OpenCloudOS-Kernel/drivers/edac/armada_xp_edac.c

636 lines
18 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright (C) 2017 Pengutronix, Jan Luebbe <kernel@pengutronix.de>
*/
#include <linux/kernel.h>
#include <linux/edac.h>
#include <linux/of_platform.h>
#include <asm/hardware/cache-l2x0.h>
#include <asm/hardware/cache-aurora-l2.h>
#include "edac_mc.h"
#include "edac_device.h"
#include "edac_module.h"
/************************ EDAC MC (DDR RAM) ********************************/
#define SDRAM_NUM_CS 4
#define SDRAM_CONFIG_REG 0x0
#define SDRAM_CONFIG_ECC_MASK BIT(18)
#define SDRAM_CONFIG_REGISTERED_MASK BIT(17)
#define SDRAM_CONFIG_BUS_WIDTH_MASK BIT(15)
#define SDRAM_ADDR_CTRL_REG 0x10
#define SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(cs) (20+cs)
#define SDRAM_ADDR_CTRL_SIZE_HIGH_MASK(cs) (0x1 << SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(cs))
#define SDRAM_ADDR_CTRL_ADDR_SEL_MASK(cs) BIT(16+cs)
#define SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(cs) (cs*4+2)
#define SDRAM_ADDR_CTRL_SIZE_LOW_MASK(cs) (0x3 << SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(cs))
#define SDRAM_ADDR_CTRL_STRUCT_OFFSET(cs) (cs*4)
#define SDRAM_ADDR_CTRL_STRUCT_MASK(cs) (0x3 << SDRAM_ADDR_CTRL_STRUCT_OFFSET(cs))
#define SDRAM_ERR_DATA_H_REG 0x40
#define SDRAM_ERR_DATA_L_REG 0x44
#define SDRAM_ERR_RECV_ECC_REG 0x48
#define SDRAM_ERR_RECV_ECC_VALUE_MASK 0xff
#define SDRAM_ERR_CALC_ECC_REG 0x4c
#define SDRAM_ERR_CALC_ECC_ROW_OFFSET 8
#define SDRAM_ERR_CALC_ECC_ROW_MASK (0xffff << SDRAM_ERR_CALC_ECC_ROW_OFFSET)
#define SDRAM_ERR_CALC_ECC_VALUE_MASK 0xff
#define SDRAM_ERR_ADDR_REG 0x50
#define SDRAM_ERR_ADDR_BANK_OFFSET 23
#define SDRAM_ERR_ADDR_BANK_MASK (0x7 << SDRAM_ERR_ADDR_BANK_OFFSET)
#define SDRAM_ERR_ADDR_COL_OFFSET 8
#define SDRAM_ERR_ADDR_COL_MASK (0x7fff << SDRAM_ERR_ADDR_COL_OFFSET)
#define SDRAM_ERR_ADDR_CS_OFFSET 1
#define SDRAM_ERR_ADDR_CS_MASK (0x3 << SDRAM_ERR_ADDR_CS_OFFSET)
#define SDRAM_ERR_ADDR_TYPE_MASK BIT(0)
#define SDRAM_ERR_CTRL_REG 0x54
#define SDRAM_ERR_CTRL_THR_OFFSET 16
#define SDRAM_ERR_CTRL_THR_MASK (0xff << SDRAM_ERR_CTRL_THR_OFFSET)
#define SDRAM_ERR_CTRL_PROP_MASK BIT(9)
#define SDRAM_ERR_SBE_COUNT_REG 0x58
#define SDRAM_ERR_DBE_COUNT_REG 0x5c
#define SDRAM_ERR_CAUSE_ERR_REG 0xd0
#define SDRAM_ERR_CAUSE_MSG_REG 0xd8
#define SDRAM_ERR_CAUSE_DBE_MASK BIT(1)
#define SDRAM_ERR_CAUSE_SBE_MASK BIT(0)
#define SDRAM_RANK_CTRL_REG 0x1e0
#define SDRAM_RANK_CTRL_EXIST_MASK(cs) BIT(cs)
struct axp_mc_drvdata {
void __iomem *base;
/* width in bytes */
unsigned int width;
/* bank interleaving */
bool cs_addr_sel[SDRAM_NUM_CS];
char msg[128];
};
/* derived from "DRAM Address Multiplexing" in the ARAMDA XP Functional Spec */
static uint32_t axp_mc_calc_address(struct axp_mc_drvdata *drvdata,
uint8_t cs, uint8_t bank, uint16_t row,
uint16_t col)
{
if (drvdata->width == 8) {
/* 64 bit */
if (drvdata->cs_addr_sel[cs])
/* bank interleaved */
return (((row & 0xfff8) << 16) |
((bank & 0x7) << 16) |
((row & 0x7) << 13) |
((col & 0x3ff) << 3));
else
return (((row & 0xffff << 16) |
((bank & 0x7) << 13) |
((col & 0x3ff)) << 3));
} else if (drvdata->width == 4) {
/* 32 bit */
if (drvdata->cs_addr_sel[cs])
/* bank interleaved */
return (((row & 0xfff0) << 15) |
((bank & 0x7) << 16) |
((row & 0xf) << 12) |
((col & 0x3ff) << 2));
else
return (((row & 0xffff << 15) |
((bank & 0x7) << 12) |
((col & 0x3ff)) << 2));
} else {
/* 16 bit */
if (drvdata->cs_addr_sel[cs])
/* bank interleaved */
return (((row & 0xffe0) << 14) |
((bank & 0x7) << 16) |
((row & 0x1f) << 11) |
((col & 0x3ff) << 1));
else
return (((row & 0xffff << 14) |
((bank & 0x7) << 11) |
((col & 0x3ff)) << 1));
}
}
static void axp_mc_check(struct mem_ctl_info *mci)
{
struct axp_mc_drvdata *drvdata = mci->pvt_info;
uint32_t data_h, data_l, recv_ecc, calc_ecc, addr;
uint32_t cnt_sbe, cnt_dbe, cause_err, cause_msg;
uint32_t row_val, col_val, bank_val, addr_val;
uint8_t syndrome_val, cs_val;
char *msg = drvdata->msg;
data_h = readl(drvdata->base + SDRAM_ERR_DATA_H_REG);
data_l = readl(drvdata->base + SDRAM_ERR_DATA_L_REG);
recv_ecc = readl(drvdata->base + SDRAM_ERR_RECV_ECC_REG);
calc_ecc = readl(drvdata->base + SDRAM_ERR_CALC_ECC_REG);
addr = readl(drvdata->base + SDRAM_ERR_ADDR_REG);
cnt_sbe = readl(drvdata->base + SDRAM_ERR_SBE_COUNT_REG);
cnt_dbe = readl(drvdata->base + SDRAM_ERR_DBE_COUNT_REG);
cause_err = readl(drvdata->base + SDRAM_ERR_CAUSE_ERR_REG);
cause_msg = readl(drvdata->base + SDRAM_ERR_CAUSE_MSG_REG);
/* clear cause registers */
writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK),
drvdata->base + SDRAM_ERR_CAUSE_ERR_REG);
writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK),
drvdata->base + SDRAM_ERR_CAUSE_MSG_REG);
/* clear error counter registers */
if (cnt_sbe)
writel(0, drvdata->base + SDRAM_ERR_SBE_COUNT_REG);
if (cnt_dbe)
writel(0, drvdata->base + SDRAM_ERR_DBE_COUNT_REG);
if (!cnt_sbe && !cnt_dbe)
return;
if (!(addr & SDRAM_ERR_ADDR_TYPE_MASK)) {
if (cnt_sbe)
cnt_sbe--;
else
dev_warn(mci->pdev, "inconsistent SBE count detected");
} else {
if (cnt_dbe)
cnt_dbe--;
else
dev_warn(mci->pdev, "inconsistent DBE count detected");
}
/* report earlier errors */
if (cnt_sbe)
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
cnt_sbe, /* error count */
0, 0, 0, /* pfn, offset, syndrome */
-1, -1, -1, /* top, mid, low layer */
mci->ctl_name,
"details unavailable (multiple errors)");
if (cnt_dbe)
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
cnt_sbe, /* error count */
0, 0, 0, /* pfn, offset, syndrome */
-1, -1, -1, /* top, mid, low layer */
mci->ctl_name,
"details unavailable (multiple errors)");
/* report details for most recent error */
cs_val = (addr & SDRAM_ERR_ADDR_CS_MASK) >> SDRAM_ERR_ADDR_CS_OFFSET;
bank_val = (addr & SDRAM_ERR_ADDR_BANK_MASK) >> SDRAM_ERR_ADDR_BANK_OFFSET;
row_val = (calc_ecc & SDRAM_ERR_CALC_ECC_ROW_MASK) >> SDRAM_ERR_CALC_ECC_ROW_OFFSET;
col_val = (addr & SDRAM_ERR_ADDR_COL_MASK) >> SDRAM_ERR_ADDR_COL_OFFSET;
syndrome_val = (recv_ecc ^ calc_ecc) & 0xff;
addr_val = axp_mc_calc_address(drvdata, cs_val, bank_val, row_val,
col_val);
msg += sprintf(msg, "row=0x%04x ", row_val); /* 11 chars */
msg += sprintf(msg, "bank=0x%x ", bank_val); /* 9 chars */
msg += sprintf(msg, "col=0x%04x ", col_val); /* 11 chars */
msg += sprintf(msg, "cs=%d", cs_val); /* 4 chars */
if (!(addr & SDRAM_ERR_ADDR_TYPE_MASK)) {
edac_mc_handle_error(HW_EVENT_ERR_CORRECTED, mci,
1, /* error count */
addr_val >> PAGE_SHIFT,
addr_val & ~PAGE_MASK,
syndrome_val,
cs_val, -1, -1, /* top, mid, low layer */
mci->ctl_name, drvdata->msg);
} else {
edac_mc_handle_error(HW_EVENT_ERR_UNCORRECTED, mci,
1, /* error count */
addr_val >> PAGE_SHIFT,
addr_val & ~PAGE_MASK,
syndrome_val,
cs_val, -1, -1, /* top, mid, low layer */
mci->ctl_name, drvdata->msg);
}
}
static void axp_mc_read_config(struct mem_ctl_info *mci)
{
struct axp_mc_drvdata *drvdata = mci->pvt_info;
uint32_t config, addr_ctrl, rank_ctrl;
unsigned int i, cs_struct, cs_size;
struct dimm_info *dimm;
config = readl(drvdata->base + SDRAM_CONFIG_REG);
if (config & SDRAM_CONFIG_BUS_WIDTH_MASK)
/* 64 bit */
drvdata->width = 8;
else
/* 32 bit */
drvdata->width = 4;
addr_ctrl = readl(drvdata->base + SDRAM_ADDR_CTRL_REG);
rank_ctrl = readl(drvdata->base + SDRAM_RANK_CTRL_REG);
for (i = 0; i < SDRAM_NUM_CS; i++) {
dimm = mci->dimms[i];
if (!(rank_ctrl & SDRAM_RANK_CTRL_EXIST_MASK(i)))
continue;
drvdata->cs_addr_sel[i] =
!!(addr_ctrl & SDRAM_ADDR_CTRL_ADDR_SEL_MASK(i));
cs_struct = (addr_ctrl & SDRAM_ADDR_CTRL_STRUCT_MASK(i)) >> SDRAM_ADDR_CTRL_STRUCT_OFFSET(i);
cs_size = ((addr_ctrl & SDRAM_ADDR_CTRL_SIZE_HIGH_MASK(i)) >> (SDRAM_ADDR_CTRL_SIZE_HIGH_OFFSET(i) - 2) |
((addr_ctrl & SDRAM_ADDR_CTRL_SIZE_LOW_MASK(i)) >> SDRAM_ADDR_CTRL_SIZE_LOW_OFFSET(i)));
switch (cs_size) {
case 0: /* 2GBit */
dimm->nr_pages = 524288;
break;
case 1: /* 256MBit */
dimm->nr_pages = 65536;
break;
case 2: /* 512MBit */
dimm->nr_pages = 131072;
break;
case 3: /* 1GBit */
dimm->nr_pages = 262144;
break;
case 4: /* 4GBit */
dimm->nr_pages = 1048576;
break;
case 5: /* 8GBit */
dimm->nr_pages = 2097152;
break;
}
dimm->grain = 8;
dimm->dtype = cs_struct ? DEV_X16 : DEV_X8;
dimm->mtype = (config & SDRAM_CONFIG_REGISTERED_MASK) ?
MEM_RDDR3 : MEM_DDR3;
dimm->edac_mode = EDAC_SECDED;
}
}
static const struct of_device_id axp_mc_of_match[] = {
{.compatible = "marvell,armada-xp-sdram-controller",},
{},
};
MODULE_DEVICE_TABLE(of, axp_mc_of_match);
static int axp_mc_probe(struct platform_device *pdev)
{
struct axp_mc_drvdata *drvdata;
struct edac_mc_layer layers[1];
const struct of_device_id *id;
struct mem_ctl_info *mci;
struct resource *r;
void __iomem *base;
uint32_t config;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "Unable to get mem resource\n");
return -ENODEV;
}
base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(base)) {
dev_err(&pdev->dev, "Unable to map regs\n");
return PTR_ERR(base);
}
config = readl(base + SDRAM_CONFIG_REG);
if (!(config & SDRAM_CONFIG_ECC_MASK)) {
dev_warn(&pdev->dev, "SDRAM ECC is not enabled");
return -EINVAL;
}
layers[0].type = EDAC_MC_LAYER_CHIP_SELECT;
layers[0].size = SDRAM_NUM_CS;
layers[0].is_virt_csrow = true;
mci = edac_mc_alloc(0, ARRAY_SIZE(layers), layers, sizeof(*drvdata));
if (!mci)
return -ENOMEM;
drvdata = mci->pvt_info;
drvdata->base = base;
mci->pdev = &pdev->dev;
platform_set_drvdata(pdev, mci);
id = of_match_device(axp_mc_of_match, &pdev->dev);
mci->edac_check = axp_mc_check;
mci->mtype_cap = MEM_FLAG_DDR3;
mci->edac_cap = EDAC_FLAG_SECDED;
mci->mod_name = pdev->dev.driver->name;
mci->ctl_name = id ? id->compatible : "unknown";
mci->dev_name = dev_name(&pdev->dev);
mci->scrub_mode = SCRUB_NONE;
axp_mc_read_config(mci);
/* These SoCs have a reduced width bus */
if (of_machine_is_compatible("marvell,armada380") ||
of_machine_is_compatible("marvell,armadaxp-98dx3236"))
drvdata->width /= 2;
/* configure SBE threshold */
/* it seems that SBEs are not captured otherwise */
writel(1 << SDRAM_ERR_CTRL_THR_OFFSET, drvdata->base + SDRAM_ERR_CTRL_REG);
/* clear cause registers */
writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_ERR_REG);
writel(~(SDRAM_ERR_CAUSE_DBE_MASK | SDRAM_ERR_CAUSE_SBE_MASK), drvdata->base + SDRAM_ERR_CAUSE_MSG_REG);
/* clear counter registers */
writel(0, drvdata->base + SDRAM_ERR_SBE_COUNT_REG);
writel(0, drvdata->base + SDRAM_ERR_DBE_COUNT_REG);
if (edac_mc_add_mc(mci)) {
edac_mc_free(mci);
return -EINVAL;
}
edac_op_state = EDAC_OPSTATE_POLL;
return 0;
}
static int axp_mc_remove(struct platform_device *pdev)
{
struct mem_ctl_info *mci = platform_get_drvdata(pdev);
edac_mc_del_mc(&pdev->dev);
edac_mc_free(mci);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver axp_mc_driver = {
.probe = axp_mc_probe,
.remove = axp_mc_remove,
.driver = {
.name = "armada_xp_mc_edac",
.of_match_table = of_match_ptr(axp_mc_of_match),
},
};
/************************ EDAC Device (L2 Cache) ***************************/
struct aurora_l2_drvdata {
void __iomem *base;
char msg[128];
/* error injection via debugfs */
uint32_t inject_addr;
uint32_t inject_mask;
uint8_t inject_ctl;
struct dentry *debugfs;
};
#ifdef CONFIG_EDAC_DEBUG
static void aurora_l2_inject(struct aurora_l2_drvdata *drvdata)
{
drvdata->inject_addr &= AURORA_ERR_INJECT_CTL_ADDR_MASK;
drvdata->inject_ctl &= AURORA_ERR_INJECT_CTL_EN_MASK;
writel(0, drvdata->base + AURORA_ERR_INJECT_CTL_REG);
writel(drvdata->inject_mask, drvdata->base + AURORA_ERR_INJECT_MASK_REG);
writel(drvdata->inject_addr | drvdata->inject_ctl, drvdata->base + AURORA_ERR_INJECT_CTL_REG);
}
#endif
static void aurora_l2_check(struct edac_device_ctl_info *dci)
{
struct aurora_l2_drvdata *drvdata = dci->pvt_info;
uint32_t cnt, src, txn, err, attr_cap, addr_cap, way_cap;
unsigned int cnt_ce, cnt_ue;
char *msg = drvdata->msg;
size_t size = sizeof(drvdata->msg);
size_t len = 0;
cnt = readl(drvdata->base + AURORA_ERR_CNT_REG);
attr_cap = readl(drvdata->base + AURORA_ERR_ATTR_CAP_REG);
addr_cap = readl(drvdata->base + AURORA_ERR_ADDR_CAP_REG);
way_cap = readl(drvdata->base + AURORA_ERR_WAY_CAP_REG);
cnt_ce = (cnt & AURORA_ERR_CNT_CE_MASK) >> AURORA_ERR_CNT_CE_OFFSET;
cnt_ue = (cnt & AURORA_ERR_CNT_UE_MASK) >> AURORA_ERR_CNT_UE_OFFSET;
/* clear error counter registers */
if (cnt_ce || cnt_ue)
writel(AURORA_ERR_CNT_CLR, drvdata->base + AURORA_ERR_CNT_REG);
if (!(attr_cap & AURORA_ERR_ATTR_CAP_VALID))
goto clear_remaining;
src = (attr_cap & AURORA_ERR_ATTR_SRC_MSK) >> AURORA_ERR_ATTR_SRC_OFF;
if (src <= 3)
len += snprintf(msg+len, size-len, "src=CPU%d ", src);
else
len += snprintf(msg+len, size-len, "src=IO ");
txn = (attr_cap & AURORA_ERR_ATTR_TXN_MSK) >> AURORA_ERR_ATTR_TXN_OFF;
switch (txn) {
case 0:
len += snprintf(msg+len, size-len, "txn=Data-Read ");
break;
case 1:
len += snprintf(msg+len, size-len, "txn=Isn-Read ");
break;
case 2:
len += snprintf(msg+len, size-len, "txn=Clean-Flush ");
break;
case 3:
len += snprintf(msg+len, size-len, "txn=Eviction ");
break;
case 4:
len += snprintf(msg+len, size-len,
"txn=Read-Modify-Write ");
break;
}
err = (attr_cap & AURORA_ERR_ATTR_ERR_MSK) >> AURORA_ERR_ATTR_ERR_OFF;
switch (err) {
case 0:
len += snprintf(msg+len, size-len, "err=CorrECC ");
break;
case 1:
len += snprintf(msg+len, size-len, "err=UnCorrECC ");
break;
case 2:
len += snprintf(msg+len, size-len, "err=TagParity ");
break;
}
len += snprintf(msg+len, size-len, "addr=0x%x ", addr_cap & AURORA_ERR_ADDR_CAP_ADDR_MASK);
len += snprintf(msg+len, size-len, "index=0x%x ", (way_cap & AURORA_ERR_WAY_IDX_MSK) >> AURORA_ERR_WAY_IDX_OFF);
len += snprintf(msg+len, size-len, "way=0x%x", (way_cap & AURORA_ERR_WAY_CAP_WAY_MASK) >> AURORA_ERR_WAY_CAP_WAY_OFFSET);
/* clear error capture registers */
writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG);
if (err) {
/* UnCorrECC or TagParity */
if (cnt_ue)
cnt_ue--;
edac_device_handle_ue(dci, 0, 0, drvdata->msg);
} else {
if (cnt_ce)
cnt_ce--;
edac_device_handle_ce(dci, 0, 0, drvdata->msg);
}
clear_remaining:
/* report remaining errors */
while (cnt_ue--)
edac_device_handle_ue(dci, 0, 0, "details unavailable (multiple errors)");
while (cnt_ce--)
edac_device_handle_ue(dci, 0, 0, "details unavailable (multiple errors)");
}
static void aurora_l2_poll(struct edac_device_ctl_info *dci)
{
#ifdef CONFIG_EDAC_DEBUG
struct aurora_l2_drvdata *drvdata = dci->pvt_info;
#endif
aurora_l2_check(dci);
#ifdef CONFIG_EDAC_DEBUG
aurora_l2_inject(drvdata);
#endif
}
static const struct of_device_id aurora_l2_of_match[] = {
{.compatible = "marvell,aurora-system-cache",},
{},
};
MODULE_DEVICE_TABLE(of, aurora_l2_of_match);
static int aurora_l2_probe(struct platform_device *pdev)
{
struct aurora_l2_drvdata *drvdata;
struct edac_device_ctl_info *dci;
const struct of_device_id *id;
uint32_t l2x0_aux_ctrl;
void __iomem *base;
struct resource *r;
r = platform_get_resource(pdev, IORESOURCE_MEM, 0);
if (!r) {
dev_err(&pdev->dev, "Unable to get mem resource\n");
return -ENODEV;
}
base = devm_ioremap_resource(&pdev->dev, r);
if (IS_ERR(base)) {
dev_err(&pdev->dev, "Unable to map regs\n");
return PTR_ERR(base);
}
l2x0_aux_ctrl = readl(base + L2X0_AUX_CTRL);
if (!(l2x0_aux_ctrl & AURORA_ACR_PARITY_EN))
dev_warn(&pdev->dev, "tag parity is not enabled");
if (!(l2x0_aux_ctrl & AURORA_ACR_ECC_EN))
dev_warn(&pdev->dev, "data ECC is not enabled");
dci = edac_device_alloc_ctl_info(sizeof(*drvdata),
"cpu", 1, "L", 1, 2, NULL, 0, 0);
if (!dci)
return -ENOMEM;
drvdata = dci->pvt_info;
drvdata->base = base;
dci->dev = &pdev->dev;
platform_set_drvdata(pdev, dci);
id = of_match_device(aurora_l2_of_match, &pdev->dev);
dci->edac_check = aurora_l2_poll;
dci->mod_name = pdev->dev.driver->name;
dci->ctl_name = id ? id->compatible : "unknown";
dci->dev_name = dev_name(&pdev->dev);
/* clear registers */
writel(AURORA_ERR_CNT_CLR, drvdata->base + AURORA_ERR_CNT_REG);
writel(AURORA_ERR_ATTR_CAP_VALID, drvdata->base + AURORA_ERR_ATTR_CAP_REG);
if (edac_device_add_device(dci)) {
edac_device_free_ctl_info(dci);
return -EINVAL;
}
#ifdef CONFIG_EDAC_DEBUG
drvdata->debugfs = edac_debugfs_create_dir(dev_name(&pdev->dev));
if (drvdata->debugfs) {
edac_debugfs_create_x32("inject_addr", 0644,
drvdata->debugfs,
&drvdata->inject_addr);
edac_debugfs_create_x32("inject_mask", 0644,
drvdata->debugfs,
&drvdata->inject_mask);
edac_debugfs_create_x8("inject_ctl", 0644,
drvdata->debugfs, &drvdata->inject_ctl);
}
#endif
return 0;
}
static int aurora_l2_remove(struct platform_device *pdev)
{
struct edac_device_ctl_info *dci = platform_get_drvdata(pdev);
#ifdef CONFIG_EDAC_DEBUG
struct aurora_l2_drvdata *drvdata = dci->pvt_info;
edac_debugfs_remove_recursive(drvdata->debugfs);
#endif
edac_device_del_device(&pdev->dev);
edac_device_free_ctl_info(dci);
platform_set_drvdata(pdev, NULL);
return 0;
}
static struct platform_driver aurora_l2_driver = {
.probe = aurora_l2_probe,
.remove = aurora_l2_remove,
.driver = {
.name = "aurora_l2_edac",
.of_match_table = of_match_ptr(aurora_l2_of_match),
},
};
/************************ Driver registration ******************************/
static struct platform_driver * const drivers[] = {
&axp_mc_driver,
&aurora_l2_driver,
};
static int __init armada_xp_edac_init(void)
{
int res;
/* only polling is supported */
edac_op_state = EDAC_OPSTATE_POLL;
res = platform_register_drivers(drivers, ARRAY_SIZE(drivers));
if (res)
pr_warn("Aramda XP EDAC drivers fail to register\n");
return 0;
}
module_init(armada_xp_edac_init);
static void __exit armada_xp_edac_exit(void)
{
platform_unregister_drivers(drivers, ARRAY_SIZE(drivers));
}
module_exit(armada_xp_edac_exit);
MODULE_LICENSE("GPL v2");
MODULE_AUTHOR("Pengutronix");
MODULE_DESCRIPTION("EDAC Drivers for Marvell Armada XP SDRAM and L2 Cache Controller");