1142 lines
30 KiB
C
1142 lines
30 KiB
C
// SPDX-License-Identifier: (GPL-2.0+ OR BSD-3-Clause)
|
|
/*
|
|
* caam - Freescale FSL CAAM support for Public Key Cryptography
|
|
*
|
|
* Copyright 2016 Freescale Semiconductor, Inc.
|
|
* Copyright 2018-2019 NXP
|
|
*
|
|
* There is no Shared Descriptor for PKC so that the Job Descriptor must carry
|
|
* all the desired key parameters, input and output pointers.
|
|
*/
|
|
#include "compat.h"
|
|
#include "regs.h"
|
|
#include "intern.h"
|
|
#include "jr.h"
|
|
#include "error.h"
|
|
#include "desc_constr.h"
|
|
#include "sg_sw_sec4.h"
|
|
#include "caampkc.h"
|
|
|
|
#define DESC_RSA_PUB_LEN (2 * CAAM_CMD_SZ + SIZEOF_RSA_PUB_PDB)
|
|
#define DESC_RSA_PRIV_F1_LEN (2 * CAAM_CMD_SZ + \
|
|
SIZEOF_RSA_PRIV_F1_PDB)
|
|
#define DESC_RSA_PRIV_F2_LEN (2 * CAAM_CMD_SZ + \
|
|
SIZEOF_RSA_PRIV_F2_PDB)
|
|
#define DESC_RSA_PRIV_F3_LEN (2 * CAAM_CMD_SZ + \
|
|
SIZEOF_RSA_PRIV_F3_PDB)
|
|
#define CAAM_RSA_MAX_INPUT_SIZE 512 /* for a 4096-bit modulus */
|
|
|
|
/* buffer filled with zeros, used for padding */
|
|
static u8 *zero_buffer;
|
|
|
|
/*
|
|
* variable used to avoid double free of resources in case
|
|
* algorithm registration was unsuccessful
|
|
*/
|
|
static bool init_done;
|
|
|
|
struct caam_akcipher_alg {
|
|
struct akcipher_alg akcipher;
|
|
bool registered;
|
|
};
|
|
|
|
static void rsa_io_unmap(struct device *dev, struct rsa_edesc *edesc,
|
|
struct akcipher_request *req)
|
|
{
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
|
|
dma_unmap_sg(dev, req->dst, edesc->dst_nents, DMA_FROM_DEVICE);
|
|
dma_unmap_sg(dev, req_ctx->fixup_src, edesc->src_nents, DMA_TO_DEVICE);
|
|
|
|
if (edesc->sec4_sg_bytes)
|
|
dma_unmap_single(dev, edesc->sec4_sg_dma, edesc->sec4_sg_bytes,
|
|
DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void rsa_pub_unmap(struct device *dev, struct rsa_edesc *edesc,
|
|
struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
|
|
|
|
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->e_dma, key->e_sz, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void rsa_priv_f1_unmap(struct device *dev, struct rsa_edesc *edesc,
|
|
struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
|
|
|
|
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
|
|
}
|
|
|
|
static void rsa_priv_f2_unmap(struct device *dev, struct rsa_edesc *edesc,
|
|
struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
|
|
size_t p_sz = key->p_sz;
|
|
size_t q_sz = key->q_sz;
|
|
|
|
dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
|
|
dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
static void rsa_priv_f3_unmap(struct device *dev, struct rsa_edesc *edesc,
|
|
struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
|
|
size_t p_sz = key->p_sz;
|
|
size_t q_sz = key->q_sz;
|
|
|
|
dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
|
|
dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
|
|
dma_unmap_single(dev, pdb->tmp2_dma, q_sz, DMA_BIDIRECTIONAL);
|
|
}
|
|
|
|
/* RSA Job Completion handler */
|
|
static void rsa_pub_done(struct device *dev, u32 *desc, u32 err, void *context)
|
|
{
|
|
struct akcipher_request *req = context;
|
|
struct rsa_edesc *edesc;
|
|
int ecode = 0;
|
|
|
|
if (err)
|
|
ecode = caam_jr_strstatus(dev, err);
|
|
|
|
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
|
|
|
rsa_pub_unmap(dev, edesc, req);
|
|
rsa_io_unmap(dev, edesc, req);
|
|
kfree(edesc);
|
|
|
|
akcipher_request_complete(req, ecode);
|
|
}
|
|
|
|
static void rsa_priv_f1_done(struct device *dev, u32 *desc, u32 err,
|
|
void *context)
|
|
{
|
|
struct akcipher_request *req = context;
|
|
struct rsa_edesc *edesc;
|
|
int ecode = 0;
|
|
|
|
if (err)
|
|
ecode = caam_jr_strstatus(dev, err);
|
|
|
|
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
|
|
|
rsa_priv_f1_unmap(dev, edesc, req);
|
|
rsa_io_unmap(dev, edesc, req);
|
|
kfree(edesc);
|
|
|
|
akcipher_request_complete(req, ecode);
|
|
}
|
|
|
|
static void rsa_priv_f2_done(struct device *dev, u32 *desc, u32 err,
|
|
void *context)
|
|
{
|
|
struct akcipher_request *req = context;
|
|
struct rsa_edesc *edesc;
|
|
int ecode = 0;
|
|
|
|
if (err)
|
|
ecode = caam_jr_strstatus(dev, err);
|
|
|
|
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
|
|
|
rsa_priv_f2_unmap(dev, edesc, req);
|
|
rsa_io_unmap(dev, edesc, req);
|
|
kfree(edesc);
|
|
|
|
akcipher_request_complete(req, ecode);
|
|
}
|
|
|
|
static void rsa_priv_f3_done(struct device *dev, u32 *desc, u32 err,
|
|
void *context)
|
|
{
|
|
struct akcipher_request *req = context;
|
|
struct rsa_edesc *edesc;
|
|
int ecode = 0;
|
|
|
|
if (err)
|
|
ecode = caam_jr_strstatus(dev, err);
|
|
|
|
edesc = container_of(desc, struct rsa_edesc, hw_desc[0]);
|
|
|
|
rsa_priv_f3_unmap(dev, edesc, req);
|
|
rsa_io_unmap(dev, edesc, req);
|
|
kfree(edesc);
|
|
|
|
akcipher_request_complete(req, ecode);
|
|
}
|
|
|
|
/**
|
|
* Count leading zeros, need it to strip, from a given scatterlist
|
|
*
|
|
* @sgl : scatterlist to count zeros from
|
|
* @nbytes: number of zeros, in bytes, to strip
|
|
* @flags : operation flags
|
|
*/
|
|
static int caam_rsa_count_leading_zeros(struct scatterlist *sgl,
|
|
unsigned int nbytes,
|
|
unsigned int flags)
|
|
{
|
|
struct sg_mapping_iter miter;
|
|
int lzeros, ents;
|
|
unsigned int len;
|
|
unsigned int tbytes = nbytes;
|
|
const u8 *buff;
|
|
|
|
ents = sg_nents_for_len(sgl, nbytes);
|
|
if (ents < 0)
|
|
return ents;
|
|
|
|
sg_miter_start(&miter, sgl, ents, SG_MITER_FROM_SG | flags);
|
|
|
|
lzeros = 0;
|
|
len = 0;
|
|
while (nbytes > 0) {
|
|
/* do not strip more than given bytes */
|
|
while (len && !*buff && lzeros < nbytes) {
|
|
lzeros++;
|
|
len--;
|
|
buff++;
|
|
}
|
|
|
|
if (len && *buff)
|
|
break;
|
|
|
|
sg_miter_next(&miter);
|
|
buff = miter.addr;
|
|
len = miter.length;
|
|
|
|
nbytes -= lzeros;
|
|
lzeros = 0;
|
|
}
|
|
|
|
miter.consumed = lzeros;
|
|
sg_miter_stop(&miter);
|
|
nbytes -= lzeros;
|
|
|
|
return tbytes - nbytes;
|
|
}
|
|
|
|
static struct rsa_edesc *rsa_edesc_alloc(struct akcipher_request *req,
|
|
size_t desclen)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct device *dev = ctx->dev;
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct rsa_edesc *edesc;
|
|
gfp_t flags = (req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP) ?
|
|
GFP_KERNEL : GFP_ATOMIC;
|
|
int sg_flags = (flags == GFP_ATOMIC) ? SG_MITER_ATOMIC : 0;
|
|
int sec4_sg_index, sec4_sg_len = 0, sec4_sg_bytes;
|
|
int src_nents, dst_nents;
|
|
int mapped_src_nents, mapped_dst_nents;
|
|
unsigned int diff_size = 0;
|
|
int lzeros;
|
|
|
|
if (req->src_len > key->n_sz) {
|
|
/*
|
|
* strip leading zeros and
|
|
* return the number of zeros to skip
|
|
*/
|
|
lzeros = caam_rsa_count_leading_zeros(req->src, req->src_len -
|
|
key->n_sz, sg_flags);
|
|
if (lzeros < 0)
|
|
return ERR_PTR(lzeros);
|
|
|
|
req_ctx->fixup_src = scatterwalk_ffwd(req_ctx->src, req->src,
|
|
lzeros);
|
|
req_ctx->fixup_src_len = req->src_len - lzeros;
|
|
} else {
|
|
/*
|
|
* input src is less then n key modulus,
|
|
* so there will be zero padding
|
|
*/
|
|
diff_size = key->n_sz - req->src_len;
|
|
req_ctx->fixup_src = req->src;
|
|
req_ctx->fixup_src_len = req->src_len;
|
|
}
|
|
|
|
src_nents = sg_nents_for_len(req_ctx->fixup_src,
|
|
req_ctx->fixup_src_len);
|
|
dst_nents = sg_nents_for_len(req->dst, req->dst_len);
|
|
|
|
mapped_src_nents = dma_map_sg(dev, req_ctx->fixup_src, src_nents,
|
|
DMA_TO_DEVICE);
|
|
if (unlikely(!mapped_src_nents)) {
|
|
dev_err(dev, "unable to map source\n");
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
mapped_dst_nents = dma_map_sg(dev, req->dst, dst_nents,
|
|
DMA_FROM_DEVICE);
|
|
if (unlikely(!mapped_dst_nents)) {
|
|
dev_err(dev, "unable to map destination\n");
|
|
goto src_fail;
|
|
}
|
|
|
|
if (!diff_size && mapped_src_nents == 1)
|
|
sec4_sg_len = 0; /* no need for an input hw s/g table */
|
|
else
|
|
sec4_sg_len = mapped_src_nents + !!diff_size;
|
|
sec4_sg_index = sec4_sg_len;
|
|
|
|
if (mapped_dst_nents > 1)
|
|
sec4_sg_len += pad_sg_nents(mapped_dst_nents);
|
|
else
|
|
sec4_sg_len = pad_sg_nents(sec4_sg_len);
|
|
|
|
sec4_sg_bytes = sec4_sg_len * sizeof(struct sec4_sg_entry);
|
|
|
|
/* allocate space for base edesc, hw desc commands and link tables */
|
|
edesc = kzalloc(sizeof(*edesc) + desclen + sec4_sg_bytes,
|
|
GFP_DMA | flags);
|
|
if (!edesc)
|
|
goto dst_fail;
|
|
|
|
edesc->sec4_sg = (void *)edesc + sizeof(*edesc) + desclen;
|
|
if (diff_size)
|
|
dma_to_sec4_sg_one(edesc->sec4_sg, ctx->padding_dma, diff_size,
|
|
0);
|
|
|
|
if (sec4_sg_index)
|
|
sg_to_sec4_sg_last(req_ctx->fixup_src, req_ctx->fixup_src_len,
|
|
edesc->sec4_sg + !!diff_size, 0);
|
|
|
|
if (mapped_dst_nents > 1)
|
|
sg_to_sec4_sg_last(req->dst, req->dst_len,
|
|
edesc->sec4_sg + sec4_sg_index, 0);
|
|
|
|
/* Save nents for later use in Job Descriptor */
|
|
edesc->src_nents = src_nents;
|
|
edesc->dst_nents = dst_nents;
|
|
|
|
if (!sec4_sg_bytes)
|
|
return edesc;
|
|
|
|
edesc->mapped_src_nents = mapped_src_nents;
|
|
edesc->mapped_dst_nents = mapped_dst_nents;
|
|
|
|
edesc->sec4_sg_dma = dma_map_single(dev, edesc->sec4_sg,
|
|
sec4_sg_bytes, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, edesc->sec4_sg_dma)) {
|
|
dev_err(dev, "unable to map S/G table\n");
|
|
goto sec4_sg_fail;
|
|
}
|
|
|
|
edesc->sec4_sg_bytes = sec4_sg_bytes;
|
|
|
|
print_hex_dump_debug("caampkc sec4_sg@" __stringify(__LINE__) ": ",
|
|
DUMP_PREFIX_ADDRESS, 16, 4, edesc->sec4_sg,
|
|
edesc->sec4_sg_bytes, 1);
|
|
|
|
return edesc;
|
|
|
|
sec4_sg_fail:
|
|
kfree(edesc);
|
|
dst_fail:
|
|
dma_unmap_sg(dev, req->dst, dst_nents, DMA_FROM_DEVICE);
|
|
src_fail:
|
|
dma_unmap_sg(dev, req_ctx->fixup_src, src_nents, DMA_TO_DEVICE);
|
|
return ERR_PTR(-ENOMEM);
|
|
}
|
|
|
|
static int set_rsa_pub_pdb(struct akcipher_request *req,
|
|
struct rsa_edesc *edesc)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct device *dev = ctx->dev;
|
|
struct rsa_pub_pdb *pdb = &edesc->pdb.pub;
|
|
int sec4_sg_index = 0;
|
|
|
|
pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->n_dma)) {
|
|
dev_err(dev, "Unable to map RSA modulus memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdb->e_dma = dma_map_single(dev, key->e, key->e_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->e_dma)) {
|
|
dev_err(dev, "Unable to map RSA public exponent memory\n");
|
|
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (edesc->mapped_src_nents > 1) {
|
|
pdb->sgf |= RSA_PDB_SGF_F;
|
|
pdb->f_dma = edesc->sec4_sg_dma;
|
|
sec4_sg_index += edesc->mapped_src_nents;
|
|
} else {
|
|
pdb->f_dma = sg_dma_address(req_ctx->fixup_src);
|
|
}
|
|
|
|
if (edesc->mapped_dst_nents > 1) {
|
|
pdb->sgf |= RSA_PDB_SGF_G;
|
|
pdb->g_dma = edesc->sec4_sg_dma +
|
|
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
|
} else {
|
|
pdb->g_dma = sg_dma_address(req->dst);
|
|
}
|
|
|
|
pdb->sgf |= (key->e_sz << RSA_PDB_E_SHIFT) | key->n_sz;
|
|
pdb->f_len = req_ctx->fixup_src_len;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_rsa_priv_f1_pdb(struct akcipher_request *req,
|
|
struct rsa_edesc *edesc)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct device *dev = ctx->dev;
|
|
struct rsa_priv_f1_pdb *pdb = &edesc->pdb.priv_f1;
|
|
int sec4_sg_index = 0;
|
|
|
|
pdb->n_dma = dma_map_single(dev, key->n, key->n_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->n_dma)) {
|
|
dev_err(dev, "Unable to map modulus memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->d_dma)) {
|
|
dev_err(dev, "Unable to map RSA private exponent memory\n");
|
|
dma_unmap_single(dev, pdb->n_dma, key->n_sz, DMA_TO_DEVICE);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
if (edesc->mapped_src_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_G;
|
|
pdb->g_dma = edesc->sec4_sg_dma;
|
|
sec4_sg_index += edesc->mapped_src_nents;
|
|
|
|
} else {
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
|
|
pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
|
|
}
|
|
|
|
if (edesc->mapped_dst_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_F;
|
|
pdb->f_dma = edesc->sec4_sg_dma +
|
|
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
|
} else {
|
|
pdb->f_dma = sg_dma_address(req->dst);
|
|
}
|
|
|
|
pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int set_rsa_priv_f2_pdb(struct akcipher_request *req,
|
|
struct rsa_edesc *edesc)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct device *dev = ctx->dev;
|
|
struct rsa_priv_f2_pdb *pdb = &edesc->pdb.priv_f2;
|
|
int sec4_sg_index = 0;
|
|
size_t p_sz = key->p_sz;
|
|
size_t q_sz = key->q_sz;
|
|
|
|
pdb->d_dma = dma_map_single(dev, key->d, key->d_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->d_dma)) {
|
|
dev_err(dev, "Unable to map RSA private exponent memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->p_dma)) {
|
|
dev_err(dev, "Unable to map RSA prime factor p memory\n");
|
|
goto unmap_d;
|
|
}
|
|
|
|
pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->q_dma)) {
|
|
dev_err(dev, "Unable to map RSA prime factor q memory\n");
|
|
goto unmap_p;
|
|
}
|
|
|
|
pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, pdb->tmp1_dma)) {
|
|
dev_err(dev, "Unable to map RSA tmp1 memory\n");
|
|
goto unmap_q;
|
|
}
|
|
|
|
pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, pdb->tmp2_dma)) {
|
|
dev_err(dev, "Unable to map RSA tmp2 memory\n");
|
|
goto unmap_tmp1;
|
|
}
|
|
|
|
if (edesc->mapped_src_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_G;
|
|
pdb->g_dma = edesc->sec4_sg_dma;
|
|
sec4_sg_index += edesc->mapped_src_nents;
|
|
} else {
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
|
|
pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
|
|
}
|
|
|
|
if (edesc->mapped_dst_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_F;
|
|
pdb->f_dma = edesc->sec4_sg_dma +
|
|
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
|
} else {
|
|
pdb->f_dma = sg_dma_address(req->dst);
|
|
}
|
|
|
|
pdb->sgf |= (key->d_sz << RSA_PDB_D_SHIFT) | key->n_sz;
|
|
pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
|
|
|
|
return 0;
|
|
|
|
unmap_tmp1:
|
|
dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
|
|
unmap_q:
|
|
dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
|
|
unmap_p:
|
|
dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
|
|
unmap_d:
|
|
dma_unmap_single(dev, pdb->d_dma, key->d_sz, DMA_TO_DEVICE);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int set_rsa_priv_f3_pdb(struct akcipher_request *req,
|
|
struct rsa_edesc *edesc)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct device *dev = ctx->dev;
|
|
struct rsa_priv_f3_pdb *pdb = &edesc->pdb.priv_f3;
|
|
int sec4_sg_index = 0;
|
|
size_t p_sz = key->p_sz;
|
|
size_t q_sz = key->q_sz;
|
|
|
|
pdb->p_dma = dma_map_single(dev, key->p, p_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->p_dma)) {
|
|
dev_err(dev, "Unable to map RSA prime factor p memory\n");
|
|
return -ENOMEM;
|
|
}
|
|
|
|
pdb->q_dma = dma_map_single(dev, key->q, q_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->q_dma)) {
|
|
dev_err(dev, "Unable to map RSA prime factor q memory\n");
|
|
goto unmap_p;
|
|
}
|
|
|
|
pdb->dp_dma = dma_map_single(dev, key->dp, p_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->dp_dma)) {
|
|
dev_err(dev, "Unable to map RSA exponent dp memory\n");
|
|
goto unmap_q;
|
|
}
|
|
|
|
pdb->dq_dma = dma_map_single(dev, key->dq, q_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->dq_dma)) {
|
|
dev_err(dev, "Unable to map RSA exponent dq memory\n");
|
|
goto unmap_dp;
|
|
}
|
|
|
|
pdb->c_dma = dma_map_single(dev, key->qinv, p_sz, DMA_TO_DEVICE);
|
|
if (dma_mapping_error(dev, pdb->c_dma)) {
|
|
dev_err(dev, "Unable to map RSA CRT coefficient qinv memory\n");
|
|
goto unmap_dq;
|
|
}
|
|
|
|
pdb->tmp1_dma = dma_map_single(dev, key->tmp1, p_sz, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, pdb->tmp1_dma)) {
|
|
dev_err(dev, "Unable to map RSA tmp1 memory\n");
|
|
goto unmap_qinv;
|
|
}
|
|
|
|
pdb->tmp2_dma = dma_map_single(dev, key->tmp2, q_sz, DMA_BIDIRECTIONAL);
|
|
if (dma_mapping_error(dev, pdb->tmp2_dma)) {
|
|
dev_err(dev, "Unable to map RSA tmp2 memory\n");
|
|
goto unmap_tmp1;
|
|
}
|
|
|
|
if (edesc->mapped_src_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_G;
|
|
pdb->g_dma = edesc->sec4_sg_dma;
|
|
sec4_sg_index += edesc->mapped_src_nents;
|
|
} else {
|
|
struct caam_rsa_req_ctx *req_ctx = akcipher_request_ctx(req);
|
|
|
|
pdb->g_dma = sg_dma_address(req_ctx->fixup_src);
|
|
}
|
|
|
|
if (edesc->mapped_dst_nents > 1) {
|
|
pdb->sgf |= RSA_PRIV_PDB_SGF_F;
|
|
pdb->f_dma = edesc->sec4_sg_dma +
|
|
sec4_sg_index * sizeof(struct sec4_sg_entry);
|
|
} else {
|
|
pdb->f_dma = sg_dma_address(req->dst);
|
|
}
|
|
|
|
pdb->sgf |= key->n_sz;
|
|
pdb->p_q_len = (q_sz << RSA_PDB_Q_SHIFT) | p_sz;
|
|
|
|
return 0;
|
|
|
|
unmap_tmp1:
|
|
dma_unmap_single(dev, pdb->tmp1_dma, p_sz, DMA_BIDIRECTIONAL);
|
|
unmap_qinv:
|
|
dma_unmap_single(dev, pdb->c_dma, p_sz, DMA_TO_DEVICE);
|
|
unmap_dq:
|
|
dma_unmap_single(dev, pdb->dq_dma, q_sz, DMA_TO_DEVICE);
|
|
unmap_dp:
|
|
dma_unmap_single(dev, pdb->dp_dma, p_sz, DMA_TO_DEVICE);
|
|
unmap_q:
|
|
dma_unmap_single(dev, pdb->q_dma, q_sz, DMA_TO_DEVICE);
|
|
unmap_p:
|
|
dma_unmap_single(dev, pdb->p_dma, p_sz, DMA_TO_DEVICE);
|
|
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static int caam_rsa_enc(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
struct device *jrdev = ctx->dev;
|
|
struct rsa_edesc *edesc;
|
|
int ret;
|
|
|
|
if (unlikely(!key->n || !key->e))
|
|
return -EINVAL;
|
|
|
|
if (req->dst_len < key->n_sz) {
|
|
req->dst_len = key->n_sz;
|
|
dev_err(jrdev, "Output buffer length less than parameter n\n");
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
/* Allocate extended descriptor */
|
|
edesc = rsa_edesc_alloc(req, DESC_RSA_PUB_LEN);
|
|
if (IS_ERR(edesc))
|
|
return PTR_ERR(edesc);
|
|
|
|
/* Set RSA Encrypt Protocol Data Block */
|
|
ret = set_rsa_pub_pdb(req, edesc);
|
|
if (ret)
|
|
goto init_fail;
|
|
|
|
/* Initialize Job Descriptor */
|
|
init_rsa_pub_desc(edesc->hw_desc, &edesc->pdb.pub);
|
|
|
|
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_pub_done, req);
|
|
if (!ret)
|
|
return -EINPROGRESS;
|
|
|
|
rsa_pub_unmap(jrdev, edesc, req);
|
|
|
|
init_fail:
|
|
rsa_io_unmap(jrdev, edesc, req);
|
|
kfree(edesc);
|
|
return ret;
|
|
}
|
|
|
|
static int caam_rsa_dec_priv_f1(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct device *jrdev = ctx->dev;
|
|
struct rsa_edesc *edesc;
|
|
int ret;
|
|
|
|
/* Allocate extended descriptor */
|
|
edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F1_LEN);
|
|
if (IS_ERR(edesc))
|
|
return PTR_ERR(edesc);
|
|
|
|
/* Set RSA Decrypt Protocol Data Block - Private Key Form #1 */
|
|
ret = set_rsa_priv_f1_pdb(req, edesc);
|
|
if (ret)
|
|
goto init_fail;
|
|
|
|
/* Initialize Job Descriptor */
|
|
init_rsa_priv_f1_desc(edesc->hw_desc, &edesc->pdb.priv_f1);
|
|
|
|
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f1_done, req);
|
|
if (!ret)
|
|
return -EINPROGRESS;
|
|
|
|
rsa_priv_f1_unmap(jrdev, edesc, req);
|
|
|
|
init_fail:
|
|
rsa_io_unmap(jrdev, edesc, req);
|
|
kfree(edesc);
|
|
return ret;
|
|
}
|
|
|
|
static int caam_rsa_dec_priv_f2(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct device *jrdev = ctx->dev;
|
|
struct rsa_edesc *edesc;
|
|
int ret;
|
|
|
|
/* Allocate extended descriptor */
|
|
edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F2_LEN);
|
|
if (IS_ERR(edesc))
|
|
return PTR_ERR(edesc);
|
|
|
|
/* Set RSA Decrypt Protocol Data Block - Private Key Form #2 */
|
|
ret = set_rsa_priv_f2_pdb(req, edesc);
|
|
if (ret)
|
|
goto init_fail;
|
|
|
|
/* Initialize Job Descriptor */
|
|
init_rsa_priv_f2_desc(edesc->hw_desc, &edesc->pdb.priv_f2);
|
|
|
|
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f2_done, req);
|
|
if (!ret)
|
|
return -EINPROGRESS;
|
|
|
|
rsa_priv_f2_unmap(jrdev, edesc, req);
|
|
|
|
init_fail:
|
|
rsa_io_unmap(jrdev, edesc, req);
|
|
kfree(edesc);
|
|
return ret;
|
|
}
|
|
|
|
static int caam_rsa_dec_priv_f3(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct device *jrdev = ctx->dev;
|
|
struct rsa_edesc *edesc;
|
|
int ret;
|
|
|
|
/* Allocate extended descriptor */
|
|
edesc = rsa_edesc_alloc(req, DESC_RSA_PRIV_F3_LEN);
|
|
if (IS_ERR(edesc))
|
|
return PTR_ERR(edesc);
|
|
|
|
/* Set RSA Decrypt Protocol Data Block - Private Key Form #3 */
|
|
ret = set_rsa_priv_f3_pdb(req, edesc);
|
|
if (ret)
|
|
goto init_fail;
|
|
|
|
/* Initialize Job Descriptor */
|
|
init_rsa_priv_f3_desc(edesc->hw_desc, &edesc->pdb.priv_f3);
|
|
|
|
ret = caam_jr_enqueue(jrdev, edesc->hw_desc, rsa_priv_f3_done, req);
|
|
if (!ret)
|
|
return -EINPROGRESS;
|
|
|
|
rsa_priv_f3_unmap(jrdev, edesc, req);
|
|
|
|
init_fail:
|
|
rsa_io_unmap(jrdev, edesc, req);
|
|
kfree(edesc);
|
|
return ret;
|
|
}
|
|
|
|
static int caam_rsa_dec(struct akcipher_request *req)
|
|
{
|
|
struct crypto_akcipher *tfm = crypto_akcipher_reqtfm(req);
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
int ret;
|
|
|
|
if (unlikely(!key->n || !key->d))
|
|
return -EINVAL;
|
|
|
|
if (req->dst_len < key->n_sz) {
|
|
req->dst_len = key->n_sz;
|
|
dev_err(ctx->dev, "Output buffer length less than parameter n\n");
|
|
return -EOVERFLOW;
|
|
}
|
|
|
|
if (key->priv_form == FORM3)
|
|
ret = caam_rsa_dec_priv_f3(req);
|
|
else if (key->priv_form == FORM2)
|
|
ret = caam_rsa_dec_priv_f2(req);
|
|
else
|
|
ret = caam_rsa_dec_priv_f1(req);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static void caam_rsa_free_key(struct caam_rsa_key *key)
|
|
{
|
|
kzfree(key->d);
|
|
kzfree(key->p);
|
|
kzfree(key->q);
|
|
kzfree(key->dp);
|
|
kzfree(key->dq);
|
|
kzfree(key->qinv);
|
|
kzfree(key->tmp1);
|
|
kzfree(key->tmp2);
|
|
kfree(key->e);
|
|
kfree(key->n);
|
|
memset(key, 0, sizeof(*key));
|
|
}
|
|
|
|
static void caam_rsa_drop_leading_zeros(const u8 **ptr, size_t *nbytes)
|
|
{
|
|
while (!**ptr && *nbytes) {
|
|
(*ptr)++;
|
|
(*nbytes)--;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* caam_read_rsa_crt - Used for reading dP, dQ, qInv CRT members.
|
|
* dP, dQ and qInv could decode to less than corresponding p, q length, as the
|
|
* BER-encoding requires that the minimum number of bytes be used to encode the
|
|
* integer. dP, dQ, qInv decoded values have to be zero-padded to appropriate
|
|
* length.
|
|
*
|
|
* @ptr : pointer to {dP, dQ, qInv} CRT member
|
|
* @nbytes: length in bytes of {dP, dQ, qInv} CRT member
|
|
* @dstlen: length in bytes of corresponding p or q prime factor
|
|
*/
|
|
static u8 *caam_read_rsa_crt(const u8 *ptr, size_t nbytes, size_t dstlen)
|
|
{
|
|
u8 *dst;
|
|
|
|
caam_rsa_drop_leading_zeros(&ptr, &nbytes);
|
|
if (!nbytes)
|
|
return NULL;
|
|
|
|
dst = kzalloc(dstlen, GFP_DMA | GFP_KERNEL);
|
|
if (!dst)
|
|
return NULL;
|
|
|
|
memcpy(dst + (dstlen - nbytes), ptr, nbytes);
|
|
|
|
return dst;
|
|
}
|
|
|
|
/**
|
|
* caam_read_raw_data - Read a raw byte stream as a positive integer.
|
|
* The function skips buffer's leading zeros, copies the remained data
|
|
* to a buffer allocated in the GFP_DMA | GFP_KERNEL zone and returns
|
|
* the address of the new buffer.
|
|
*
|
|
* @buf : The data to read
|
|
* @nbytes: The amount of data to read
|
|
*/
|
|
static inline u8 *caam_read_raw_data(const u8 *buf, size_t *nbytes)
|
|
{
|
|
|
|
caam_rsa_drop_leading_zeros(&buf, nbytes);
|
|
if (!*nbytes)
|
|
return NULL;
|
|
|
|
return kmemdup(buf, *nbytes, GFP_DMA | GFP_KERNEL);
|
|
}
|
|
|
|
static int caam_rsa_check_key_length(unsigned int len)
|
|
{
|
|
if (len > 4096)
|
|
return -EINVAL;
|
|
return 0;
|
|
}
|
|
|
|
static int caam_rsa_set_pub_key(struct crypto_akcipher *tfm, const void *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct rsa_key raw_key = {NULL};
|
|
struct caam_rsa_key *rsa_key = &ctx->key;
|
|
int ret;
|
|
|
|
/* Free the old RSA key if any */
|
|
caam_rsa_free_key(rsa_key);
|
|
|
|
ret = rsa_parse_pub_key(&raw_key, key, keylen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Copy key in DMA zone */
|
|
rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
|
|
if (!rsa_key->e)
|
|
goto err;
|
|
|
|
/*
|
|
* Skip leading zeros and copy the positive integer to a buffer
|
|
* allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
|
|
* expects a positive integer for the RSA modulus and uses its length as
|
|
* decryption output length.
|
|
*/
|
|
rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
|
|
if (!rsa_key->n)
|
|
goto err;
|
|
|
|
if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
|
|
caam_rsa_free_key(rsa_key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rsa_key->e_sz = raw_key.e_sz;
|
|
rsa_key->n_sz = raw_key.n_sz;
|
|
|
|
return 0;
|
|
err:
|
|
caam_rsa_free_key(rsa_key);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static void caam_rsa_set_priv_key_form(struct caam_rsa_ctx *ctx,
|
|
struct rsa_key *raw_key)
|
|
{
|
|
struct caam_rsa_key *rsa_key = &ctx->key;
|
|
size_t p_sz = raw_key->p_sz;
|
|
size_t q_sz = raw_key->q_sz;
|
|
|
|
rsa_key->p = caam_read_raw_data(raw_key->p, &p_sz);
|
|
if (!rsa_key->p)
|
|
return;
|
|
rsa_key->p_sz = p_sz;
|
|
|
|
rsa_key->q = caam_read_raw_data(raw_key->q, &q_sz);
|
|
if (!rsa_key->q)
|
|
goto free_p;
|
|
rsa_key->q_sz = q_sz;
|
|
|
|
rsa_key->tmp1 = kzalloc(raw_key->p_sz, GFP_DMA | GFP_KERNEL);
|
|
if (!rsa_key->tmp1)
|
|
goto free_q;
|
|
|
|
rsa_key->tmp2 = kzalloc(raw_key->q_sz, GFP_DMA | GFP_KERNEL);
|
|
if (!rsa_key->tmp2)
|
|
goto free_tmp1;
|
|
|
|
rsa_key->priv_form = FORM2;
|
|
|
|
rsa_key->dp = caam_read_rsa_crt(raw_key->dp, raw_key->dp_sz, p_sz);
|
|
if (!rsa_key->dp)
|
|
goto free_tmp2;
|
|
|
|
rsa_key->dq = caam_read_rsa_crt(raw_key->dq, raw_key->dq_sz, q_sz);
|
|
if (!rsa_key->dq)
|
|
goto free_dp;
|
|
|
|
rsa_key->qinv = caam_read_rsa_crt(raw_key->qinv, raw_key->qinv_sz,
|
|
q_sz);
|
|
if (!rsa_key->qinv)
|
|
goto free_dq;
|
|
|
|
rsa_key->priv_form = FORM3;
|
|
|
|
return;
|
|
|
|
free_dq:
|
|
kzfree(rsa_key->dq);
|
|
free_dp:
|
|
kzfree(rsa_key->dp);
|
|
free_tmp2:
|
|
kzfree(rsa_key->tmp2);
|
|
free_tmp1:
|
|
kzfree(rsa_key->tmp1);
|
|
free_q:
|
|
kzfree(rsa_key->q);
|
|
free_p:
|
|
kzfree(rsa_key->p);
|
|
}
|
|
|
|
static int caam_rsa_set_priv_key(struct crypto_akcipher *tfm, const void *key,
|
|
unsigned int keylen)
|
|
{
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct rsa_key raw_key = {NULL};
|
|
struct caam_rsa_key *rsa_key = &ctx->key;
|
|
int ret;
|
|
|
|
/* Free the old RSA key if any */
|
|
caam_rsa_free_key(rsa_key);
|
|
|
|
ret = rsa_parse_priv_key(&raw_key, key, keylen);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Copy key in DMA zone */
|
|
rsa_key->d = kmemdup(raw_key.d, raw_key.d_sz, GFP_DMA | GFP_KERNEL);
|
|
if (!rsa_key->d)
|
|
goto err;
|
|
|
|
rsa_key->e = kmemdup(raw_key.e, raw_key.e_sz, GFP_DMA | GFP_KERNEL);
|
|
if (!rsa_key->e)
|
|
goto err;
|
|
|
|
/*
|
|
* Skip leading zeros and copy the positive integer to a buffer
|
|
* allocated in the GFP_DMA | GFP_KERNEL zone. The decryption descriptor
|
|
* expects a positive integer for the RSA modulus and uses its length as
|
|
* decryption output length.
|
|
*/
|
|
rsa_key->n = caam_read_raw_data(raw_key.n, &raw_key.n_sz);
|
|
if (!rsa_key->n)
|
|
goto err;
|
|
|
|
if (caam_rsa_check_key_length(raw_key.n_sz << 3)) {
|
|
caam_rsa_free_key(rsa_key);
|
|
return -EINVAL;
|
|
}
|
|
|
|
rsa_key->d_sz = raw_key.d_sz;
|
|
rsa_key->e_sz = raw_key.e_sz;
|
|
rsa_key->n_sz = raw_key.n_sz;
|
|
|
|
caam_rsa_set_priv_key_form(ctx, &raw_key);
|
|
|
|
return 0;
|
|
|
|
err:
|
|
caam_rsa_free_key(rsa_key);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
static unsigned int caam_rsa_max_size(struct crypto_akcipher *tfm)
|
|
{
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
return ctx->key.n_sz;
|
|
}
|
|
|
|
/* Per session pkc's driver context creation function */
|
|
static int caam_rsa_init_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
|
|
ctx->dev = caam_jr_alloc();
|
|
|
|
if (IS_ERR(ctx->dev)) {
|
|
pr_err("Job Ring Device allocation for transform failed\n");
|
|
return PTR_ERR(ctx->dev);
|
|
}
|
|
|
|
ctx->padding_dma = dma_map_single(ctx->dev, zero_buffer,
|
|
CAAM_RSA_MAX_INPUT_SIZE - 1,
|
|
DMA_TO_DEVICE);
|
|
if (dma_mapping_error(ctx->dev, ctx->padding_dma)) {
|
|
dev_err(ctx->dev, "unable to map padding\n");
|
|
caam_jr_free(ctx->dev);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Per session pkc's driver context cleanup function */
|
|
static void caam_rsa_exit_tfm(struct crypto_akcipher *tfm)
|
|
{
|
|
struct caam_rsa_ctx *ctx = akcipher_tfm_ctx(tfm);
|
|
struct caam_rsa_key *key = &ctx->key;
|
|
|
|
dma_unmap_single(ctx->dev, ctx->padding_dma, CAAM_RSA_MAX_INPUT_SIZE -
|
|
1, DMA_TO_DEVICE);
|
|
caam_rsa_free_key(key);
|
|
caam_jr_free(ctx->dev);
|
|
}
|
|
|
|
static struct caam_akcipher_alg caam_rsa = {
|
|
.akcipher = {
|
|
.encrypt = caam_rsa_enc,
|
|
.decrypt = caam_rsa_dec,
|
|
.set_pub_key = caam_rsa_set_pub_key,
|
|
.set_priv_key = caam_rsa_set_priv_key,
|
|
.max_size = caam_rsa_max_size,
|
|
.init = caam_rsa_init_tfm,
|
|
.exit = caam_rsa_exit_tfm,
|
|
.reqsize = sizeof(struct caam_rsa_req_ctx),
|
|
.base = {
|
|
.cra_name = "rsa",
|
|
.cra_driver_name = "rsa-caam",
|
|
.cra_priority = 3000,
|
|
.cra_module = THIS_MODULE,
|
|
.cra_ctxsize = sizeof(struct caam_rsa_ctx),
|
|
},
|
|
}
|
|
};
|
|
|
|
/* Public Key Cryptography module initialization handler */
|
|
int caam_pkc_init(struct device *ctrldev)
|
|
{
|
|
struct caam_drv_private *priv = dev_get_drvdata(ctrldev);
|
|
u32 pk_inst;
|
|
int err;
|
|
init_done = false;
|
|
|
|
/* Determine public key hardware accelerator presence. */
|
|
if (priv->era < 10)
|
|
pk_inst = (rd_reg32(&priv->ctrl->perfmon.cha_num_ls) &
|
|
CHA_ID_LS_PK_MASK) >> CHA_ID_LS_PK_SHIFT;
|
|
else
|
|
pk_inst = rd_reg32(&priv->ctrl->vreg.pkha) & CHA_VER_NUM_MASK;
|
|
|
|
/* Do not register algorithms if PKHA is not present. */
|
|
if (!pk_inst)
|
|
return 0;
|
|
|
|
/* allocate zero buffer, used for padding input */
|
|
zero_buffer = kzalloc(CAAM_RSA_MAX_INPUT_SIZE - 1, GFP_DMA |
|
|
GFP_KERNEL);
|
|
if (!zero_buffer)
|
|
return -ENOMEM;
|
|
|
|
err = crypto_register_akcipher(&caam_rsa.akcipher);
|
|
|
|
if (err) {
|
|
kfree(zero_buffer);
|
|
dev_warn(ctrldev, "%s alg registration failed\n",
|
|
caam_rsa.akcipher.base.cra_driver_name);
|
|
} else {
|
|
init_done = true;
|
|
caam_rsa.registered = true;
|
|
dev_info(ctrldev, "caam pkc algorithms registered in /proc/crypto\n");
|
|
}
|
|
|
|
return err;
|
|
}
|
|
|
|
void caam_pkc_exit(void)
|
|
{
|
|
if (!init_done)
|
|
return;
|
|
|
|
if (caam_rsa.registered)
|
|
crypto_unregister_akcipher(&caam_rsa.akcipher);
|
|
|
|
kfree(zero_buffer);
|
|
}
|