OpenCloudOS-Kernel/arch/x86/kvm/vmx/vmx.h

754 lines
23 KiB
C

/* SPDX-License-Identifier: GPL-2.0 */
#ifndef __KVM_X86_VMX_H
#define __KVM_X86_VMX_H
#include <linux/kvm_host.h>
#include <asm/kvm.h>
#include <asm/intel_pt.h>
#include <asm/perf_event.h>
#include "capabilities.h"
#include "../kvm_cache_regs.h"
#include "posted_intr.h"
#include "vmcs.h"
#include "vmx_ops.h"
#include "../cpuid.h"
#include "run_flags.h"
#define MSR_TYPE_R 1
#define MSR_TYPE_W 2
#define MSR_TYPE_RW 3
#define X2APIC_MSR(r) (APIC_BASE_MSR + ((r) >> 4))
#ifdef CONFIG_X86_64
#define MAX_NR_USER_RETURN_MSRS 7
#else
#define MAX_NR_USER_RETURN_MSRS 4
#endif
#define MAX_NR_LOADSTORE_MSRS 8
struct vmx_msrs {
unsigned int nr;
struct vmx_msr_entry val[MAX_NR_LOADSTORE_MSRS];
};
struct vmx_uret_msr {
bool load_into_hardware;
u64 data;
u64 mask;
};
enum segment_cache_field {
SEG_FIELD_SEL = 0,
SEG_FIELD_BASE = 1,
SEG_FIELD_LIMIT = 2,
SEG_FIELD_AR = 3,
SEG_FIELD_NR = 4
};
#define RTIT_ADDR_RANGE 4
struct pt_ctx {
u64 ctl;
u64 status;
u64 output_base;
u64 output_mask;
u64 cr3_match;
u64 addr_a[RTIT_ADDR_RANGE];
u64 addr_b[RTIT_ADDR_RANGE];
};
struct pt_desc {
u64 ctl_bitmask;
u32 num_address_ranges;
u32 caps[PT_CPUID_REGS_NUM * PT_CPUID_LEAVES];
struct pt_ctx host;
struct pt_ctx guest;
};
union vmx_exit_reason {
struct {
u32 basic : 16;
u32 reserved16 : 1;
u32 reserved17 : 1;
u32 reserved18 : 1;
u32 reserved19 : 1;
u32 reserved20 : 1;
u32 reserved21 : 1;
u32 reserved22 : 1;
u32 reserved23 : 1;
u32 reserved24 : 1;
u32 reserved25 : 1;
u32 bus_lock_detected : 1;
u32 enclave_mode : 1;
u32 smi_pending_mtf : 1;
u32 smi_from_vmx_root : 1;
u32 reserved30 : 1;
u32 failed_vmentry : 1;
};
u32 full;
};
static inline bool intel_pmu_has_perf_global_ctrl(struct kvm_pmu *pmu)
{
/*
* Architecturally, Intel's SDM states that IA32_PERF_GLOBAL_CTRL is
* supported if "CPUID.0AH: EAX[7:0] > 0", i.e. if the PMU version is
* greater than zero. However, KVM only exposes and emulates the MSR
* to/for the guest if the guest PMU supports at least "Architectural
* Performance Monitoring Version 2".
*/
return pmu->version > 1;
}
struct lbr_desc {
/* Basic info about guest LBR records. */
struct x86_pmu_lbr records;
/*
* Emulate LBR feature via passthrough LBR registers when the
* per-vcpu guest LBR event is scheduled on the current pcpu.
*
* The records may be inaccurate if the host reclaims the LBR.
*/
struct perf_event *event;
/* True if LBRs are marked as not intercepted in the MSR bitmap */
bool msr_passthrough;
};
/*
* The nested_vmx structure is part of vcpu_vmx, and holds information we need
* for correct emulation of VMX (i.e., nested VMX) on this vcpu.
*/
struct nested_vmx {
/* Has the level1 guest done vmxon? */
bool vmxon;
gpa_t vmxon_ptr;
bool pml_full;
/* The guest-physical address of the current VMCS L1 keeps for L2 */
gpa_t current_vmptr;
/*
* Cache of the guest's VMCS, existing outside of guest memory.
* Loaded from guest memory during VMPTRLD. Flushed to guest
* memory during VMCLEAR and VMPTRLD.
*/
struct vmcs12 *cached_vmcs12;
/*
* Cache of the guest's shadow VMCS, existing outside of guest
* memory. Loaded from guest memory during VM entry. Flushed
* to guest memory during VM exit.
*/
struct vmcs12 *cached_shadow_vmcs12;
/*
* GPA to HVA cache for accessing vmcs12->vmcs_link_pointer
*/
struct gfn_to_hva_cache shadow_vmcs12_cache;
/*
* GPA to HVA cache for VMCS12
*/
struct gfn_to_hva_cache vmcs12_cache;
/*
* Indicates if the shadow vmcs or enlightened vmcs must be updated
* with the data held by struct vmcs12.
*/
bool need_vmcs12_to_shadow_sync;
bool dirty_vmcs12;
/*
* Indicates whether MSR bitmap for L2 needs to be rebuilt due to
* changes in MSR bitmap for L1 or switching to a different L2. Note,
* this flag can only be used reliably in conjunction with a paravirt L1
* which informs L0 whether any changes to MSR bitmap for L2 were done
* on its side.
*/
bool force_msr_bitmap_recalc;
/*
* Indicates lazily loaded guest state has not yet been decached from
* vmcs02.
*/
bool need_sync_vmcs02_to_vmcs12_rare;
/*
* vmcs02 has been initialized, i.e. state that is constant for
* vmcs02 has been written to the backing VMCS. Initialization
* is delayed until L1 actually attempts to run a nested VM.
*/
bool vmcs02_initialized;
bool change_vmcs01_virtual_apic_mode;
bool reload_vmcs01_apic_access_page;
bool update_vmcs01_cpu_dirty_logging;
bool update_vmcs01_apicv_status;
/*
* Enlightened VMCS has been enabled. It does not mean that L1 has to
* use it. However, VMX features available to L1 will be limited based
* on what the enlightened VMCS supports.
*/
bool enlightened_vmcs_enabled;
/* L2 must run next, and mustn't decide to exit to L1. */
bool nested_run_pending;
/* Pending MTF VM-exit into L1. */
bool mtf_pending;
struct loaded_vmcs vmcs02;
/*
* Guest pages referred to in the vmcs02 with host-physical
* pointers, so we must keep them pinned while L2 runs.
*/
struct kvm_host_map apic_access_page_map;
struct kvm_host_map virtual_apic_map;
struct kvm_host_map pi_desc_map;
struct kvm_host_map msr_bitmap_map;
struct pi_desc *pi_desc;
bool pi_pending;
u16 posted_intr_nv;
struct hrtimer preemption_timer;
u64 preemption_timer_deadline;
bool has_preemption_timer_deadline;
bool preemption_timer_expired;
/*
* Used to snapshot MSRs that are conditionally loaded on VM-Enter in
* order to propagate the guest's pre-VM-Enter value into vmcs02. For
* emulation of VMLAUNCH/VMRESUME, the snapshot will be of L1's value.
* For KVM_SET_NESTED_STATE, the snapshot is of L2's value, _if_
* userspace restores MSRs before nested state. If userspace restores
* MSRs after nested state, the snapshot holds garbage, but KVM can't
* detect that, and the garbage value in vmcs02 will be overwritten by
* MSR restoration in any case.
*/
u64 pre_vmenter_debugctl;
u64 pre_vmenter_bndcfgs;
/* to migrate it to L1 if L2 writes to L1's CR8 directly */
int l1_tpr_threshold;
u16 vpid02;
u16 last_vpid;
struct nested_vmx_msrs msrs;
/* SMM related state */
struct {
/* in VMX operation on SMM entry? */
bool vmxon;
/* in guest mode on SMM entry? */
bool guest_mode;
} smm;
gpa_t hv_evmcs_vmptr;
struct kvm_host_map hv_evmcs_map;
struct hv_enlightened_vmcs *hv_evmcs;
};
struct vcpu_vmx {
struct kvm_vcpu vcpu;
u8 fail;
u8 x2apic_msr_bitmap_mode;
/*
* If true, host state has been stored in vmx->loaded_vmcs for
* the CPU registers that only need to be switched when transitioning
* to/from the kernel, and the registers have been loaded with guest
* values. If false, host state is loaded in the CPU registers
* and vmx->loaded_vmcs->host_state is invalid.
*/
bool guest_state_loaded;
unsigned long exit_qualification;
u32 exit_intr_info;
u32 idt_vectoring_info;
ulong rflags;
/*
* User return MSRs are always emulated when enabled in the guest, but
* only loaded into hardware when necessary, e.g. SYSCALL #UDs outside
* of 64-bit mode or if EFER.SCE=1, thus the SYSCALL MSRs don't need to
* be loaded into hardware if those conditions aren't met.
*/
struct vmx_uret_msr guest_uret_msrs[MAX_NR_USER_RETURN_MSRS];
bool guest_uret_msrs_loaded;
#ifdef CONFIG_X86_64
u64 msr_host_kernel_gs_base;
u64 msr_guest_kernel_gs_base;
#endif
u64 spec_ctrl;
u32 msr_ia32_umwait_control;
/*
* loaded_vmcs points to the VMCS currently used in this vcpu. For a
* non-nested (L1) guest, it always points to vmcs01. For a nested
* guest (L2), it points to a different VMCS.
*/
struct loaded_vmcs vmcs01;
struct loaded_vmcs *loaded_vmcs;
struct msr_autoload {
struct vmx_msrs guest;
struct vmx_msrs host;
} msr_autoload;
struct msr_autostore {
struct vmx_msrs guest;
} msr_autostore;
struct {
int vm86_active;
ulong save_rflags;
struct kvm_segment segs[8];
} rmode;
struct {
u32 bitmask; /* 4 bits per segment (1 bit per field) */
struct kvm_save_segment {
u16 selector;
unsigned long base;
u32 limit;
u32 ar;
} seg[8];
} segment_cache;
int vpid;
bool emulation_required;
union vmx_exit_reason exit_reason;
/* Posted interrupt descriptor */
struct pi_desc pi_desc;
/* Used if this vCPU is waiting for PI notification wakeup. */
struct list_head pi_wakeup_list;
/* Support for a guest hypervisor (nested VMX) */
struct nested_vmx nested;
/* Dynamic PLE window. */
unsigned int ple_window;
bool ple_window_dirty;
bool req_immediate_exit;
/* Support for PML */
#define PML_ENTITY_NUM 512
struct page *pml_pg;
/* apic deadline value in host tsc */
u64 hv_deadline_tsc;
unsigned long host_debugctlmsr;
/*
* Only bits masked by msr_ia32_feature_control_valid_bits can be set in
* msr_ia32_feature_control. FEAT_CTL_LOCKED is always included
* in msr_ia32_feature_control_valid_bits.
*/
u64 msr_ia32_feature_control;
u64 msr_ia32_feature_control_valid_bits;
/* SGX Launch Control public key hash */
u64 msr_ia32_sgxlepubkeyhash[4];
u64 msr_ia32_mcu_opt_ctrl;
bool disable_fb_clear;
struct pt_desc pt_desc;
struct lbr_desc lbr_desc;
/* Save desired MSR intercept (read: pass-through) state */
#define MAX_POSSIBLE_PASSTHROUGH_MSRS 15
struct {
DECLARE_BITMAP(read, MAX_POSSIBLE_PASSTHROUGH_MSRS);
DECLARE_BITMAP(write, MAX_POSSIBLE_PASSTHROUGH_MSRS);
} shadow_msr_intercept;
};
struct kvm_vmx {
struct kvm kvm;
unsigned int tss_addr;
bool ept_identity_pagetable_done;
gpa_t ept_identity_map_addr;
/* Posted Interrupt Descriptor (PID) table for IPI virtualization */
u64 *pid_table;
};
bool nested_vmx_allowed(struct kvm_vcpu *vcpu);
void vmx_vcpu_load_vmcs(struct kvm_vcpu *vcpu, int cpu,
struct loaded_vmcs *buddy);
int allocate_vpid(void);
void free_vpid(int vpid);
void vmx_set_constant_host_state(struct vcpu_vmx *vmx);
void vmx_prepare_switch_to_guest(struct kvm_vcpu *vcpu);
void vmx_set_host_fs_gs(struct vmcs_host_state *host, u16 fs_sel, u16 gs_sel,
unsigned long fs_base, unsigned long gs_base);
int vmx_get_cpl(struct kvm_vcpu *vcpu);
bool vmx_emulation_required(struct kvm_vcpu *vcpu);
unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu);
void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags);
u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu);
void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask);
int vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer);
void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0);
void vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
void set_cr4_guest_host_mask(struct vcpu_vmx *vmx);
void ept_save_pdptrs(struct kvm_vcpu *vcpu);
void vmx_get_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
void __vmx_set_segment(struct kvm_vcpu *vcpu, struct kvm_segment *var, int seg);
u64 construct_eptp(struct kvm_vcpu *vcpu, hpa_t root_hpa, int root_level);
bool vmx_guest_inject_ac(struct kvm_vcpu *vcpu);
void vmx_update_exception_bitmap(struct kvm_vcpu *vcpu);
bool vmx_nmi_blocked(struct kvm_vcpu *vcpu);
bool vmx_interrupt_blocked(struct kvm_vcpu *vcpu);
bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu);
void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked);
void vmx_set_virtual_apic_mode(struct kvm_vcpu *vcpu);
struct vmx_uret_msr *vmx_find_uret_msr(struct vcpu_vmx *vmx, u32 msr);
void pt_update_intercept_for_msr(struct kvm_vcpu *vcpu);
void vmx_update_host_rsp(struct vcpu_vmx *vmx, unsigned long host_rsp);
void vmx_spec_ctrl_restore_host(struct vcpu_vmx *vmx, unsigned int flags);
unsigned int __vmx_vcpu_run_flags(struct vcpu_vmx *vmx);
bool __vmx_vcpu_run(struct vcpu_vmx *vmx, unsigned long *regs,
unsigned int flags);
int vmx_find_loadstore_msr_slot(struct vmx_msrs *m, u32 msr);
void vmx_ept_load_pdptrs(struct kvm_vcpu *vcpu);
void vmx_disable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
void vmx_enable_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr, int type);
u64 vmx_get_l2_tsc_offset(struct kvm_vcpu *vcpu);
u64 vmx_get_l2_tsc_multiplier(struct kvm_vcpu *vcpu);
static inline void vmx_set_intercept_for_msr(struct kvm_vcpu *vcpu, u32 msr,
int type, bool value)
{
if (value)
vmx_enable_intercept_for_msr(vcpu, msr, type);
else
vmx_disable_intercept_for_msr(vcpu, msr, type);
}
void vmx_update_cpu_dirty_logging(struct kvm_vcpu *vcpu);
/*
* Note, early Intel manuals have the write-low and read-high bitmap offsets
* the wrong way round. The bitmaps control MSRs 0x00000000-0x00001fff and
* 0xc0000000-0xc0001fff. The former (low) uses bytes 0-0x3ff for reads and
* 0x800-0xbff for writes. The latter (high) uses 0x400-0x7ff for reads and
* 0xc00-0xfff for writes. MSRs not covered by either of the ranges always
* VM-Exit.
*/
#define __BUILD_VMX_MSR_BITMAP_HELPER(rtype, action, bitop, access, base) \
static inline rtype vmx_##action##_msr_bitmap_##access(unsigned long *bitmap, \
u32 msr) \
{ \
int f = sizeof(unsigned long); \
\
if (msr <= 0x1fff) \
return bitop##_bit(msr, bitmap + base / f); \
else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) \
return bitop##_bit(msr & 0x1fff, bitmap + (base + 0x400) / f); \
return (rtype)true; \
}
#define BUILD_VMX_MSR_BITMAP_HELPERS(ret_type, action, bitop) \
__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, read, 0x0) \
__BUILD_VMX_MSR_BITMAP_HELPER(ret_type, action, bitop, write, 0x800)
BUILD_VMX_MSR_BITMAP_HELPERS(bool, test, test)
BUILD_VMX_MSR_BITMAP_HELPERS(void, clear, __clear)
BUILD_VMX_MSR_BITMAP_HELPERS(void, set, __set)
static inline u8 vmx_get_rvi(void)
{
return vmcs_read16(GUEST_INTR_STATUS) & 0xff;
}
#define __KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
(VM_ENTRY_LOAD_DEBUG_CONTROLS)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
(__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS | \
VM_ENTRY_IA32E_MODE)
#else
#define KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS \
__KVM_REQUIRED_VMX_VM_ENTRY_CONTROLS
#endif
#define KVM_OPTIONAL_VMX_VM_ENTRY_CONTROLS \
(VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL | \
VM_ENTRY_LOAD_IA32_PAT | \
VM_ENTRY_LOAD_IA32_EFER | \
VM_ENTRY_LOAD_BNDCFGS | \
VM_ENTRY_PT_CONCEAL_PIP | \
VM_ENTRY_LOAD_IA32_RTIT_CTL)
#define __KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
(VM_EXIT_SAVE_DEBUG_CONTROLS | \
VM_EXIT_ACK_INTR_ON_EXIT)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
(__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS | \
VM_EXIT_HOST_ADDR_SPACE_SIZE)
#else
#define KVM_REQUIRED_VMX_VM_EXIT_CONTROLS \
__KVM_REQUIRED_VMX_VM_EXIT_CONTROLS
#endif
#define KVM_OPTIONAL_VMX_VM_EXIT_CONTROLS \
(VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL | \
VM_EXIT_SAVE_IA32_PAT | \
VM_EXIT_LOAD_IA32_PAT | \
VM_EXIT_SAVE_IA32_EFER | \
VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | \
VM_EXIT_LOAD_IA32_EFER | \
VM_EXIT_CLEAR_BNDCFGS | \
VM_EXIT_PT_CONCEAL_PIP | \
VM_EXIT_CLEAR_IA32_RTIT_CTL)
#define KVM_REQUIRED_VMX_PIN_BASED_VM_EXEC_CONTROL \
(PIN_BASED_EXT_INTR_MASK | \
PIN_BASED_NMI_EXITING)
#define KVM_OPTIONAL_VMX_PIN_BASED_VM_EXEC_CONTROL \
(PIN_BASED_VIRTUAL_NMIS | \
PIN_BASED_POSTED_INTR | \
PIN_BASED_VMX_PREEMPTION_TIMER)
#define __KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
(CPU_BASED_HLT_EXITING | \
CPU_BASED_CR3_LOAD_EXITING | \
CPU_BASED_CR3_STORE_EXITING | \
CPU_BASED_UNCOND_IO_EXITING | \
CPU_BASED_MOV_DR_EXITING | \
CPU_BASED_USE_TSC_OFFSETTING | \
CPU_BASED_MWAIT_EXITING | \
CPU_BASED_MONITOR_EXITING | \
CPU_BASED_INVLPG_EXITING | \
CPU_BASED_RDPMC_EXITING | \
CPU_BASED_INTR_WINDOW_EXITING)
#ifdef CONFIG_X86_64
#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
(__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL | \
CPU_BASED_CR8_LOAD_EXITING | \
CPU_BASED_CR8_STORE_EXITING)
#else
#define KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL \
__KVM_REQUIRED_VMX_CPU_BASED_VM_EXEC_CONTROL
#endif
#define KVM_OPTIONAL_VMX_CPU_BASED_VM_EXEC_CONTROL \
(CPU_BASED_RDTSC_EXITING | \
CPU_BASED_TPR_SHADOW | \
CPU_BASED_USE_IO_BITMAPS | \
CPU_BASED_MONITOR_TRAP_FLAG | \
CPU_BASED_USE_MSR_BITMAPS | \
CPU_BASED_NMI_WINDOW_EXITING | \
CPU_BASED_PAUSE_EXITING | \
CPU_BASED_ACTIVATE_SECONDARY_CONTROLS | \
CPU_BASED_ACTIVATE_TERTIARY_CONTROLS)
#define KVM_REQUIRED_VMX_SECONDARY_VM_EXEC_CONTROL 0
#define KVM_OPTIONAL_VMX_SECONDARY_VM_EXEC_CONTROL \
(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES | \
SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE | \
SECONDARY_EXEC_WBINVD_EXITING | \
SECONDARY_EXEC_ENABLE_VPID | \
SECONDARY_EXEC_ENABLE_EPT | \
SECONDARY_EXEC_UNRESTRICTED_GUEST | \
SECONDARY_EXEC_PAUSE_LOOP_EXITING | \
SECONDARY_EXEC_DESC | \
SECONDARY_EXEC_ENABLE_RDTSCP | \
SECONDARY_EXEC_ENABLE_INVPCID | \
SECONDARY_EXEC_APIC_REGISTER_VIRT | \
SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY | \
SECONDARY_EXEC_SHADOW_VMCS | \
SECONDARY_EXEC_XSAVES | \
SECONDARY_EXEC_RDSEED_EXITING | \
SECONDARY_EXEC_RDRAND_EXITING | \
SECONDARY_EXEC_ENABLE_PML | \
SECONDARY_EXEC_TSC_SCALING | \
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE | \
SECONDARY_EXEC_PT_USE_GPA | \
SECONDARY_EXEC_PT_CONCEAL_VMX | \
SECONDARY_EXEC_ENABLE_VMFUNC | \
SECONDARY_EXEC_BUS_LOCK_DETECTION | \
SECONDARY_EXEC_NOTIFY_VM_EXITING | \
SECONDARY_EXEC_ENCLS_EXITING)
#define KVM_REQUIRED_VMX_TERTIARY_VM_EXEC_CONTROL 0
#define KVM_OPTIONAL_VMX_TERTIARY_VM_EXEC_CONTROL \
(TERTIARY_EXEC_IPI_VIRT)
#define BUILD_CONTROLS_SHADOW(lname, uname, bits) \
static inline void lname##_controls_set(struct vcpu_vmx *vmx, u##bits val) \
{ \
if (vmx->loaded_vmcs->controls_shadow.lname != val) { \
vmcs_write##bits(uname, val); \
vmx->loaded_vmcs->controls_shadow.lname = val; \
} \
} \
static inline u##bits __##lname##_controls_get(struct loaded_vmcs *vmcs) \
{ \
return vmcs->controls_shadow.lname; \
} \
static inline u##bits lname##_controls_get(struct vcpu_vmx *vmx) \
{ \
return __##lname##_controls_get(vmx->loaded_vmcs); \
} \
static __always_inline void lname##_controls_setbit(struct vcpu_vmx *vmx, u##bits val) \
{ \
BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
lname##_controls_set(vmx, lname##_controls_get(vmx) | val); \
} \
static __always_inline void lname##_controls_clearbit(struct vcpu_vmx *vmx, u##bits val) \
{ \
BUILD_BUG_ON(!(val & (KVM_REQUIRED_VMX_##uname | KVM_OPTIONAL_VMX_##uname))); \
lname##_controls_set(vmx, lname##_controls_get(vmx) & ~val); \
}
BUILD_CONTROLS_SHADOW(vm_entry, VM_ENTRY_CONTROLS, 32)
BUILD_CONTROLS_SHADOW(vm_exit, VM_EXIT_CONTROLS, 32)
BUILD_CONTROLS_SHADOW(pin, PIN_BASED_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(exec, CPU_BASED_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(secondary_exec, SECONDARY_VM_EXEC_CONTROL, 32)
BUILD_CONTROLS_SHADOW(tertiary_exec, TERTIARY_VM_EXEC_CONTROL, 64)
/*
* VMX_REGS_LAZY_LOAD_SET - The set of registers that will be updated in the
* cache on demand. Other registers not listed here are synced to
* the cache immediately after VM-Exit.
*/
#define VMX_REGS_LAZY_LOAD_SET ((1 << VCPU_REGS_RIP) | \
(1 << VCPU_REGS_RSP) | \
(1 << VCPU_EXREG_RFLAGS) | \
(1 << VCPU_EXREG_PDPTR) | \
(1 << VCPU_EXREG_SEGMENTS) | \
(1 << VCPU_EXREG_CR0) | \
(1 << VCPU_EXREG_CR3) | \
(1 << VCPU_EXREG_CR4) | \
(1 << VCPU_EXREG_EXIT_INFO_1) | \
(1 << VCPU_EXREG_EXIT_INFO_2))
static __always_inline struct kvm_vmx *to_kvm_vmx(struct kvm *kvm)
{
return container_of(kvm, struct kvm_vmx, kvm);
}
static __always_inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
{
return container_of(vcpu, struct vcpu_vmx, vcpu);
}
static inline struct lbr_desc *vcpu_to_lbr_desc(struct kvm_vcpu *vcpu)
{
return &to_vmx(vcpu)->lbr_desc;
}
static inline struct x86_pmu_lbr *vcpu_to_lbr_records(struct kvm_vcpu *vcpu)
{
return &vcpu_to_lbr_desc(vcpu)->records;
}
static inline bool intel_pmu_lbr_is_enabled(struct kvm_vcpu *vcpu)
{
return !!vcpu_to_lbr_records(vcpu)->nr;
}
void intel_pmu_cross_mapped_check(struct kvm_pmu *pmu);
int intel_pmu_create_guest_lbr_event(struct kvm_vcpu *vcpu);
void vmx_passthrough_lbr_msrs(struct kvm_vcpu *vcpu);
static __always_inline unsigned long vmx_get_exit_qual(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_1))
vmx->exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
return vmx->exit_qualification;
}
static __always_inline u32 vmx_get_intr_info(struct kvm_vcpu *vcpu)
{
struct vcpu_vmx *vmx = to_vmx(vcpu);
if (!kvm_register_test_and_mark_available(vcpu, VCPU_EXREG_EXIT_INFO_2))
vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
return vmx->exit_intr_info;
}
struct vmcs *alloc_vmcs_cpu(bool shadow, int cpu, gfp_t flags);
void free_vmcs(struct vmcs *vmcs);
int alloc_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs);
void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs);
static inline struct vmcs *alloc_vmcs(bool shadow)
{
return alloc_vmcs_cpu(shadow, raw_smp_processor_id(),
GFP_KERNEL_ACCOUNT);
}
static inline bool vmx_has_waitpkg(struct vcpu_vmx *vmx)
{
return secondary_exec_controls_get(vmx) &
SECONDARY_EXEC_ENABLE_USR_WAIT_PAUSE;
}
static inline bool vmx_need_pf_intercept(struct kvm_vcpu *vcpu)
{
if (!enable_ept)
return true;
return allow_smaller_maxphyaddr && cpuid_maxphyaddr(vcpu) < boot_cpu_data.x86_phys_bits;
}
static inline bool is_unrestricted_guest(struct kvm_vcpu *vcpu)
{
return enable_unrestricted_guest && (!is_guest_mode(vcpu) ||
(secondary_exec_controls_get(to_vmx(vcpu)) &
SECONDARY_EXEC_UNRESTRICTED_GUEST));
}
bool __vmx_guest_state_valid(struct kvm_vcpu *vcpu);
static inline bool vmx_guest_state_valid(struct kvm_vcpu *vcpu)
{
return is_unrestricted_guest(vcpu) || __vmx_guest_state_valid(vcpu);
}
void dump_vmcs(struct kvm_vcpu *vcpu);
static inline int vmx_get_instr_info_reg2(u32 vmx_instr_info)
{
return (vmx_instr_info >> 28) & 0xf;
}
static inline bool vmx_can_use_ipiv(struct kvm_vcpu *vcpu)
{
return lapic_in_kernel(vcpu) && enable_ipiv;
}
static inline bool guest_cpuid_has_evmcs(struct kvm_vcpu *vcpu)
{
/*
* eVMCS is exposed to the guest if Hyper-V is enabled in CPUID and
* eVMCS has been explicitly enabled by userspace.
*/
return vcpu->arch.hyperv_enabled &&
to_vmx(vcpu)->nested.enlightened_vmcs_enabled;
}
#endif /* __KVM_X86_VMX_H */