443 lines
10 KiB
C
443 lines
10 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Copyright IBM Corp. 2006
|
|
* Author(s): Heiko Carstens <heiko.carstens@de.ibm.com>
|
|
*/
|
|
|
|
#include <linux/memblock.h>
|
|
#include <linux/pfn.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/init.h>
|
|
#include <linux/list.h>
|
|
#include <linux/hugetlb.h>
|
|
#include <linux/slab.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/pgalloc.h>
|
|
#include <asm/pgtable.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/sections.h>
|
|
#include <asm/set_memory.h>
|
|
|
|
static DEFINE_MUTEX(vmem_mutex);
|
|
|
|
struct memory_segment {
|
|
struct list_head list;
|
|
unsigned long start;
|
|
unsigned long size;
|
|
};
|
|
|
|
static LIST_HEAD(mem_segs);
|
|
|
|
static void __ref *vmem_alloc_pages(unsigned int order)
|
|
{
|
|
unsigned long size = PAGE_SIZE << order;
|
|
|
|
if (slab_is_available())
|
|
return (void *)__get_free_pages(GFP_KERNEL, order);
|
|
return (void *) memblock_phys_alloc(size, size);
|
|
}
|
|
|
|
void *vmem_crst_alloc(unsigned long val)
|
|
{
|
|
unsigned long *table;
|
|
|
|
table = vmem_alloc_pages(CRST_ALLOC_ORDER);
|
|
if (table)
|
|
crst_table_init(table, val);
|
|
return table;
|
|
}
|
|
|
|
pte_t __ref *vmem_pte_alloc(void)
|
|
{
|
|
unsigned long size = PTRS_PER_PTE * sizeof(pte_t);
|
|
pte_t *pte;
|
|
|
|
if (slab_is_available())
|
|
pte = (pte_t *) page_table_alloc(&init_mm);
|
|
else
|
|
pte = (pte_t *) memblock_phys_alloc(size, size);
|
|
if (!pte)
|
|
return NULL;
|
|
memset64((u64 *)pte, _PAGE_INVALID, PTRS_PER_PTE);
|
|
return pte;
|
|
}
|
|
|
|
/*
|
|
* Add a physical memory range to the 1:1 mapping.
|
|
*/
|
|
static int vmem_add_mem(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long pgt_prot, sgt_prot, r3_prot;
|
|
unsigned long pages4k, pages1m, pages2g;
|
|
unsigned long end = start + size;
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
p4d_t *p4_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
int ret = -ENOMEM;
|
|
|
|
pgt_prot = pgprot_val(PAGE_KERNEL);
|
|
sgt_prot = pgprot_val(SEGMENT_KERNEL);
|
|
r3_prot = pgprot_val(REGION3_KERNEL);
|
|
if (!MACHINE_HAS_NX) {
|
|
pgt_prot &= ~_PAGE_NOEXEC;
|
|
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
|
|
r3_prot &= ~_REGION_ENTRY_NOEXEC;
|
|
}
|
|
pages4k = pages1m = pages2g = 0;
|
|
while (address < end) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
|
|
if (!p4_dir)
|
|
goto out;
|
|
pgd_populate(&init_mm, pg_dir, p4_dir);
|
|
}
|
|
p4_dir = p4d_offset(pg_dir, address);
|
|
if (p4d_none(*p4_dir)) {
|
|
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
|
|
if (!pu_dir)
|
|
goto out;
|
|
p4d_populate(&init_mm, p4_dir, pu_dir);
|
|
}
|
|
pu_dir = pud_offset(p4_dir, address);
|
|
if (MACHINE_HAS_EDAT2 && pud_none(*pu_dir) && address &&
|
|
!(address & ~PUD_MASK) && (address + PUD_SIZE <= end) &&
|
|
!debug_pagealloc_enabled()) {
|
|
pud_val(*pu_dir) = address | r3_prot;
|
|
address += PUD_SIZE;
|
|
pages2g++;
|
|
continue;
|
|
}
|
|
if (pud_none(*pu_dir)) {
|
|
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
|
|
if (!pm_dir)
|
|
goto out;
|
|
pud_populate(&init_mm, pu_dir, pm_dir);
|
|
}
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (MACHINE_HAS_EDAT1 && pmd_none(*pm_dir) && address &&
|
|
!(address & ~PMD_MASK) && (address + PMD_SIZE <= end) &&
|
|
!debug_pagealloc_enabled()) {
|
|
pmd_val(*pm_dir) = address | sgt_prot;
|
|
address += PMD_SIZE;
|
|
pages1m++;
|
|
continue;
|
|
}
|
|
if (pmd_none(*pm_dir)) {
|
|
pt_dir = vmem_pte_alloc();
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate(&init_mm, pm_dir, pt_dir);
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
pte_val(*pt_dir) = address | pgt_prot;
|
|
address += PAGE_SIZE;
|
|
pages4k++;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
update_page_count(PG_DIRECT_MAP_4K, pages4k);
|
|
update_page_count(PG_DIRECT_MAP_1M, pages1m);
|
|
update_page_count(PG_DIRECT_MAP_2G, pages2g);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Remove a physical memory range from the 1:1 mapping.
|
|
* Currently only invalidates page table entries.
|
|
*/
|
|
static void vmem_remove_range(unsigned long start, unsigned long size)
|
|
{
|
|
unsigned long pages4k, pages1m, pages2g;
|
|
unsigned long end = start + size;
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
p4d_t *p4_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
|
|
pages4k = pages1m = pages2g = 0;
|
|
while (address < end) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
address += PGDIR_SIZE;
|
|
continue;
|
|
}
|
|
p4_dir = p4d_offset(pg_dir, address);
|
|
if (p4d_none(*p4_dir)) {
|
|
address += P4D_SIZE;
|
|
continue;
|
|
}
|
|
pu_dir = pud_offset(p4_dir, address);
|
|
if (pud_none(*pu_dir)) {
|
|
address += PUD_SIZE;
|
|
continue;
|
|
}
|
|
if (pud_large(*pu_dir)) {
|
|
pud_clear(pu_dir);
|
|
address += PUD_SIZE;
|
|
pages2g++;
|
|
continue;
|
|
}
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
address += PMD_SIZE;
|
|
continue;
|
|
}
|
|
if (pmd_large(*pm_dir)) {
|
|
pmd_clear(pm_dir);
|
|
address += PMD_SIZE;
|
|
pages1m++;
|
|
continue;
|
|
}
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
pte_clear(&init_mm, address, pt_dir);
|
|
address += PAGE_SIZE;
|
|
pages4k++;
|
|
}
|
|
flush_tlb_kernel_range(start, end);
|
|
update_page_count(PG_DIRECT_MAP_4K, -pages4k);
|
|
update_page_count(PG_DIRECT_MAP_1M, -pages1m);
|
|
update_page_count(PG_DIRECT_MAP_2G, -pages2g);
|
|
}
|
|
|
|
/*
|
|
* Add a backed mem_map array to the virtual mem_map array.
|
|
*/
|
|
int __meminit vmemmap_populate(unsigned long start, unsigned long end, int node,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
unsigned long pgt_prot, sgt_prot;
|
|
unsigned long address = start;
|
|
pgd_t *pg_dir;
|
|
p4d_t *p4_dir;
|
|
pud_t *pu_dir;
|
|
pmd_t *pm_dir;
|
|
pte_t *pt_dir;
|
|
int ret = -ENOMEM;
|
|
|
|
pgt_prot = pgprot_val(PAGE_KERNEL);
|
|
sgt_prot = pgprot_val(SEGMENT_KERNEL);
|
|
if (!MACHINE_HAS_NX) {
|
|
pgt_prot &= ~_PAGE_NOEXEC;
|
|
sgt_prot &= ~_SEGMENT_ENTRY_NOEXEC;
|
|
}
|
|
for (address = start; address < end;) {
|
|
pg_dir = pgd_offset_k(address);
|
|
if (pgd_none(*pg_dir)) {
|
|
p4_dir = vmem_crst_alloc(_REGION2_ENTRY_EMPTY);
|
|
if (!p4_dir)
|
|
goto out;
|
|
pgd_populate(&init_mm, pg_dir, p4_dir);
|
|
}
|
|
|
|
p4_dir = p4d_offset(pg_dir, address);
|
|
if (p4d_none(*p4_dir)) {
|
|
pu_dir = vmem_crst_alloc(_REGION3_ENTRY_EMPTY);
|
|
if (!pu_dir)
|
|
goto out;
|
|
p4d_populate(&init_mm, p4_dir, pu_dir);
|
|
}
|
|
|
|
pu_dir = pud_offset(p4_dir, address);
|
|
if (pud_none(*pu_dir)) {
|
|
pm_dir = vmem_crst_alloc(_SEGMENT_ENTRY_EMPTY);
|
|
if (!pm_dir)
|
|
goto out;
|
|
pud_populate(&init_mm, pu_dir, pm_dir);
|
|
}
|
|
|
|
pm_dir = pmd_offset(pu_dir, address);
|
|
if (pmd_none(*pm_dir)) {
|
|
/* Use 1MB frames for vmemmap if available. We always
|
|
* use large frames even if they are only partially
|
|
* used.
|
|
* Otherwise we would have also page tables since
|
|
* vmemmap_populate gets called for each section
|
|
* separately. */
|
|
if (MACHINE_HAS_EDAT1) {
|
|
void *new_page;
|
|
|
|
new_page = vmemmap_alloc_block(PMD_SIZE, node);
|
|
if (!new_page)
|
|
goto out;
|
|
pmd_val(*pm_dir) = __pa(new_page) | sgt_prot;
|
|
address = (address + PMD_SIZE) & PMD_MASK;
|
|
continue;
|
|
}
|
|
pt_dir = vmem_pte_alloc();
|
|
if (!pt_dir)
|
|
goto out;
|
|
pmd_populate(&init_mm, pm_dir, pt_dir);
|
|
} else if (pmd_large(*pm_dir)) {
|
|
address = (address + PMD_SIZE) & PMD_MASK;
|
|
continue;
|
|
}
|
|
|
|
pt_dir = pte_offset_kernel(pm_dir, address);
|
|
if (pte_none(*pt_dir)) {
|
|
void *new_page;
|
|
|
|
new_page = vmemmap_alloc_block(PAGE_SIZE, node);
|
|
if (!new_page)
|
|
goto out;
|
|
pte_val(*pt_dir) = __pa(new_page) | pgt_prot;
|
|
}
|
|
address += PAGE_SIZE;
|
|
}
|
|
ret = 0;
|
|
out:
|
|
return ret;
|
|
}
|
|
|
|
void vmemmap_free(unsigned long start, unsigned long end,
|
|
struct vmem_altmap *altmap)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Add memory segment to the segment list if it doesn't overlap with
|
|
* an already present segment.
|
|
*/
|
|
static int insert_memory_segment(struct memory_segment *seg)
|
|
{
|
|
struct memory_segment *tmp;
|
|
|
|
if (seg->start + seg->size > VMEM_MAX_PHYS ||
|
|
seg->start + seg->size < seg->start)
|
|
return -ERANGE;
|
|
|
|
list_for_each_entry(tmp, &mem_segs, list) {
|
|
if (seg->start >= tmp->start + tmp->size)
|
|
continue;
|
|
if (seg->start + seg->size <= tmp->start)
|
|
continue;
|
|
return -ENOSPC;
|
|
}
|
|
list_add(&seg->list, &mem_segs);
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Remove memory segment from the segment list.
|
|
*/
|
|
static void remove_memory_segment(struct memory_segment *seg)
|
|
{
|
|
list_del(&seg->list);
|
|
}
|
|
|
|
static void __remove_shared_memory(struct memory_segment *seg)
|
|
{
|
|
remove_memory_segment(seg);
|
|
vmem_remove_range(seg->start, seg->size);
|
|
}
|
|
|
|
int vmem_remove_mapping(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
|
|
ret = -ENOENT;
|
|
list_for_each_entry(seg, &mem_segs, list) {
|
|
if (seg->start == start && seg->size == size)
|
|
break;
|
|
}
|
|
|
|
if (seg->start != start || seg->size != size)
|
|
goto out;
|
|
|
|
ret = 0;
|
|
__remove_shared_memory(seg);
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
int vmem_add_mapping(unsigned long start, unsigned long size)
|
|
{
|
|
struct memory_segment *seg;
|
|
int ret;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
ret = -ENOMEM;
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
goto out;
|
|
seg->start = start;
|
|
seg->size = size;
|
|
|
|
ret = insert_memory_segment(seg);
|
|
if (ret)
|
|
goto out_free;
|
|
|
|
ret = vmem_add_mem(start, size);
|
|
if (ret)
|
|
goto out_remove;
|
|
goto out;
|
|
|
|
out_remove:
|
|
__remove_shared_memory(seg);
|
|
out_free:
|
|
kfree(seg);
|
|
out:
|
|
mutex_unlock(&vmem_mutex);
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* map whole physical memory to virtual memory (identity mapping)
|
|
* we reserve enough space in the vmalloc area for vmemmap to hotplug
|
|
* additional memory segments.
|
|
*/
|
|
void __init vmem_map_init(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
|
|
for_each_memblock(memory, reg)
|
|
vmem_add_mem(reg->base, reg->size);
|
|
__set_memory((unsigned long)_stext,
|
|
(unsigned long)(_etext - _stext) >> PAGE_SHIFT,
|
|
SET_MEMORY_RO | SET_MEMORY_X);
|
|
__set_memory((unsigned long)_etext,
|
|
(unsigned long)(__end_rodata - _etext) >> PAGE_SHIFT,
|
|
SET_MEMORY_RO);
|
|
__set_memory((unsigned long)_sinittext,
|
|
(unsigned long)(_einittext - _sinittext) >> PAGE_SHIFT,
|
|
SET_MEMORY_RO | SET_MEMORY_X);
|
|
pr_info("Write protected kernel read-only data: %luk\n",
|
|
(unsigned long)(__end_rodata - _stext) >> 10);
|
|
}
|
|
|
|
/*
|
|
* Convert memblock.memory to a memory segment list so there is a single
|
|
* list that contains all memory segments.
|
|
*/
|
|
static int __init vmem_convert_memory_chunk(void)
|
|
{
|
|
struct memblock_region *reg;
|
|
struct memory_segment *seg;
|
|
|
|
mutex_lock(&vmem_mutex);
|
|
for_each_memblock(memory, reg) {
|
|
seg = kzalloc(sizeof(*seg), GFP_KERNEL);
|
|
if (!seg)
|
|
panic("Out of memory...\n");
|
|
seg->start = reg->base;
|
|
seg->size = reg->size;
|
|
insert_memory_segment(seg);
|
|
}
|
|
mutex_unlock(&vmem_mutex);
|
|
return 0;
|
|
}
|
|
|
|
core_initcall(vmem_convert_memory_chunk);
|