531 lines
14 KiB
C
531 lines
14 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* AMD Memory Encryption Support
|
|
*
|
|
* Copyright (C) 2016 Advanced Micro Devices, Inc.
|
|
*
|
|
* Author: Tom Lendacky <thomas.lendacky@amd.com>
|
|
*/
|
|
|
|
#define DISABLE_BRANCH_PROFILING
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/init.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/dma-direct.h>
|
|
#include <linux/swiotlb.h>
|
|
#include <linux/mem_encrypt.h>
|
|
#include <linux/device.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/dma-mapping.h>
|
|
#include <linux/virtio_config.h>
|
|
#include <linux/cc_platform.h>
|
|
#include <linux/platform-feature.h>
|
|
|
|
#include <asm/tlbflush.h>
|
|
#include <asm/fixmap.h>
|
|
#include <asm/setup.h>
|
|
#include <asm/bootparam.h>
|
|
#include <asm/set_memory.h>
|
|
#include <asm/cacheflush.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/msr.h>
|
|
#include <asm/cmdline.h>
|
|
#include <asm/sev.h>
|
|
|
|
#include "mm_internal.h"
|
|
|
|
/*
|
|
* Since SME related variables are set early in the boot process they must
|
|
* reside in the .data section so as not to be zeroed out when the .bss
|
|
* section is later cleared.
|
|
*/
|
|
u64 sme_me_mask __section(".data") = 0;
|
|
u64 sev_status __section(".data") = 0;
|
|
u64 sev_check_data __section(".data") = 0;
|
|
EXPORT_SYMBOL(sme_me_mask);
|
|
|
|
/* Buffer used for early in-place encryption by BSP, no locking needed */
|
|
static char sme_early_buffer[PAGE_SIZE] __initdata __aligned(PAGE_SIZE);
|
|
|
|
/*
|
|
* SNP-specific routine which needs to additionally change the page state from
|
|
* private to shared before copying the data from the source to destination and
|
|
* restore after the copy.
|
|
*/
|
|
static inline void __init snp_memcpy(void *dst, void *src, size_t sz,
|
|
unsigned long paddr, bool decrypt)
|
|
{
|
|
unsigned long npages = PAGE_ALIGN(sz) >> PAGE_SHIFT;
|
|
|
|
if (decrypt) {
|
|
/*
|
|
* @paddr needs to be accessed decrypted, mark the page shared in
|
|
* the RMP table before copying it.
|
|
*/
|
|
early_snp_set_memory_shared((unsigned long)__va(paddr), paddr, npages);
|
|
|
|
memcpy(dst, src, sz);
|
|
|
|
/* Restore the page state after the memcpy. */
|
|
early_snp_set_memory_private((unsigned long)__va(paddr), paddr, npages);
|
|
} else {
|
|
/*
|
|
* @paddr need to be accessed encrypted, no need for the page state
|
|
* change.
|
|
*/
|
|
memcpy(dst, src, sz);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This routine does not change the underlying encryption setting of the
|
|
* page(s) that map this memory. It assumes that eventually the memory is
|
|
* meant to be accessed as either encrypted or decrypted but the contents
|
|
* are currently not in the desired state.
|
|
*
|
|
* This routine follows the steps outlined in the AMD64 Architecture
|
|
* Programmer's Manual Volume 2, Section 7.10.8 Encrypt-in-Place.
|
|
*/
|
|
static void __init __sme_early_enc_dec(resource_size_t paddr,
|
|
unsigned long size, bool enc)
|
|
{
|
|
void *src, *dst;
|
|
size_t len;
|
|
|
|
if (!sme_me_mask)
|
|
return;
|
|
|
|
wbinvd();
|
|
|
|
/*
|
|
* There are limited number of early mapping slots, so map (at most)
|
|
* one page at time.
|
|
*/
|
|
while (size) {
|
|
len = min_t(size_t, sizeof(sme_early_buffer), size);
|
|
|
|
/*
|
|
* Create mappings for the current and desired format of
|
|
* the memory. Use a write-protected mapping for the source.
|
|
*/
|
|
src = enc ? early_memremap_decrypted_wp(paddr, len) :
|
|
early_memremap_encrypted_wp(paddr, len);
|
|
|
|
dst = enc ? early_memremap_encrypted(paddr, len) :
|
|
early_memremap_decrypted(paddr, len);
|
|
|
|
/*
|
|
* If a mapping can't be obtained to perform the operation,
|
|
* then eventual access of that area in the desired mode
|
|
* will cause a crash.
|
|
*/
|
|
BUG_ON(!src || !dst);
|
|
|
|
/*
|
|
* Use a temporary buffer, of cache-line multiple size, to
|
|
* avoid data corruption as documented in the APM.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP)) {
|
|
snp_memcpy(sme_early_buffer, src, len, paddr, enc);
|
|
snp_memcpy(dst, sme_early_buffer, len, paddr, !enc);
|
|
} else {
|
|
memcpy(sme_early_buffer, src, len);
|
|
memcpy(dst, sme_early_buffer, len);
|
|
}
|
|
|
|
early_memunmap(dst, len);
|
|
early_memunmap(src, len);
|
|
|
|
paddr += len;
|
|
size -= len;
|
|
}
|
|
}
|
|
|
|
void __init sme_early_encrypt(resource_size_t paddr, unsigned long size)
|
|
{
|
|
__sme_early_enc_dec(paddr, size, true);
|
|
}
|
|
|
|
void __init sme_early_decrypt(resource_size_t paddr, unsigned long size)
|
|
{
|
|
__sme_early_enc_dec(paddr, size, false);
|
|
}
|
|
|
|
static void __init __sme_early_map_unmap_mem(void *vaddr, unsigned long size,
|
|
bool map)
|
|
{
|
|
unsigned long paddr = (unsigned long)vaddr - __PAGE_OFFSET;
|
|
pmdval_t pmd_flags, pmd;
|
|
|
|
/* Use early_pmd_flags but remove the encryption mask */
|
|
pmd_flags = __sme_clr(early_pmd_flags);
|
|
|
|
do {
|
|
pmd = map ? (paddr & PMD_MASK) + pmd_flags : 0;
|
|
__early_make_pgtable((unsigned long)vaddr, pmd);
|
|
|
|
vaddr += PMD_SIZE;
|
|
paddr += PMD_SIZE;
|
|
size = (size <= PMD_SIZE) ? 0 : size - PMD_SIZE;
|
|
} while (size);
|
|
|
|
flush_tlb_local();
|
|
}
|
|
|
|
void __init sme_unmap_bootdata(char *real_mode_data)
|
|
{
|
|
struct boot_params *boot_data;
|
|
unsigned long cmdline_paddr;
|
|
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/* Get the command line address before unmapping the real_mode_data */
|
|
boot_data = (struct boot_params *)real_mode_data;
|
|
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
|
|
|
|
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), false);
|
|
|
|
if (!cmdline_paddr)
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, false);
|
|
}
|
|
|
|
void __init sme_map_bootdata(char *real_mode_data)
|
|
{
|
|
struct boot_params *boot_data;
|
|
unsigned long cmdline_paddr;
|
|
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(real_mode_data, sizeof(boot_params), true);
|
|
|
|
/* Get the command line address after mapping the real_mode_data */
|
|
boot_data = (struct boot_params *)real_mode_data;
|
|
cmdline_paddr = boot_data->hdr.cmd_line_ptr | ((u64)boot_data->ext_cmd_line_ptr << 32);
|
|
|
|
if (!cmdline_paddr)
|
|
return;
|
|
|
|
__sme_early_map_unmap_mem(__va(cmdline_paddr), COMMAND_LINE_SIZE, true);
|
|
}
|
|
|
|
void __init sev_setup_arch(void)
|
|
{
|
|
phys_addr_t total_mem = memblock_phys_mem_size();
|
|
unsigned long size;
|
|
|
|
if (!cc_platform_has(CC_ATTR_GUEST_MEM_ENCRYPT))
|
|
return;
|
|
|
|
/*
|
|
* For SEV, all DMA has to occur via shared/unencrypted pages.
|
|
* SEV uses SWIOTLB to make this happen without changing device
|
|
* drivers. However, depending on the workload being run, the
|
|
* default 64MB of SWIOTLB may not be enough and SWIOTLB may
|
|
* run out of buffers for DMA, resulting in I/O errors and/or
|
|
* performance degradation especially with high I/O workloads.
|
|
*
|
|
* Adjust the default size of SWIOTLB for SEV guests using
|
|
* a percentage of guest memory for SWIOTLB buffers.
|
|
* Also, as the SWIOTLB bounce buffer memory is allocated
|
|
* from low memory, ensure that the adjusted size is within
|
|
* the limits of low available memory.
|
|
*
|
|
* The percentage of guest memory used here for SWIOTLB buffers
|
|
* is more of an approximation of the static adjustment which
|
|
* 64MB for <1G, and ~128M to 256M for 1G-to-4G, i.e., the 6%
|
|
*/
|
|
size = total_mem * 6 / 100;
|
|
size = clamp_val(size, IO_TLB_DEFAULT_SIZE, SZ_1G);
|
|
swiotlb_adjust_size(size);
|
|
|
|
/* Set restricted memory access for virtio. */
|
|
platform_set(PLATFORM_VIRTIO_RESTRICTED_MEM_ACCESS);
|
|
}
|
|
|
|
static unsigned long pg_level_to_pfn(int level, pte_t *kpte, pgprot_t *ret_prot)
|
|
{
|
|
unsigned long pfn = 0;
|
|
pgprot_t prot;
|
|
|
|
switch (level) {
|
|
case PG_LEVEL_4K:
|
|
pfn = pte_pfn(*kpte);
|
|
prot = pte_pgprot(*kpte);
|
|
break;
|
|
case PG_LEVEL_2M:
|
|
pfn = pmd_pfn(*(pmd_t *)kpte);
|
|
prot = pmd_pgprot(*(pmd_t *)kpte);
|
|
break;
|
|
case PG_LEVEL_1G:
|
|
pfn = pud_pfn(*(pud_t *)kpte);
|
|
prot = pud_pgprot(*(pud_t *)kpte);
|
|
break;
|
|
default:
|
|
WARN_ONCE(1, "Invalid level for kpte\n");
|
|
return 0;
|
|
}
|
|
|
|
if (ret_prot)
|
|
*ret_prot = prot;
|
|
|
|
return pfn;
|
|
}
|
|
|
|
static bool amd_enc_tlb_flush_required(bool enc)
|
|
{
|
|
return true;
|
|
}
|
|
|
|
static bool amd_enc_cache_flush_required(void)
|
|
{
|
|
return !cpu_feature_enabled(X86_FEATURE_SME_COHERENT);
|
|
}
|
|
|
|
static void enc_dec_hypercall(unsigned long vaddr, int npages, bool enc)
|
|
{
|
|
#ifdef CONFIG_PARAVIRT
|
|
unsigned long sz = npages << PAGE_SHIFT;
|
|
unsigned long vaddr_end = vaddr + sz;
|
|
|
|
while (vaddr < vaddr_end) {
|
|
int psize, pmask, level;
|
|
unsigned long pfn;
|
|
pte_t *kpte;
|
|
|
|
kpte = lookup_address(vaddr, &level);
|
|
if (!kpte || pte_none(*kpte)) {
|
|
WARN_ONCE(1, "kpte lookup for vaddr\n");
|
|
return;
|
|
}
|
|
|
|
pfn = pg_level_to_pfn(level, kpte, NULL);
|
|
if (!pfn)
|
|
continue;
|
|
|
|
psize = page_level_size(level);
|
|
pmask = page_level_mask(level);
|
|
|
|
notify_page_enc_status_changed(pfn, psize >> PAGE_SHIFT, enc);
|
|
|
|
vaddr = (vaddr & pmask) + psize;
|
|
}
|
|
#endif
|
|
}
|
|
|
|
static void amd_enc_status_change_prepare(unsigned long vaddr, int npages, bool enc)
|
|
{
|
|
/*
|
|
* To maintain the security guarantees of SEV-SNP guests, make sure
|
|
* to invalidate the memory before encryption attribute is cleared.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && !enc)
|
|
snp_set_memory_shared(vaddr, npages);
|
|
}
|
|
|
|
/* Return true unconditionally: return value doesn't matter for the SEV side */
|
|
static bool amd_enc_status_change_finish(unsigned long vaddr, int npages, bool enc)
|
|
{
|
|
/*
|
|
* After memory is mapped encrypted in the page table, validate it
|
|
* so that it is consistent with the page table updates.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_GUEST_SEV_SNP) && enc)
|
|
snp_set_memory_private(vaddr, npages);
|
|
|
|
if (!cc_platform_has(CC_ATTR_HOST_MEM_ENCRYPT))
|
|
enc_dec_hypercall(vaddr, npages, enc);
|
|
|
|
return true;
|
|
}
|
|
|
|
static void __init __set_clr_pte_enc(pte_t *kpte, int level, bool enc)
|
|
{
|
|
pgprot_t old_prot, new_prot;
|
|
unsigned long pfn, pa, size;
|
|
pte_t new_pte;
|
|
|
|
pfn = pg_level_to_pfn(level, kpte, &old_prot);
|
|
if (!pfn)
|
|
return;
|
|
|
|
new_prot = old_prot;
|
|
if (enc)
|
|
pgprot_val(new_prot) |= _PAGE_ENC;
|
|
else
|
|
pgprot_val(new_prot) &= ~_PAGE_ENC;
|
|
|
|
/* If prot is same then do nothing. */
|
|
if (pgprot_val(old_prot) == pgprot_val(new_prot))
|
|
return;
|
|
|
|
pa = pfn << PAGE_SHIFT;
|
|
size = page_level_size(level);
|
|
|
|
/*
|
|
* We are going to perform in-place en-/decryption and change the
|
|
* physical page attribute from C=1 to C=0 or vice versa. Flush the
|
|
* caches to ensure that data gets accessed with the correct C-bit.
|
|
*/
|
|
clflush_cache_range(__va(pa), size);
|
|
|
|
/* Encrypt/decrypt the contents in-place */
|
|
if (enc) {
|
|
sme_early_encrypt(pa, size);
|
|
} else {
|
|
sme_early_decrypt(pa, size);
|
|
|
|
/*
|
|
* ON SNP, the page state in the RMP table must happen
|
|
* before the page table updates.
|
|
*/
|
|
early_snp_set_memory_shared((unsigned long)__va(pa), pa, 1);
|
|
}
|
|
|
|
/* Change the page encryption mask. */
|
|
new_pte = pfn_pte(pfn, new_prot);
|
|
set_pte_atomic(kpte, new_pte);
|
|
|
|
/*
|
|
* If page is set encrypted in the page table, then update the RMP table to
|
|
* add this page as private.
|
|
*/
|
|
if (enc)
|
|
early_snp_set_memory_private((unsigned long)__va(pa), pa, 1);
|
|
}
|
|
|
|
static int __init early_set_memory_enc_dec(unsigned long vaddr,
|
|
unsigned long size, bool enc)
|
|
{
|
|
unsigned long vaddr_end, vaddr_next, start;
|
|
unsigned long psize, pmask;
|
|
int split_page_size_mask;
|
|
int level, ret;
|
|
pte_t *kpte;
|
|
|
|
start = vaddr;
|
|
vaddr_next = vaddr;
|
|
vaddr_end = vaddr + size;
|
|
|
|
for (; vaddr < vaddr_end; vaddr = vaddr_next) {
|
|
kpte = lookup_address(vaddr, &level);
|
|
if (!kpte || pte_none(*kpte)) {
|
|
ret = 1;
|
|
goto out;
|
|
}
|
|
|
|
if (level == PG_LEVEL_4K) {
|
|
__set_clr_pte_enc(kpte, level, enc);
|
|
vaddr_next = (vaddr & PAGE_MASK) + PAGE_SIZE;
|
|
continue;
|
|
}
|
|
|
|
psize = page_level_size(level);
|
|
pmask = page_level_mask(level);
|
|
|
|
/*
|
|
* Check whether we can change the large page in one go.
|
|
* We request a split when the address is not aligned and
|
|
* the number of pages to set/clear encryption bit is smaller
|
|
* than the number of pages in the large page.
|
|
*/
|
|
if (vaddr == (vaddr & pmask) &&
|
|
((vaddr_end - vaddr) >= psize)) {
|
|
__set_clr_pte_enc(kpte, level, enc);
|
|
vaddr_next = (vaddr & pmask) + psize;
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* The virtual address is part of a larger page, create the next
|
|
* level page table mapping (4K or 2M). If it is part of a 2M
|
|
* page then we request a split of the large page into 4K
|
|
* chunks. A 1GB large page is split into 2M pages, resp.
|
|
*/
|
|
if (level == PG_LEVEL_2M)
|
|
split_page_size_mask = 0;
|
|
else
|
|
split_page_size_mask = 1 << PG_LEVEL_2M;
|
|
|
|
/*
|
|
* kernel_physical_mapping_change() does not flush the TLBs, so
|
|
* a TLB flush is required after we exit from the for loop.
|
|
*/
|
|
kernel_physical_mapping_change(__pa(vaddr & pmask),
|
|
__pa((vaddr_end & pmask) + psize),
|
|
split_page_size_mask);
|
|
}
|
|
|
|
ret = 0;
|
|
|
|
early_set_mem_enc_dec_hypercall(start, PAGE_ALIGN(size) >> PAGE_SHIFT, enc);
|
|
out:
|
|
__flush_tlb_all();
|
|
return ret;
|
|
}
|
|
|
|
int __init early_set_memory_decrypted(unsigned long vaddr, unsigned long size)
|
|
{
|
|
return early_set_memory_enc_dec(vaddr, size, false);
|
|
}
|
|
|
|
int __init early_set_memory_encrypted(unsigned long vaddr, unsigned long size)
|
|
{
|
|
return early_set_memory_enc_dec(vaddr, size, true);
|
|
}
|
|
|
|
void __init early_set_mem_enc_dec_hypercall(unsigned long vaddr, int npages, bool enc)
|
|
{
|
|
enc_dec_hypercall(vaddr, npages, enc);
|
|
}
|
|
|
|
void __init sme_early_init(void)
|
|
{
|
|
unsigned int i;
|
|
|
|
if (!sme_me_mask)
|
|
return;
|
|
|
|
early_pmd_flags = __sme_set(early_pmd_flags);
|
|
|
|
__supported_pte_mask = __sme_set(__supported_pte_mask);
|
|
|
|
/* Update the protection map with memory encryption mask */
|
|
for (i = 0; i < ARRAY_SIZE(protection_map); i++)
|
|
protection_map[i] = pgprot_encrypted(protection_map[i]);
|
|
|
|
x86_platform.guest.enc_status_change_prepare = amd_enc_status_change_prepare;
|
|
x86_platform.guest.enc_status_change_finish = amd_enc_status_change_finish;
|
|
x86_platform.guest.enc_tlb_flush_required = amd_enc_tlb_flush_required;
|
|
x86_platform.guest.enc_cache_flush_required = amd_enc_cache_flush_required;
|
|
}
|
|
|
|
void __init mem_encrypt_free_decrypted_mem(void)
|
|
{
|
|
unsigned long vaddr, vaddr_end, npages;
|
|
int r;
|
|
|
|
vaddr = (unsigned long)__start_bss_decrypted_unused;
|
|
vaddr_end = (unsigned long)__end_bss_decrypted;
|
|
npages = (vaddr_end - vaddr) >> PAGE_SHIFT;
|
|
|
|
/*
|
|
* The unused memory range was mapped decrypted, change the encryption
|
|
* attribute from decrypted to encrypted before freeing it.
|
|
*/
|
|
if (cc_platform_has(CC_ATTR_MEM_ENCRYPT)) {
|
|
r = set_memory_encrypted(vaddr, npages);
|
|
if (r) {
|
|
pr_warn("failed to free unused decrypted pages\n");
|
|
return;
|
|
}
|
|
}
|
|
|
|
free_init_pages("unused decrypted", vaddr, vaddr_end);
|
|
}
|