcpy(pdu, hdr, hdr_len);
|
|
memcpy(pdu + hdr_len, sdu, sdu_len);
|
|
wmb();
|
|
|
|
/* The hardware provides 'low' and 'high' (doorbell) registers
|
|
* for passing the 64-bit address of an MCDI request to
|
|
* firmware. However the dwords are swapped by firmware. The
|
|
* least significant bits of the doorbell are then 0 for all
|
|
* MCDI requests due to alignment.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32((u64)dma_addr >> 32), efx_reg(efx, ER_GZ_MC_DB_LWRD));
|
|
_efx_writed(efx, cpu_to_le32((u32)dma_addr), efx_reg(efx, ER_GZ_MC_DB_HWRD));
|
|
}
|
|
|
|
static bool ef100_mcdi_poll_response(struct efx_nic *efx)
|
|
{
|
|
const efx_dword_t hdr =
|
|
*(const efx_dword_t *)(ef100_mcdi_buf(efx, 0, NULL));
|
|
|
|
rmb();
|
|
return EFX_DWORD_FIELD(hdr, MCDI_HEADER_RESPONSE);
|
|
}
|
|
|
|
static void ef100_mcdi_read_response(struct efx_nic *efx,
|
|
efx_dword_t *outbuf, size_t offset,
|
|
size_t outlen)
|
|
{
|
|
const u8 *pdu = ef100_mcdi_buf(efx, 0, NULL);
|
|
|
|
memcpy(outbuf, pdu + offset, outlen);
|
|
}
|
|
|
|
static int ef100_mcdi_poll_reboot(struct efx_nic *efx)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
int rc;
|
|
|
|
rc = ef100_get_warm_boot_count(efx);
|
|
if (rc < 0) {
|
|
/* The firmware is presumably in the process of
|
|
* rebooting. However, we are supposed to report each
|
|
* reboot just once, so we must only do that once we
|
|
* can read and store the updated warm boot count.
|
|
*/
|
|
return 0;
|
|
}
|
|
|
|
if (rc == nic_data->warm_boot_count)
|
|
return 0;
|
|
|
|
nic_data->warm_boot_count = rc;
|
|
|
|
return -EIO;
|
|
}
|
|
|
|
static void ef100_mcdi_reboot_detected(struct efx_nic *efx)
|
|
{
|
|
}
|
|
|
|
/* MCDI calls
|
|
*/
|
|
static int ef100_get_mac_address(struct efx_nic *efx, u8 *mac_address)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_MAC_ADDRESSES_OUT_LEN);
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_MAC_ADDRESSES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_MAC_ADDRESSES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_MAC_ADDRESSES_OUT_LEN)
|
|
return -EIO;
|
|
|
|
ether_addr_copy(mac_address,
|
|
MCDI_PTR(outbuf, GET_MAC_ADDRESSES_OUT_MAC_ADDR_BASE));
|
|
return 0;
|
|
}
|
|
|
|
static int efx_ef100_init_datapath_caps(struct efx_nic *efx)
|
|
{
|
|
MCDI_DECLARE_BUF(outbuf, MC_CMD_GET_CAPABILITIES_V7_OUT_LEN);
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
u8 vi_window_mode;
|
|
size_t outlen;
|
|
int rc;
|
|
|
|
BUILD_BUG_ON(MC_CMD_GET_CAPABILITIES_IN_LEN != 0);
|
|
|
|
rc = efx_mcdi_rpc(efx, MC_CMD_GET_CAPABILITIES, NULL, 0,
|
|
outbuf, sizeof(outbuf), &outlen);
|
|
if (rc)
|
|
return rc;
|
|
if (outlen < MC_CMD_GET_CAPABILITIES_V4_OUT_LEN) {
|
|
netif_err(efx, drv, efx->net_dev,
|
|
"unable to read datapath firmware capabilities\n");
|
|
return -EIO;
|
|
}
|
|
|
|
nic_data->datapath_caps = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_OUT_FLAGS1);
|
|
nic_data->datapath_caps2 = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_V2_OUT_FLAGS2);
|
|
if (outlen < MC_CMD_GET_CAPABILITIES_V7_OUT_LEN)
|
|
nic_data->datapath_caps3 = 0;
|
|
else
|
|
nic_data->datapath_caps3 = MCDI_DWORD(outbuf,
|
|
GET_CAPABILITIES_V7_OUT_FLAGS3);
|
|
|
|
vi_window_mode = MCDI_BYTE(outbuf,
|
|
GET_CAPABILITIES_V3_OUT_VI_WINDOW_MODE);
|
|
rc = efx_mcdi_window_mode_to_stride(efx, vi_window_mode);
|
|
if (rc)
|
|
return rc;
|
|
|
|
if (efx_ef100_has_cap(nic_data->datapath_caps2, TX_TSO_V3))
|
|
efx->net_dev->features |= NETIF_F_TSO | NETIF_F_TSO6;
|
|
efx->num_mac_stats = MCDI_WORD(outbuf,
|
|
GET_CAPABILITIES_V4_OUT_MAC_STATS_NUM_STATS);
|
|
netif_dbg(efx, probe, efx->net_dev,
|
|
"firmware reports num_mac_stats = %u\n",
|
|
efx->num_mac_stats);
|
|
return 0;
|
|
}
|
|
|
|
/* Event handling
|
|
*/
|
|
static int ef100_ev_probe(struct efx_channel *channel)
|
|
{
|
|
/* Allocate an extra descriptor for the QMDA status completion entry */
|
|
return efx_nic_alloc_buffer(channel->efx, &channel->eventq.buf,
|
|
(channel->eventq_mask + 2) *
|
|
sizeof(efx_qword_t),
|
|
GFP_KERNEL);
|
|
}
|
|
|
|
static int ef100_ev_init(struct efx_channel *channel)
|
|
{
|
|
struct ef100_nic_data *nic_data = channel->efx->nic_data;
|
|
|
|
/* initial phase is 0 */
|
|
clear_bit(channel->channel, nic_data->evq_phases);
|
|
|
|
return efx_mcdi_ev_init(channel, false, false);
|
|
}
|
|
|
|
static void ef100_ev_read_ack(struct efx_channel *channel)
|
|
{
|
|
efx_dword_t evq_prime;
|
|
|
|
EFX_POPULATE_DWORD_2(evq_prime,
|
|
ERF_GZ_EVQ_ID, channel->channel,
|
|
ERF_GZ_IDX, channel->eventq_read_ptr &
|
|
channel->eventq_mask);
|
|
|
|
efx_writed(channel->efx, &evq_prime,
|
|
efx_reg(channel->efx, ER_GZ_EVQ_INT_PRIME));
|
|
}
|
|
|
|
static int ef100_ev_process(struct efx_channel *channel, int quota)
|
|
{
|
|
struct efx_nic *efx = channel->efx;
|
|
struct ef100_nic_data *nic_data;
|
|
bool evq_phase, old_evq_phase;
|
|
unsigned int read_ptr;
|
|
efx_qword_t *p_event;
|
|
int spent = 0;
|
|
bool ev_phase;
|
|
int ev_type;
|
|
|
|
if (unlikely(!channel->enabled))
|
|
return 0;
|
|
|
|
nic_data = efx->nic_data;
|
|
evq_phase = test_bit(channel->channel, nic_data->evq_phases);
|
|
old_evq_phase = evq_phase;
|
|
read_ptr = channel->eventq_read_ptr;
|
|
BUILD_BUG_ON(ESF_GZ_EV_RXPKTS_PHASE_LBN != ESF_GZ_EV_TXCMPL_PHASE_LBN);
|
|
|
|
while (spent < quota) {
|
|
p_event = efx_event(channel, read_ptr);
|
|
|
|
ev_phase = !!EFX_QWORD_FIELD(*p_event, ESF_GZ_EV_RXPKTS_PHASE);
|
|
if (ev_phase != evq_phase)
|
|
break;
|
|
|
|
netif_vdbg(efx, drv, efx->net_dev,
|
|
"processing event on %d " EFX_QWORD_FMT "\n",
|
|
channel->channel, EFX_QWORD_VAL(*p_event));
|
|
|
|
ev_type = EFX_QWORD_FIELD(*p_event, ESF_GZ_E_TYPE);
|
|
|
|
switch (ev_type) {
|
|
case ESE_GZ_EF100_EV_MCDI:
|
|
efx_mcdi_process_event(channel, p_event);
|
|
break;
|
|
case ESE_GZ_EF100_EV_DRIVER:
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Driver initiated event " EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*p_event));
|
|
break;
|
|
default:
|
|
netif_info(efx, drv, efx->net_dev,
|
|
"Unhandled event " EFX_QWORD_FMT "\n",
|
|
EFX_QWORD_VAL(*p_event));
|
|
}
|
|
|
|
++read_ptr;
|
|
if ((read_ptr & channel->eventq_mask) == 0)
|
|
evq_phase = !evq_phase;
|
|
}
|
|
|
|
channel->eventq_read_ptr = read_ptr;
|
|
if (evq_phase != old_evq_phase)
|
|
change_bit(channel->channel, nic_data->evq_phases);
|
|
|
|
return spent;
|
|
}
|
|
|
|
static irqreturn_t ef100_msi_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct efx_msi_context *context = dev_id;
|
|
struct efx_nic *efx = context->efx;
|
|
|
|
netif_vdbg(efx, intr, efx->net_dev,
|
|
"IRQ %d on CPU %d\n", irq, raw_smp_processor_id());
|
|
|
|
if (likely(READ_ONCE(efx->irq_soft_enabled))) {
|
|
/* Note test interrupts */
|
|
if (context->index == efx->irq_level)
|
|
efx->last_irq_cpu = raw_smp_processor_id();
|
|
|
|
/* Schedule processing of the channel */
|
|
efx_schedule_channel_irq(efx->channel[context->index]);
|
|
}
|
|
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int ef100_phy_probe(struct efx_nic *efx)
|
|
{
|
|
struct efx_mcdi_phy_data *phy_data;
|
|
int rc;
|
|
|
|
/* Probe for the PHY */
|
|
efx->phy_data = kzalloc(sizeof(struct efx_mcdi_phy_data), GFP_KERNEL);
|
|
if (!efx->phy_data)
|
|
return -ENOMEM;
|
|
|
|
rc = efx_mcdi_get_phy_cfg(efx, efx->phy_data);
|
|
if (rc)
|
|
return rc;
|
|
|
|
/* Populate driver and ethtool settings */
|
|
phy_data = efx->phy_data;
|
|
mcdi_to_ethtool_linkset(phy_data->media, phy_data->supported_cap,
|
|
efx->link_advertising);
|
|
efx->fec_config = mcdi_fec_caps_to_ethtool(phy_data->supported_cap,
|
|
false);
|
|
|
|
/* Default to Autonegotiated flow control if the PHY supports it */
|
|
efx->wanted_fc = EFX_FC_RX | EFX_FC_TX;
|
|
if (phy_data->supported_cap & (1 << MC_CMD_PHY_CAP_AN_LBN))
|
|
efx->wanted_fc |= EFX_FC_AUTO;
|
|
efx_link_set_wanted_fc(efx, efx->wanted_fc);
|
|
|
|
/* Push settings to the PHY. Failure is not fatal, the user can try to
|
|
* fix it using ethtool.
|
|
*/
|
|
rc = efx_mcdi_port_reconfigure(efx);
|
|
if (rc && rc != -EPERM)
|
|
netif_warn(efx, drv, efx->net_dev,
|
|
"could not initialise PHY settings\n");
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Other
|
|
*/
|
|
static int ef100_reconfigure_mac(struct efx_nic *efx, bool mtu_only)
|
|
{
|
|
WARN_ON(!mutex_is_locked(&efx->mac_lock));
|
|
|
|
efx_mcdi_filter_sync_rx_mode(efx);
|
|
|
|
if (mtu_only && efx_has_cap(efx, SET_MAC_ENHANCED))
|
|
return efx_mcdi_set_mtu(efx);
|
|
return efx_mcdi_set_mac(efx);
|
|
}
|
|
|
|
static enum reset_type ef100_map_reset_reason(enum reset_type reason)
|
|
{
|
|
if (reason == RESET_TYPE_TX_WATCHDOG)
|
|
return reason;
|
|
return RESET_TYPE_DISABLE;
|
|
}
|
|
|
|
static int ef100_map_reset_flags(u32 *flags)
|
|
{
|
|
/* Only perform a RESET_TYPE_ALL because we don't support MC_REBOOTs */
|
|
if ((*flags & EF100_RESET_PORT)) {
|
|
*flags &= ~EF100_RESET_PORT;
|
|
return RESET_TYPE_ALL;
|
|
}
|
|
if (*flags & ETH_RESET_MGMT) {
|
|
*flags &= ~ETH_RESET_MGMT;
|
|
return RESET_TYPE_DISABLE;
|
|
}
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
static int ef100_reset(struct efx_nic *efx, enum reset_type reset_type)
|
|
{
|
|
int rc;
|
|
|
|
dev_close(efx->net_dev);
|
|
|
|
if (reset_type == RESET_TYPE_TX_WATCHDOG) {
|
|
netif_device_attach(efx->net_dev);
|
|
__clear_bit(reset_type, &efx->reset_pending);
|
|
rc = dev_open(efx->net_dev, NULL);
|
|
} else if (reset_type == RESET_TYPE_ALL) {
|
|
rc = efx_mcdi_reset(efx, reset_type);
|
|
if (rc)
|
|
return rc;
|
|
|
|
netif_device_attach(efx->net_dev);
|
|
|
|
rc = dev_open(efx->net_dev, NULL);
|
|
} else {
|
|
rc = 1; /* Leave the device closed */
|
|
}
|
|
return rc;
|
|
}
|
|
|
|
static int efx_ef100_get_phys_port_id(struct efx_nic *efx,
|
|
struct netdev_phys_item_id *ppid)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
if (!is_valid_ether_addr(nic_data->port_id))
|
|
return -EOPNOTSUPP;
|
|
|
|
ppid->id_len = ETH_ALEN;
|
|
memcpy(ppid->id, nic_data->port_id, ppid->id_len);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static unsigned int ef100_check_caps(const struct efx_nic *efx,
|
|
u8 flag, u32 offset)
|
|
{
|
|
const struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
switch (offset) {
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS1_OFST:
|
|
return nic_data->datapath_caps & BIT_ULL(flag);
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS2_OFST:
|
|
return nic_data->datapath_caps2 & BIT_ULL(flag);
|
|
case MC_CMD_GET_CAPABILITIES_V8_OUT_FLAGS3_OFST:
|
|
return nic_data->datapath_caps3 & BIT_ULL(flag);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/* NIC level access functions
|
|
*/
|
|
const struct efx_nic_type ef100_pf_nic_type = {
|
|
.revision = EFX_REV_EF100,
|
|
.is_vf = false,
|
|
.probe = ef100_probe_pf,
|
|
.mcdi_max_ver = 2,
|
|
.mcdi_request = ef100_mcdi_request,
|
|
.mcdi_poll_response = ef100_mcdi_poll_response,
|
|
.mcdi_read_response = ef100_mcdi_read_response,
|
|
.mcdi_poll_reboot = ef100_mcdi_poll_reboot,
|
|
.mcdi_reboot_detected = ef100_mcdi_reboot_detected,
|
|
.irq_enable_master = efx_port_dummy_op_void,
|
|
.irq_disable_non_ev = efx_port_dummy_op_void,
|
|
.push_irq_moderation = efx_channel_dummy_op_void,
|
|
.min_interrupt_mode = EFX_INT_MODE_MSIX,
|
|
.map_reset_reason = ef100_map_reset_reason,
|
|
.map_reset_flags = ef100_map_reset_flags,
|
|
.reset = ef100_reset,
|
|
|
|
.check_caps = ef100_check_caps,
|
|
|
|
.ev_probe = ef100_ev_probe,
|
|
.ev_init = ef100_ev_init,
|
|
.ev_fini = efx_mcdi_ev_fini,
|
|
.ev_remove = efx_mcdi_ev_remove,
|
|
.irq_handle_msi = ef100_msi_interrupt,
|
|
.ev_process = ef100_ev_process,
|
|
.ev_read_ack = ef100_ev_read_ack,
|
|
.tx_probe = ef100_tx_probe,
|
|
.tx_init = ef100_tx_init,
|
|
.tx_write = ef100_tx_write,
|
|
.tx_enqueue = ef100_enqueue_skb,
|
|
.rx_probe = efx_mcdi_rx_probe,
|
|
.rx_init = efx_mcdi_rx_init,
|
|
.rx_remove = efx_mcdi_rx_remove,
|
|
.rx_write = ef100_rx_write,
|
|
.rx_packet = __ef100_rx_packet,
|
|
|
|
.get_phys_port_id = efx_ef100_get_phys_port_id,
|
|
|
|
.reconfigure_mac = ef100_reconfigure_mac,
|
|
|
|
/* Per-type bar/size configuration not used on ef100. Location of
|
|
* registers is defined by extended capabilities.
|
|
*/
|
|
.mem_bar = NULL,
|
|
.mem_map_size = NULL,
|
|
|
|
};
|
|
|
|
/* NIC probe and remove
|
|
*/
|
|
static int ef100_probe_main(struct efx_nic *efx)
|
|
{
|
|
unsigned int bar_size = resource_size(&efx->pci_dev->resource[efx->mem_bar]);
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct ef100_nic_data *nic_data;
|
|
int i, rc;
|
|
|
|
if (WARN_ON(bar_size == 0))
|
|
return -EIO;
|
|
|
|
nic_data = kzalloc(sizeof(*nic_data), GFP_KERNEL);
|
|
if (!nic_data)
|
|
return -ENOMEM;
|
|
efx->nic_data = nic_data;
|
|
nic_data->efx = efx;
|
|
net_dev->features |= efx->type->offload_features;
|
|
net_dev->hw_features |= efx->type->offload_features;
|
|
|
|
/* we assume later that we can copy from this buffer in dwords */
|
|
BUILD_BUG_ON(MCDI_CTL_SDU_LEN_MAX_V2 % 4);
|
|
|
|
/* MCDI buffers must be 256 byte aligned. */
|
|
rc = efx_nic_alloc_buffer(efx, &nic_data->mcdi_buf, MCDI_BUF_LEN,
|
|
GFP_KERNEL);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
/* Get the MC's warm boot count. In case it's rebooting right
|
|
* now, be prepared to retry.
|
|
*/
|
|
i = 0;
|
|
for (;;) {
|
|
rc = ef100_get_warm_boot_count(efx);
|
|
if (rc >= 0)
|
|
break;
|
|
if (++i == 5)
|
|
goto fail;
|
|
ssleep(1);
|
|
}
|
|
nic_data->warm_boot_count = rc;
|
|
|
|
/* In case we're recovering from a crash (kexec), we want to
|
|
* cancel any outstanding request by the previous user of this
|
|
* function. We send a special message using the least
|
|
* significant bits of the 'high' (doorbell) register.
|
|
*/
|
|
_efx_writed(efx, cpu_to_le32(1), efx_reg(efx, ER_GZ_MC_DB_HWRD));
|
|
|
|
/* Post-IO section. */
|
|
|
|
rc = efx_mcdi_init(efx);
|
|
if (!rc && efx->mcdi->fn_flags &
|
|
(1 << MC_CMD_DRV_ATTACH_EXT_OUT_FLAG_NO_ACTIVE_PORT)) {
|
|
netif_info(efx, probe, efx->net_dev,
|
|
"No network port on this PCI function");
|
|
rc = -ENODEV;
|
|
}
|
|
if (rc)
|
|
goto fail;
|
|
/* Reset (most) configuration for this function */
|
|
rc = efx_mcdi_reset(efx, RESET_TYPE_ALL);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = efx_ef100_init_datapath_caps(efx);
|
|
if (rc < 0)
|
|
goto fail;
|
|
|
|
efx->max_vis = EF100_MAX_VIS;
|
|
|
|
rc = efx_mcdi_port_get_number(efx);
|
|
if (rc < 0)
|
|
goto fail;
|
|
efx->port_num = rc;
|
|
|
|
rc = ef100_phy_probe(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = efx_init_channels(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
rc = ef100_register_netdev(efx);
|
|
if (rc)
|
|
goto fail;
|
|
|
|
return 0;
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
int ef100_probe_pf(struct efx_nic *efx)
|
|
{
|
|
struct net_device *net_dev = efx->net_dev;
|
|
struct ef100_nic_data *nic_data;
|
|
int rc = ef100_probe_main(efx);
|
|
|
|
if (rc)
|
|
goto fail;
|
|
|
|
nic_data = efx->nic_data;
|
|
rc = ef100_get_mac_address(efx, net_dev->perm_addr);
|
|
if (rc)
|
|
goto fail;
|
|
/* Assign MAC address */
|
|
memcpy(net_dev->dev_addr, net_dev->perm_addr, ETH_ALEN);
|
|
memcpy(nic_data->port_id, net_dev->perm_addr, ETH_ALEN);
|
|
|
|
return 0;
|
|
|
|
fail:
|
|
return rc;
|
|
}
|
|
|
|
void ef100_remove(struct efx_nic *efx)
|
|
{
|
|
struct ef100_nic_data *nic_data = efx->nic_data;
|
|
|
|
ef100_unregister_netdev(efx);
|
|
efx_fini_channels(efx);
|
|
kfree(efx->phy_data);
|
|
efx->phy_data = NULL;
|
|
efx_mcdi_detach(efx);
|
|
efx_mcdi_fini(efx);
|
|
if (nic_data)
|
|
efx_nic_free_buffer(efx, &nic_data->mcdi_buf);
|
|
kfree(nic_data);
|
|
efx->nic_data = NULL;
|
|
}
|