1349 lines
34 KiB
ArmAsm
1349 lines
34 KiB
ArmAsm
/* SPDX-License-Identifier: GPL-2.0 */
|
|
/*
|
|
* Copyright (C) 1991,1992 Linus Torvalds
|
|
*
|
|
* entry_32.S contains the system-call and low-level fault and trap handling routines.
|
|
*
|
|
* Stack layout while running C code:
|
|
* ptrace needs to have all registers on the stack.
|
|
* If the order here is changed, it needs to be
|
|
* updated in fork.c:copy_process(), signal.c:do_signal(),
|
|
* ptrace.c and ptrace.h
|
|
*
|
|
* 0(%esp) - %ebx
|
|
* 4(%esp) - %ecx
|
|
* 8(%esp) - %edx
|
|
* C(%esp) - %esi
|
|
* 10(%esp) - %edi
|
|
* 14(%esp) - %ebp
|
|
* 18(%esp) - %eax
|
|
* 1C(%esp) - %ds
|
|
* 20(%esp) - %es
|
|
* 24(%esp) - %fs
|
|
* 28(%esp) - %gs saved iff !CONFIG_X86_32_LAZY_GS
|
|
* 2C(%esp) - orig_eax
|
|
* 30(%esp) - %eip
|
|
* 34(%esp) - %cs
|
|
* 38(%esp) - %eflags
|
|
* 3C(%esp) - %oldesp
|
|
* 40(%esp) - %oldss
|
|
*/
|
|
|
|
#include <linux/linkage.h>
|
|
#include <linux/err.h>
|
|
#include <asm/thread_info.h>
|
|
#include <asm/irqflags.h>
|
|
#include <asm/errno.h>
|
|
#include <asm/segment.h>
|
|
#include <asm/smp.h>
|
|
#include <asm/percpu.h>
|
|
#include <asm/processor-flags.h>
|
|
#include <asm/irq_vectors.h>
|
|
#include <asm/cpufeatures.h>
|
|
#include <asm/alternative-asm.h>
|
|
#include <asm/asm.h>
|
|
#include <asm/smap.h>
|
|
#include <asm/frame.h>
|
|
#include <asm/trapnr.h>
|
|
#include <asm/nospec-branch.h>
|
|
|
|
#include "calling.h"
|
|
|
|
.section .entry.text, "ax"
|
|
|
|
#define PTI_SWITCH_MASK (1 << PAGE_SHIFT)
|
|
|
|
/*
|
|
* User gs save/restore
|
|
*
|
|
* %gs is used for userland TLS and kernel only uses it for stack
|
|
* canary which is required to be at %gs:20 by gcc. Read the comment
|
|
* at the top of stackprotector.h for more info.
|
|
*
|
|
* Local labels 98 and 99 are used.
|
|
*/
|
|
#ifdef CONFIG_X86_32_LAZY_GS
|
|
|
|
/* unfortunately push/pop can't be no-op */
|
|
.macro PUSH_GS
|
|
pushl $0
|
|
.endm
|
|
.macro POP_GS pop=0
|
|
addl $(4 + \pop), %esp
|
|
.endm
|
|
.macro POP_GS_EX
|
|
.endm
|
|
|
|
/* all the rest are no-op */
|
|
.macro PTGS_TO_GS
|
|
.endm
|
|
.macro PTGS_TO_GS_EX
|
|
.endm
|
|
.macro GS_TO_REG reg
|
|
.endm
|
|
.macro REG_TO_PTGS reg
|
|
.endm
|
|
.macro SET_KERNEL_GS reg
|
|
.endm
|
|
|
|
#else /* CONFIG_X86_32_LAZY_GS */
|
|
|
|
.macro PUSH_GS
|
|
pushl %gs
|
|
.endm
|
|
|
|
.macro POP_GS pop=0
|
|
98: popl %gs
|
|
.if \pop <> 0
|
|
add $\pop, %esp
|
|
.endif
|
|
.endm
|
|
.macro POP_GS_EX
|
|
.pushsection .fixup, "ax"
|
|
99: movl $0, (%esp)
|
|
jmp 98b
|
|
.popsection
|
|
_ASM_EXTABLE(98b, 99b)
|
|
.endm
|
|
|
|
.macro PTGS_TO_GS
|
|
98: mov PT_GS(%esp), %gs
|
|
.endm
|
|
.macro PTGS_TO_GS_EX
|
|
.pushsection .fixup, "ax"
|
|
99: movl $0, PT_GS(%esp)
|
|
jmp 98b
|
|
.popsection
|
|
_ASM_EXTABLE(98b, 99b)
|
|
.endm
|
|
|
|
.macro GS_TO_REG reg
|
|
movl %gs, \reg
|
|
.endm
|
|
.macro REG_TO_PTGS reg
|
|
movl \reg, PT_GS(%esp)
|
|
.endm
|
|
.macro SET_KERNEL_GS reg
|
|
movl $(__KERNEL_STACK_CANARY), \reg
|
|
movl \reg, %gs
|
|
.endm
|
|
|
|
#endif /* CONFIG_X86_32_LAZY_GS */
|
|
|
|
/* Unconditionally switch to user cr3 */
|
|
.macro SWITCH_TO_USER_CR3 scratch_reg:req
|
|
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
|
|
|
|
movl %cr3, \scratch_reg
|
|
orl $PTI_SWITCH_MASK, \scratch_reg
|
|
movl \scratch_reg, %cr3
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
.macro BUG_IF_WRONG_CR3 no_user_check=0
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
|
|
.if \no_user_check == 0
|
|
/* coming from usermode? */
|
|
testl $USER_SEGMENT_RPL_MASK, PT_CS(%esp)
|
|
jz .Lend_\@
|
|
.endif
|
|
/* On user-cr3? */
|
|
movl %cr3, %eax
|
|
testl $PTI_SWITCH_MASK, %eax
|
|
jnz .Lend_\@
|
|
/* From userspace with kernel cr3 - BUG */
|
|
ud2
|
|
.Lend_\@:
|
|
#endif
|
|
.endm
|
|
|
|
/*
|
|
* Switch to kernel cr3 if not already loaded and return current cr3 in
|
|
* \scratch_reg
|
|
*/
|
|
.macro SWITCH_TO_KERNEL_CR3 scratch_reg:req
|
|
ALTERNATIVE "jmp .Lend_\@", "", X86_FEATURE_PTI
|
|
movl %cr3, \scratch_reg
|
|
/* Test if we are already on kernel CR3 */
|
|
testl $PTI_SWITCH_MASK, \scratch_reg
|
|
jz .Lend_\@
|
|
andl $(~PTI_SWITCH_MASK), \scratch_reg
|
|
movl \scratch_reg, %cr3
|
|
/* Return original CR3 in \scratch_reg */
|
|
orl $PTI_SWITCH_MASK, \scratch_reg
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
#define CS_FROM_ENTRY_STACK (1 << 31)
|
|
#define CS_FROM_USER_CR3 (1 << 30)
|
|
#define CS_FROM_KERNEL (1 << 29)
|
|
#define CS_FROM_ESPFIX (1 << 28)
|
|
|
|
.macro FIXUP_FRAME
|
|
/*
|
|
* The high bits of the CS dword (__csh) are used for CS_FROM_*.
|
|
* Clear them in case hardware didn't do this for us.
|
|
*/
|
|
andl $0x0000ffff, 4*4(%esp)
|
|
|
|
#ifdef CONFIG_VM86
|
|
testl $X86_EFLAGS_VM, 5*4(%esp)
|
|
jnz .Lfrom_usermode_no_fixup_\@
|
|
#endif
|
|
testl $USER_SEGMENT_RPL_MASK, 4*4(%esp)
|
|
jnz .Lfrom_usermode_no_fixup_\@
|
|
|
|
orl $CS_FROM_KERNEL, 4*4(%esp)
|
|
|
|
/*
|
|
* When we're here from kernel mode; the (exception) stack looks like:
|
|
*
|
|
* 6*4(%esp) - <previous context>
|
|
* 5*4(%esp) - flags
|
|
* 4*4(%esp) - cs
|
|
* 3*4(%esp) - ip
|
|
* 2*4(%esp) - orig_eax
|
|
* 1*4(%esp) - gs / function
|
|
* 0*4(%esp) - fs
|
|
*
|
|
* Lets build a 5 entry IRET frame after that, such that struct pt_regs
|
|
* is complete and in particular regs->sp is correct. This gives us
|
|
* the original 6 enties as gap:
|
|
*
|
|
* 14*4(%esp) - <previous context>
|
|
* 13*4(%esp) - gap / flags
|
|
* 12*4(%esp) - gap / cs
|
|
* 11*4(%esp) - gap / ip
|
|
* 10*4(%esp) - gap / orig_eax
|
|
* 9*4(%esp) - gap / gs / function
|
|
* 8*4(%esp) - gap / fs
|
|
* 7*4(%esp) - ss
|
|
* 6*4(%esp) - sp
|
|
* 5*4(%esp) - flags
|
|
* 4*4(%esp) - cs
|
|
* 3*4(%esp) - ip
|
|
* 2*4(%esp) - orig_eax
|
|
* 1*4(%esp) - gs / function
|
|
* 0*4(%esp) - fs
|
|
*/
|
|
|
|
pushl %ss # ss
|
|
pushl %esp # sp (points at ss)
|
|
addl $7*4, (%esp) # point sp back at the previous context
|
|
pushl 7*4(%esp) # flags
|
|
pushl 7*4(%esp) # cs
|
|
pushl 7*4(%esp) # ip
|
|
pushl 7*4(%esp) # orig_eax
|
|
pushl 7*4(%esp) # gs / function
|
|
pushl 7*4(%esp) # fs
|
|
.Lfrom_usermode_no_fixup_\@:
|
|
.endm
|
|
|
|
.macro IRET_FRAME
|
|
/*
|
|
* We're called with %ds, %es, %fs, and %gs from the interrupted
|
|
* frame, so we shouldn't use them. Also, we may be in ESPFIX
|
|
* mode and therefore have a nonzero SS base and an offset ESP,
|
|
* so any attempt to access the stack needs to use SS. (except for
|
|
* accesses through %esp, which automatically use SS.)
|
|
*/
|
|
testl $CS_FROM_KERNEL, 1*4(%esp)
|
|
jz .Lfinished_frame_\@
|
|
|
|
/*
|
|
* Reconstruct the 3 entry IRET frame right after the (modified)
|
|
* regs->sp without lowering %esp in between, such that an NMI in the
|
|
* middle doesn't scribble our stack.
|
|
*/
|
|
pushl %eax
|
|
pushl %ecx
|
|
movl 5*4(%esp), %eax # (modified) regs->sp
|
|
|
|
movl 4*4(%esp), %ecx # flags
|
|
movl %ecx, %ss:-1*4(%eax)
|
|
|
|
movl 3*4(%esp), %ecx # cs
|
|
andl $0x0000ffff, %ecx
|
|
movl %ecx, %ss:-2*4(%eax)
|
|
|
|
movl 2*4(%esp), %ecx # ip
|
|
movl %ecx, %ss:-3*4(%eax)
|
|
|
|
movl 1*4(%esp), %ecx # eax
|
|
movl %ecx, %ss:-4*4(%eax)
|
|
|
|
popl %ecx
|
|
lea -4*4(%eax), %esp
|
|
popl %eax
|
|
.Lfinished_frame_\@:
|
|
.endm
|
|
|
|
.macro SAVE_ALL pt_regs_ax=%eax switch_stacks=0 skip_gs=0 unwind_espfix=0
|
|
cld
|
|
.if \skip_gs == 0
|
|
PUSH_GS
|
|
.endif
|
|
pushl %fs
|
|
|
|
pushl %eax
|
|
movl $(__KERNEL_PERCPU), %eax
|
|
movl %eax, %fs
|
|
.if \unwind_espfix > 0
|
|
UNWIND_ESPFIX_STACK
|
|
.endif
|
|
popl %eax
|
|
|
|
FIXUP_FRAME
|
|
pushl %es
|
|
pushl %ds
|
|
pushl \pt_regs_ax
|
|
pushl %ebp
|
|
pushl %edi
|
|
pushl %esi
|
|
pushl %edx
|
|
pushl %ecx
|
|
pushl %ebx
|
|
movl $(__USER_DS), %edx
|
|
movl %edx, %ds
|
|
movl %edx, %es
|
|
.if \skip_gs == 0
|
|
SET_KERNEL_GS %edx
|
|
.endif
|
|
/* Switch to kernel stack if necessary */
|
|
.if \switch_stacks > 0
|
|
SWITCH_TO_KERNEL_STACK
|
|
.endif
|
|
.endm
|
|
|
|
.macro SAVE_ALL_NMI cr3_reg:req unwind_espfix=0
|
|
SAVE_ALL unwind_espfix=\unwind_espfix
|
|
|
|
BUG_IF_WRONG_CR3
|
|
|
|
/*
|
|
* Now switch the CR3 when PTI is enabled.
|
|
*
|
|
* We can enter with either user or kernel cr3, the code will
|
|
* store the old cr3 in \cr3_reg and switches to the kernel cr3
|
|
* if necessary.
|
|
*/
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=\cr3_reg
|
|
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
.macro RESTORE_INT_REGS
|
|
popl %ebx
|
|
popl %ecx
|
|
popl %edx
|
|
popl %esi
|
|
popl %edi
|
|
popl %ebp
|
|
popl %eax
|
|
.endm
|
|
|
|
.macro RESTORE_REGS pop=0
|
|
RESTORE_INT_REGS
|
|
1: popl %ds
|
|
2: popl %es
|
|
3: popl %fs
|
|
POP_GS \pop
|
|
IRET_FRAME
|
|
.pushsection .fixup, "ax"
|
|
4: movl $0, (%esp)
|
|
jmp 1b
|
|
5: movl $0, (%esp)
|
|
jmp 2b
|
|
6: movl $0, (%esp)
|
|
jmp 3b
|
|
.popsection
|
|
_ASM_EXTABLE(1b, 4b)
|
|
_ASM_EXTABLE(2b, 5b)
|
|
_ASM_EXTABLE(3b, 6b)
|
|
POP_GS_EX
|
|
.endm
|
|
|
|
.macro RESTORE_ALL_NMI cr3_reg:req pop=0
|
|
/*
|
|
* Now switch the CR3 when PTI is enabled.
|
|
*
|
|
* We enter with kernel cr3 and switch the cr3 to the value
|
|
* stored on \cr3_reg, which is either a user or a kernel cr3.
|
|
*/
|
|
ALTERNATIVE "jmp .Lswitched_\@", "", X86_FEATURE_PTI
|
|
|
|
testl $PTI_SWITCH_MASK, \cr3_reg
|
|
jz .Lswitched_\@
|
|
|
|
/* User cr3 in \cr3_reg - write it to hardware cr3 */
|
|
movl \cr3_reg, %cr3
|
|
|
|
.Lswitched_\@:
|
|
|
|
BUG_IF_WRONG_CR3
|
|
|
|
RESTORE_REGS pop=\pop
|
|
.endm
|
|
|
|
.macro CHECK_AND_APPLY_ESPFIX
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
#define GDT_ESPFIX_OFFSET (GDT_ENTRY_ESPFIX_SS * 8)
|
|
#define GDT_ESPFIX_SS PER_CPU_VAR(gdt_page) + GDT_ESPFIX_OFFSET
|
|
|
|
ALTERNATIVE "jmp .Lend_\@", "", X86_BUG_ESPFIX
|
|
|
|
movl PT_EFLAGS(%esp), %eax # mix EFLAGS, SS and CS
|
|
/*
|
|
* Warning: PT_OLDSS(%esp) contains the wrong/random values if we
|
|
* are returning to the kernel.
|
|
* See comments in process.c:copy_thread() for details.
|
|
*/
|
|
movb PT_OLDSS(%esp), %ah
|
|
movb PT_CS(%esp), %al
|
|
andl $(X86_EFLAGS_VM | (SEGMENT_TI_MASK << 8) | SEGMENT_RPL_MASK), %eax
|
|
cmpl $((SEGMENT_LDT << 8) | USER_RPL), %eax
|
|
jne .Lend_\@ # returning to user-space with LDT SS
|
|
|
|
/*
|
|
* Setup and switch to ESPFIX stack
|
|
*
|
|
* We're returning to userspace with a 16 bit stack. The CPU will not
|
|
* restore the high word of ESP for us on executing iret... This is an
|
|
* "official" bug of all the x86-compatible CPUs, which we can work
|
|
* around to make dosemu and wine happy. We do this by preloading the
|
|
* high word of ESP with the high word of the userspace ESP while
|
|
* compensating for the offset by changing to the ESPFIX segment with
|
|
* a base address that matches for the difference.
|
|
*/
|
|
mov %esp, %edx /* load kernel esp */
|
|
mov PT_OLDESP(%esp), %eax /* load userspace esp */
|
|
mov %dx, %ax /* eax: new kernel esp */
|
|
sub %eax, %edx /* offset (low word is 0) */
|
|
shr $16, %edx
|
|
mov %dl, GDT_ESPFIX_SS + 4 /* bits 16..23 */
|
|
mov %dh, GDT_ESPFIX_SS + 7 /* bits 24..31 */
|
|
pushl $__ESPFIX_SS
|
|
pushl %eax /* new kernel esp */
|
|
/*
|
|
* Disable interrupts, but do not irqtrace this section: we
|
|
* will soon execute iret and the tracer was already set to
|
|
* the irqstate after the IRET:
|
|
*/
|
|
DISABLE_INTERRUPTS(CLBR_ANY)
|
|
lss (%esp), %esp /* switch to espfix segment */
|
|
.Lend_\@:
|
|
#endif /* CONFIG_X86_ESPFIX32 */
|
|
.endm
|
|
|
|
/*
|
|
* Called with pt_regs fully populated and kernel segments loaded,
|
|
* so we can access PER_CPU and use the integer registers.
|
|
*
|
|
* We need to be very careful here with the %esp switch, because an NMI
|
|
* can happen everywhere. If the NMI handler finds itself on the
|
|
* entry-stack, it will overwrite the task-stack and everything we
|
|
* copied there. So allocate the stack-frame on the task-stack and
|
|
* switch to it before we do any copying.
|
|
*/
|
|
|
|
.macro SWITCH_TO_KERNEL_STACK
|
|
|
|
BUG_IF_WRONG_CR3
|
|
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
|
|
|
|
/*
|
|
* %eax now contains the entry cr3 and we carry it forward in
|
|
* that register for the time this macro runs
|
|
*/
|
|
|
|
/* Are we on the entry stack? Bail out if not! */
|
|
movl PER_CPU_VAR(cpu_entry_area), %ecx
|
|
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
|
|
subl %esp, %ecx /* ecx = (end of entry_stack) - esp */
|
|
cmpl $SIZEOF_entry_stack, %ecx
|
|
jae .Lend_\@
|
|
|
|
/* Load stack pointer into %esi and %edi */
|
|
movl %esp, %esi
|
|
movl %esi, %edi
|
|
|
|
/* Move %edi to the top of the entry stack */
|
|
andl $(MASK_entry_stack), %edi
|
|
addl $(SIZEOF_entry_stack), %edi
|
|
|
|
/* Load top of task-stack into %edi */
|
|
movl TSS_entry2task_stack(%edi), %edi
|
|
|
|
/* Special case - entry from kernel mode via entry stack */
|
|
#ifdef CONFIG_VM86
|
|
movl PT_EFLAGS(%esp), %ecx # mix EFLAGS and CS
|
|
movb PT_CS(%esp), %cl
|
|
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %ecx
|
|
#else
|
|
movl PT_CS(%esp), %ecx
|
|
andl $SEGMENT_RPL_MASK, %ecx
|
|
#endif
|
|
cmpl $USER_RPL, %ecx
|
|
jb .Lentry_from_kernel_\@
|
|
|
|
/* Bytes to copy */
|
|
movl $PTREGS_SIZE, %ecx
|
|
|
|
#ifdef CONFIG_VM86
|
|
testl $X86_EFLAGS_VM, PT_EFLAGS(%esi)
|
|
jz .Lcopy_pt_regs_\@
|
|
|
|
/*
|
|
* Stack-frame contains 4 additional segment registers when
|
|
* coming from VM86 mode
|
|
*/
|
|
addl $(4 * 4), %ecx
|
|
|
|
#endif
|
|
.Lcopy_pt_regs_\@:
|
|
|
|
/* Allocate frame on task-stack */
|
|
subl %ecx, %edi
|
|
|
|
/* Switch to task-stack */
|
|
movl %edi, %esp
|
|
|
|
/*
|
|
* We are now on the task-stack and can safely copy over the
|
|
* stack-frame
|
|
*/
|
|
shrl $2, %ecx
|
|
cld
|
|
rep movsl
|
|
|
|
jmp .Lend_\@
|
|
|
|
.Lentry_from_kernel_\@:
|
|
|
|
/*
|
|
* This handles the case when we enter the kernel from
|
|
* kernel-mode and %esp points to the entry-stack. When this
|
|
* happens we need to switch to the task-stack to run C code,
|
|
* but switch back to the entry-stack again when we approach
|
|
* iret and return to the interrupted code-path. This usually
|
|
* happens when we hit an exception while restoring user-space
|
|
* segment registers on the way back to user-space or when the
|
|
* sysenter handler runs with eflags.tf set.
|
|
*
|
|
* When we switch to the task-stack here, we can't trust the
|
|
* contents of the entry-stack anymore, as the exception handler
|
|
* might be scheduled out or moved to another CPU. Therefore we
|
|
* copy the complete entry-stack to the task-stack and set a
|
|
* marker in the iret-frame (bit 31 of the CS dword) to detect
|
|
* what we've done on the iret path.
|
|
*
|
|
* On the iret path we copy everything back and switch to the
|
|
* entry-stack, so that the interrupted kernel code-path
|
|
* continues on the same stack it was interrupted with.
|
|
*
|
|
* Be aware that an NMI can happen anytime in this code.
|
|
*
|
|
* %esi: Entry-Stack pointer (same as %esp)
|
|
* %edi: Top of the task stack
|
|
* %eax: CR3 on kernel entry
|
|
*/
|
|
|
|
/* Calculate number of bytes on the entry stack in %ecx */
|
|
movl %esi, %ecx
|
|
|
|
/* %ecx to the top of entry-stack */
|
|
andl $(MASK_entry_stack), %ecx
|
|
addl $(SIZEOF_entry_stack), %ecx
|
|
|
|
/* Number of bytes on the entry stack to %ecx */
|
|
sub %esi, %ecx
|
|
|
|
/* Mark stackframe as coming from entry stack */
|
|
orl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
|
|
|
|
/*
|
|
* Test the cr3 used to enter the kernel and add a marker
|
|
* so that we can switch back to it before iret.
|
|
*/
|
|
testl $PTI_SWITCH_MASK, %eax
|
|
jz .Lcopy_pt_regs_\@
|
|
orl $CS_FROM_USER_CR3, PT_CS(%esp)
|
|
|
|
/*
|
|
* %esi and %edi are unchanged, %ecx contains the number of
|
|
* bytes to copy. The code at .Lcopy_pt_regs_\@ will allocate
|
|
* the stack-frame on task-stack and copy everything over
|
|
*/
|
|
jmp .Lcopy_pt_regs_\@
|
|
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
/*
|
|
* Switch back from the kernel stack to the entry stack.
|
|
*
|
|
* The %esp register must point to pt_regs on the task stack. It will
|
|
* first calculate the size of the stack-frame to copy, depending on
|
|
* whether we return to VM86 mode or not. With that it uses 'rep movsl'
|
|
* to copy the contents of the stack over to the entry stack.
|
|
*
|
|
* We must be very careful here, as we can't trust the contents of the
|
|
* task-stack once we switched to the entry-stack. When an NMI happens
|
|
* while on the entry-stack, the NMI handler will switch back to the top
|
|
* of the task stack, overwriting our stack-frame we are about to copy.
|
|
* Therefore we switch the stack only after everything is copied over.
|
|
*/
|
|
.macro SWITCH_TO_ENTRY_STACK
|
|
|
|
/* Bytes to copy */
|
|
movl $PTREGS_SIZE, %ecx
|
|
|
|
#ifdef CONFIG_VM86
|
|
testl $(X86_EFLAGS_VM), PT_EFLAGS(%esp)
|
|
jz .Lcopy_pt_regs_\@
|
|
|
|
/* Additional 4 registers to copy when returning to VM86 mode */
|
|
addl $(4 * 4), %ecx
|
|
|
|
.Lcopy_pt_regs_\@:
|
|
#endif
|
|
|
|
/* Initialize source and destination for movsl */
|
|
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
|
|
subl %ecx, %edi
|
|
movl %esp, %esi
|
|
|
|
/* Save future stack pointer in %ebx */
|
|
movl %edi, %ebx
|
|
|
|
/* Copy over the stack-frame */
|
|
shrl $2, %ecx
|
|
cld
|
|
rep movsl
|
|
|
|
/*
|
|
* Switch to entry-stack - needs to happen after everything is
|
|
* copied because the NMI handler will overwrite the task-stack
|
|
* when on entry-stack
|
|
*/
|
|
movl %ebx, %esp
|
|
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
/*
|
|
* This macro handles the case when we return to kernel-mode on the iret
|
|
* path and have to switch back to the entry stack and/or user-cr3
|
|
*
|
|
* See the comments below the .Lentry_from_kernel_\@ label in the
|
|
* SWITCH_TO_KERNEL_STACK macro for more details.
|
|
*/
|
|
.macro PARANOID_EXIT_TO_KERNEL_MODE
|
|
|
|
/*
|
|
* Test if we entered the kernel with the entry-stack. Most
|
|
* likely we did not, because this code only runs on the
|
|
* return-to-kernel path.
|
|
*/
|
|
testl $CS_FROM_ENTRY_STACK, PT_CS(%esp)
|
|
jz .Lend_\@
|
|
|
|
/* Unlikely slow-path */
|
|
|
|
/* Clear marker from stack-frame */
|
|
andl $(~CS_FROM_ENTRY_STACK), PT_CS(%esp)
|
|
|
|
/* Copy the remaining task-stack contents to entry-stack */
|
|
movl %esp, %esi
|
|
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %edi
|
|
|
|
/* Bytes on the task-stack to ecx */
|
|
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp1), %ecx
|
|
subl %esi, %ecx
|
|
|
|
/* Allocate stack-frame on entry-stack */
|
|
subl %ecx, %edi
|
|
|
|
/*
|
|
* Save future stack-pointer, we must not switch until the
|
|
* copy is done, otherwise the NMI handler could destroy the
|
|
* contents of the task-stack we are about to copy.
|
|
*/
|
|
movl %edi, %ebx
|
|
|
|
/* Do the copy */
|
|
shrl $2, %ecx
|
|
cld
|
|
rep movsl
|
|
|
|
/* Safe to switch to entry-stack now */
|
|
movl %ebx, %esp
|
|
|
|
/*
|
|
* We came from entry-stack and need to check if we also need to
|
|
* switch back to user cr3.
|
|
*/
|
|
testl $CS_FROM_USER_CR3, PT_CS(%esp)
|
|
jz .Lend_\@
|
|
|
|
/* Clear marker from stack-frame */
|
|
andl $(~CS_FROM_USER_CR3), PT_CS(%esp)
|
|
|
|
SWITCH_TO_USER_CR3 scratch_reg=%eax
|
|
|
|
.Lend_\@:
|
|
.endm
|
|
|
|
/**
|
|
* idtentry - Macro to generate entry stubs for simple IDT entries
|
|
* @vector: Vector number
|
|
* @asmsym: ASM symbol for the entry point
|
|
* @cfunc: C function to be called
|
|
* @has_error_code: Hardware pushed error code on stack
|
|
*/
|
|
.macro idtentry vector asmsym cfunc has_error_code:req
|
|
SYM_CODE_START(\asmsym)
|
|
ASM_CLAC
|
|
cld
|
|
|
|
.if \has_error_code == 0
|
|
pushl $0 /* Clear the error code */
|
|
.endif
|
|
|
|
/* Push the C-function address into the GS slot */
|
|
pushl $\cfunc
|
|
/* Invoke the common exception entry */
|
|
jmp handle_exception
|
|
SYM_CODE_END(\asmsym)
|
|
.endm
|
|
|
|
.macro idtentry_irq vector cfunc
|
|
.p2align CONFIG_X86_L1_CACHE_SHIFT
|
|
SYM_CODE_START_LOCAL(asm_\cfunc)
|
|
ASM_CLAC
|
|
SAVE_ALL switch_stacks=1
|
|
ENCODE_FRAME_POINTER
|
|
movl %esp, %eax
|
|
movl PT_ORIG_EAX(%esp), %edx /* get the vector from stack */
|
|
movl $-1, PT_ORIG_EAX(%esp) /* no syscall to restart */
|
|
call \cfunc
|
|
jmp handle_exception_return
|
|
SYM_CODE_END(asm_\cfunc)
|
|
.endm
|
|
|
|
.macro idtentry_sysvec vector cfunc
|
|
idtentry \vector asm_\cfunc \cfunc has_error_code=0
|
|
.endm
|
|
|
|
/*
|
|
* Include the defines which emit the idt entries which are shared
|
|
* shared between 32 and 64 bit and emit the __irqentry_text_* markers
|
|
* so the stacktrace boundary checks work.
|
|
*/
|
|
.align 16
|
|
.globl __irqentry_text_start
|
|
__irqentry_text_start:
|
|
|
|
#include <asm/idtentry.h>
|
|
|
|
.align 16
|
|
.globl __irqentry_text_end
|
|
__irqentry_text_end:
|
|
|
|
/*
|
|
* %eax: prev task
|
|
* %edx: next task
|
|
*/
|
|
.pushsection .text, "ax"
|
|
SYM_CODE_START(__switch_to_asm)
|
|
/*
|
|
* Save callee-saved registers
|
|
* This must match the order in struct inactive_task_frame
|
|
*/
|
|
pushl %ebp
|
|
pushl %ebx
|
|
pushl %edi
|
|
pushl %esi
|
|
/*
|
|
* Flags are saved to prevent AC leakage. This could go
|
|
* away if objtool would have 32bit support to verify
|
|
* the STAC/CLAC correctness.
|
|
*/
|
|
pushfl
|
|
|
|
/* switch stack */
|
|
movl %esp, TASK_threadsp(%eax)
|
|
movl TASK_threadsp(%edx), %esp
|
|
|
|
#ifdef CONFIG_STACKPROTECTOR
|
|
movl TASK_stack_canary(%edx), %ebx
|
|
movl %ebx, PER_CPU_VAR(stack_canary)+stack_canary_offset
|
|
#endif
|
|
|
|
#ifdef CONFIG_RETPOLINE
|
|
/*
|
|
* When switching from a shallower to a deeper call stack
|
|
* the RSB may either underflow or use entries populated
|
|
* with userspace addresses. On CPUs where those concerns
|
|
* exist, overwrite the RSB with entries which capture
|
|
* speculative execution to prevent attack.
|
|
*/
|
|
FILL_RETURN_BUFFER %ebx, RSB_CLEAR_LOOPS, X86_FEATURE_RSB_CTXSW
|
|
#endif
|
|
|
|
/* Restore flags or the incoming task to restore AC state. */
|
|
popfl
|
|
/* restore callee-saved registers */
|
|
popl %esi
|
|
popl %edi
|
|
popl %ebx
|
|
popl %ebp
|
|
|
|
jmp __switch_to
|
|
SYM_CODE_END(__switch_to_asm)
|
|
.popsection
|
|
|
|
/*
|
|
* The unwinder expects the last frame on the stack to always be at the same
|
|
* offset from the end of the page, which allows it to validate the stack.
|
|
* Calling schedule_tail() directly would break that convention because its an
|
|
* asmlinkage function so its argument has to be pushed on the stack. This
|
|
* wrapper creates a proper "end of stack" frame header before the call.
|
|
*/
|
|
.pushsection .text, "ax"
|
|
SYM_FUNC_START(schedule_tail_wrapper)
|
|
FRAME_BEGIN
|
|
|
|
pushl %eax
|
|
call schedule_tail
|
|
popl %eax
|
|
|
|
FRAME_END
|
|
ret
|
|
SYM_FUNC_END(schedule_tail_wrapper)
|
|
.popsection
|
|
|
|
/*
|
|
* A newly forked process directly context switches into this address.
|
|
*
|
|
* eax: prev task we switched from
|
|
* ebx: kernel thread func (NULL for user thread)
|
|
* edi: kernel thread arg
|
|
*/
|
|
.pushsection .text, "ax"
|
|
SYM_CODE_START(ret_from_fork)
|
|
call schedule_tail_wrapper
|
|
|
|
testl %ebx, %ebx
|
|
jnz 1f /* kernel threads are uncommon */
|
|
|
|
2:
|
|
/* When we fork, we trace the syscall return in the child, too. */
|
|
movl %esp, %eax
|
|
call syscall_exit_to_user_mode
|
|
jmp .Lsyscall_32_done
|
|
|
|
/* kernel thread */
|
|
1: movl %edi, %eax
|
|
CALL_NOSPEC ebx
|
|
/*
|
|
* A kernel thread is allowed to return here after successfully
|
|
* calling kernel_execve(). Exit to userspace to complete the execve()
|
|
* syscall.
|
|
*/
|
|
movl $0, PT_EAX(%esp)
|
|
jmp 2b
|
|
SYM_CODE_END(ret_from_fork)
|
|
.popsection
|
|
|
|
SYM_ENTRY(__begin_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
|
|
/*
|
|
* All code from here through __end_SYSENTER_singlestep_region is subject
|
|
* to being single-stepped if a user program sets TF and executes SYSENTER.
|
|
* There is absolutely nothing that we can do to prevent this from happening
|
|
* (thanks Intel!). To keep our handling of this situation as simple as
|
|
* possible, we handle TF just like AC and NT, except that our #DB handler
|
|
* will ignore all of the single-step traps generated in this range.
|
|
*/
|
|
|
|
/*
|
|
* 32-bit SYSENTER entry.
|
|
*
|
|
* 32-bit system calls through the vDSO's __kernel_vsyscall enter here
|
|
* if X86_FEATURE_SEP is available. This is the preferred system call
|
|
* entry on 32-bit systems.
|
|
*
|
|
* The SYSENTER instruction, in principle, should *only* occur in the
|
|
* vDSO. In practice, a small number of Android devices were shipped
|
|
* with a copy of Bionic that inlined a SYSENTER instruction. This
|
|
* never happened in any of Google's Bionic versions -- it only happened
|
|
* in a narrow range of Intel-provided versions.
|
|
*
|
|
* SYSENTER loads SS, ESP, CS, and EIP from previously programmed MSRs.
|
|
* IF and VM in RFLAGS are cleared (IOW: interrupts are off).
|
|
* SYSENTER does not save anything on the stack,
|
|
* and does not save old EIP (!!!), ESP, or EFLAGS.
|
|
*
|
|
* To avoid losing track of EFLAGS.VM (and thus potentially corrupting
|
|
* user and/or vm86 state), we explicitly disable the SYSENTER
|
|
* instruction in vm86 mode by reprogramming the MSRs.
|
|
*
|
|
* Arguments:
|
|
* eax system call number
|
|
* ebx arg1
|
|
* ecx arg2
|
|
* edx arg3
|
|
* esi arg4
|
|
* edi arg5
|
|
* ebp user stack
|
|
* 0(%ebp) arg6
|
|
*/
|
|
SYM_FUNC_START(entry_SYSENTER_32)
|
|
/*
|
|
* On entry-stack with all userspace-regs live - save and
|
|
* restore eflags and %eax to use it as scratch-reg for the cr3
|
|
* switch.
|
|
*/
|
|
pushfl
|
|
pushl %eax
|
|
BUG_IF_WRONG_CR3 no_user_check=1
|
|
SWITCH_TO_KERNEL_CR3 scratch_reg=%eax
|
|
popl %eax
|
|
popfl
|
|
|
|
/* Stack empty again, switch to task stack */
|
|
movl TSS_entry2task_stack(%esp), %esp
|
|
|
|
.Lsysenter_past_esp:
|
|
pushl $__USER_DS /* pt_regs->ss */
|
|
pushl $0 /* pt_regs->sp (placeholder) */
|
|
pushfl /* pt_regs->flags (except IF = 0) */
|
|
pushl $__USER_CS /* pt_regs->cs */
|
|
pushl $0 /* pt_regs->ip = 0 (placeholder) */
|
|
pushl %eax /* pt_regs->orig_ax */
|
|
SAVE_ALL pt_regs_ax=$-ENOSYS /* save rest, stack already switched */
|
|
|
|
/*
|
|
* SYSENTER doesn't filter flags, so we need to clear NT, AC
|
|
* and TF ourselves. To save a few cycles, we can check whether
|
|
* either was set instead of doing an unconditional popfq.
|
|
* This needs to happen before enabling interrupts so that
|
|
* we don't get preempted with NT set.
|
|
*
|
|
* If TF is set, we will single-step all the way to here -- do_debug
|
|
* will ignore all the traps. (Yes, this is slow, but so is
|
|
* single-stepping in general. This allows us to avoid having
|
|
* a more complicated code to handle the case where a user program
|
|
* forces us to single-step through the SYSENTER entry code.)
|
|
*
|
|
* NB.: .Lsysenter_fix_flags is a label with the code under it moved
|
|
* out-of-line as an optimization: NT is unlikely to be set in the
|
|
* majority of the cases and instead of polluting the I$ unnecessarily,
|
|
* we're keeping that code behind a branch which will predict as
|
|
* not-taken and therefore its instructions won't be fetched.
|
|
*/
|
|
testl $X86_EFLAGS_NT|X86_EFLAGS_AC|X86_EFLAGS_TF, PT_EFLAGS(%esp)
|
|
jnz .Lsysenter_fix_flags
|
|
.Lsysenter_flags_fixed:
|
|
|
|
movl %esp, %eax
|
|
call do_SYSENTER_32
|
|
testl %eax, %eax
|
|
jz .Lsyscall_32_done
|
|
|
|
STACKLEAK_ERASE
|
|
|
|
/* Opportunistic SYSEXIT */
|
|
|
|
/*
|
|
* Setup entry stack - we keep the pointer in %eax and do the
|
|
* switch after almost all user-state is restored.
|
|
*/
|
|
|
|
/* Load entry stack pointer and allocate frame for eflags/eax */
|
|
movl PER_CPU_VAR(cpu_tss_rw + TSS_sp0), %eax
|
|
subl $(2*4), %eax
|
|
|
|
/* Copy eflags and eax to entry stack */
|
|
movl PT_EFLAGS(%esp), %edi
|
|
movl PT_EAX(%esp), %esi
|
|
movl %edi, (%eax)
|
|
movl %esi, 4(%eax)
|
|
|
|
/* Restore user registers and segments */
|
|
movl PT_EIP(%esp), %edx /* pt_regs->ip */
|
|
movl PT_OLDESP(%esp), %ecx /* pt_regs->sp */
|
|
1: mov PT_FS(%esp), %fs
|
|
PTGS_TO_GS
|
|
|
|
popl %ebx /* pt_regs->bx */
|
|
addl $2*4, %esp /* skip pt_regs->cx and pt_regs->dx */
|
|
popl %esi /* pt_regs->si */
|
|
popl %edi /* pt_regs->di */
|
|
popl %ebp /* pt_regs->bp */
|
|
|
|
/* Switch to entry stack */
|
|
movl %eax, %esp
|
|
|
|
/* Now ready to switch the cr3 */
|
|
SWITCH_TO_USER_CR3 scratch_reg=%eax
|
|
|
|
/*
|
|
* Restore all flags except IF. (We restore IF separately because
|
|
* STI gives a one-instruction window in which we won't be interrupted,
|
|
* whereas POPF does not.)
|
|
*/
|
|
btrl $X86_EFLAGS_IF_BIT, (%esp)
|
|
BUG_IF_WRONG_CR3 no_user_check=1
|
|
popfl
|
|
popl %eax
|
|
|
|
/*
|
|
* Return back to the vDSO, which will pop ecx and edx.
|
|
* Don't bother with DS and ES (they already contain __USER_DS).
|
|
*/
|
|
sti
|
|
sysexit
|
|
|
|
.pushsection .fixup, "ax"
|
|
2: movl $0, PT_FS(%esp)
|
|
jmp 1b
|
|
.popsection
|
|
_ASM_EXTABLE(1b, 2b)
|
|
PTGS_TO_GS_EX
|
|
|
|
.Lsysenter_fix_flags:
|
|
pushl $X86_EFLAGS_FIXED
|
|
popfl
|
|
jmp .Lsysenter_flags_fixed
|
|
SYM_ENTRY(__end_SYSENTER_singlestep_region, SYM_L_GLOBAL, SYM_A_NONE)
|
|
SYM_FUNC_END(entry_SYSENTER_32)
|
|
|
|
/*
|
|
* 32-bit legacy system call entry.
|
|
*
|
|
* 32-bit x86 Linux system calls traditionally used the INT $0x80
|
|
* instruction. INT $0x80 lands here.
|
|
*
|
|
* This entry point can be used by any 32-bit perform system calls.
|
|
* Instances of INT $0x80 can be found inline in various programs and
|
|
* libraries. It is also used by the vDSO's __kernel_vsyscall
|
|
* fallback for hardware that doesn't support a faster entry method.
|
|
* Restarted 32-bit system calls also fall back to INT $0x80
|
|
* regardless of what instruction was originally used to do the system
|
|
* call. (64-bit programs can use INT $0x80 as well, but they can
|
|
* only run on 64-bit kernels and therefore land in
|
|
* entry_INT80_compat.)
|
|
*
|
|
* This is considered a slow path. It is not used by most libc
|
|
* implementations on modern hardware except during process startup.
|
|
*
|
|
* Arguments:
|
|
* eax system call number
|
|
* ebx arg1
|
|
* ecx arg2
|
|
* edx arg3
|
|
* esi arg4
|
|
* edi arg5
|
|
* ebp arg6
|
|
*/
|
|
SYM_FUNC_START(entry_INT80_32)
|
|
ASM_CLAC
|
|
pushl %eax /* pt_regs->orig_ax */
|
|
|
|
SAVE_ALL pt_regs_ax=$-ENOSYS switch_stacks=1 /* save rest */
|
|
|
|
movl %esp, %eax
|
|
call do_int80_syscall_32
|
|
.Lsyscall_32_done:
|
|
STACKLEAK_ERASE
|
|
|
|
restore_all_switch_stack:
|
|
SWITCH_TO_ENTRY_STACK
|
|
CHECK_AND_APPLY_ESPFIX
|
|
|
|
/* Switch back to user CR3 */
|
|
SWITCH_TO_USER_CR3 scratch_reg=%eax
|
|
|
|
BUG_IF_WRONG_CR3
|
|
|
|
/* Restore user state */
|
|
RESTORE_REGS pop=4 # skip orig_eax/error_code
|
|
.Lirq_return:
|
|
/*
|
|
* ARCH_HAS_MEMBARRIER_SYNC_CORE rely on IRET core serialization
|
|
* when returning from IPI handler and when returning from
|
|
* scheduler to user-space.
|
|
*/
|
|
INTERRUPT_RETURN
|
|
|
|
.section .fixup, "ax"
|
|
SYM_CODE_START(asm_iret_error)
|
|
pushl $0 # no error code
|
|
pushl $iret_error
|
|
|
|
#ifdef CONFIG_DEBUG_ENTRY
|
|
/*
|
|
* The stack-frame here is the one that iret faulted on, so its a
|
|
* return-to-user frame. We are on kernel-cr3 because we come here from
|
|
* the fixup code. This confuses the CR3 checker, so switch to user-cr3
|
|
* as the checker expects it.
|
|
*/
|
|
pushl %eax
|
|
SWITCH_TO_USER_CR3 scratch_reg=%eax
|
|
popl %eax
|
|
#endif
|
|
|
|
jmp handle_exception
|
|
SYM_CODE_END(asm_iret_error)
|
|
.previous
|
|
_ASM_EXTABLE(.Lirq_return, asm_iret_error)
|
|
SYM_FUNC_END(entry_INT80_32)
|
|
|
|
.macro FIXUP_ESPFIX_STACK
|
|
/*
|
|
* Switch back for ESPFIX stack to the normal zerobased stack
|
|
*
|
|
* We can't call C functions using the ESPFIX stack. This code reads
|
|
* the high word of the segment base from the GDT and swiches to the
|
|
* normal stack and adjusts ESP with the matching offset.
|
|
*
|
|
* We might be on user CR3 here, so percpu data is not mapped and we can't
|
|
* access the GDT through the percpu segment. Instead, use SGDT to find
|
|
* the cpu_entry_area alias of the GDT.
|
|
*/
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
/* fixup the stack */
|
|
pushl %ecx
|
|
subl $2*4, %esp
|
|
sgdt (%esp)
|
|
movl 2(%esp), %ecx /* GDT address */
|
|
/*
|
|
* Careful: ECX is a linear pointer, so we need to force base
|
|
* zero. %cs is the only known-linear segment we have right now.
|
|
*/
|
|
mov %cs:GDT_ESPFIX_OFFSET + 4(%ecx), %al /* bits 16..23 */
|
|
mov %cs:GDT_ESPFIX_OFFSET + 7(%ecx), %ah /* bits 24..31 */
|
|
shl $16, %eax
|
|
addl $2*4, %esp
|
|
popl %ecx
|
|
addl %esp, %eax /* the adjusted stack pointer */
|
|
pushl $__KERNEL_DS
|
|
pushl %eax
|
|
lss (%esp), %esp /* switch to the normal stack segment */
|
|
#endif
|
|
.endm
|
|
|
|
.macro UNWIND_ESPFIX_STACK
|
|
/* It's safe to clobber %eax, all other regs need to be preserved */
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
movl %ss, %eax
|
|
/* see if on espfix stack */
|
|
cmpw $__ESPFIX_SS, %ax
|
|
jne .Lno_fixup_\@
|
|
/* switch to normal stack */
|
|
FIXUP_ESPFIX_STACK
|
|
.Lno_fixup_\@:
|
|
#endif
|
|
.endm
|
|
|
|
SYM_CODE_START_LOCAL_NOALIGN(handle_exception)
|
|
/* the function address is in %gs's slot on the stack */
|
|
SAVE_ALL switch_stacks=1 skip_gs=1 unwind_espfix=1
|
|
ENCODE_FRAME_POINTER
|
|
|
|
/* fixup %gs */
|
|
GS_TO_REG %ecx
|
|
movl PT_GS(%esp), %edi # get the function address
|
|
REG_TO_PTGS %ecx
|
|
SET_KERNEL_GS %ecx
|
|
|
|
/* fixup orig %eax */
|
|
movl PT_ORIG_EAX(%esp), %edx # get the error code
|
|
movl $-1, PT_ORIG_EAX(%esp) # no syscall to restart
|
|
|
|
movl %esp, %eax # pt_regs pointer
|
|
CALL_NOSPEC edi
|
|
|
|
handle_exception_return:
|
|
#ifdef CONFIG_VM86
|
|
movl PT_EFLAGS(%esp), %eax # mix EFLAGS and CS
|
|
movb PT_CS(%esp), %al
|
|
andl $(X86_EFLAGS_VM | SEGMENT_RPL_MASK), %eax
|
|
#else
|
|
/*
|
|
* We can be coming here from child spawned by kernel_thread().
|
|
*/
|
|
movl PT_CS(%esp), %eax
|
|
andl $SEGMENT_RPL_MASK, %eax
|
|
#endif
|
|
cmpl $USER_RPL, %eax # returning to v8086 or userspace ?
|
|
jnb ret_to_user
|
|
|
|
PARANOID_EXIT_TO_KERNEL_MODE
|
|
BUG_IF_WRONG_CR3
|
|
RESTORE_REGS 4
|
|
jmp .Lirq_return
|
|
|
|
ret_to_user:
|
|
movl %esp, %eax
|
|
jmp restore_all_switch_stack
|
|
SYM_CODE_END(handle_exception)
|
|
|
|
SYM_CODE_START(asm_exc_double_fault)
|
|
1:
|
|
/*
|
|
* This is a task gate handler, not an interrupt gate handler.
|
|
* The error code is on the stack, but the stack is otherwise
|
|
* empty. Interrupts are off. Our state is sane with the following
|
|
* exceptions:
|
|
*
|
|
* - CR0.TS is set. "TS" literally means "task switched".
|
|
* - EFLAGS.NT is set because we're a "nested task".
|
|
* - The doublefault TSS has back_link set and has been marked busy.
|
|
* - TR points to the doublefault TSS and the normal TSS is busy.
|
|
* - CR3 is the normal kernel PGD. This would be delightful, except
|
|
* that the CPU didn't bother to save the old CR3 anywhere. This
|
|
* would make it very awkward to return back to the context we came
|
|
* from.
|
|
*
|
|
* The rest of EFLAGS is sanitized for us, so we don't need to
|
|
* worry about AC or DF.
|
|
*
|
|
* Don't even bother popping the error code. It's always zero,
|
|
* and ignoring it makes us a bit more robust against buggy
|
|
* hypervisor task gate implementations.
|
|
*
|
|
* We will manually undo the task switch instead of doing a
|
|
* task-switching IRET.
|
|
*/
|
|
|
|
clts /* clear CR0.TS */
|
|
pushl $X86_EFLAGS_FIXED
|
|
popfl /* clear EFLAGS.NT */
|
|
|
|
call doublefault_shim
|
|
|
|
/* We don't support returning, so we have no IRET here. */
|
|
1:
|
|
hlt
|
|
jmp 1b
|
|
SYM_CODE_END(asm_exc_double_fault)
|
|
|
|
/*
|
|
* NMI is doubly nasty. It can happen on the first instruction of
|
|
* entry_SYSENTER_32 (just like #DB), but it can also interrupt the beginning
|
|
* of the #DB handler even if that #DB in turn hit before entry_SYSENTER_32
|
|
* switched stacks. We handle both conditions by simply checking whether we
|
|
* interrupted kernel code running on the SYSENTER stack.
|
|
*/
|
|
SYM_CODE_START(asm_exc_nmi)
|
|
ASM_CLAC
|
|
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
/*
|
|
* ESPFIX_SS is only ever set on the return to user path
|
|
* after we've switched to the entry stack.
|
|
*/
|
|
pushl %eax
|
|
movl %ss, %eax
|
|
cmpw $__ESPFIX_SS, %ax
|
|
popl %eax
|
|
je .Lnmi_espfix_stack
|
|
#endif
|
|
|
|
pushl %eax # pt_regs->orig_ax
|
|
SAVE_ALL_NMI cr3_reg=%edi
|
|
ENCODE_FRAME_POINTER
|
|
xorl %edx, %edx # zero error code
|
|
movl %esp, %eax # pt_regs pointer
|
|
|
|
/* Are we currently on the SYSENTER stack? */
|
|
movl PER_CPU_VAR(cpu_entry_area), %ecx
|
|
addl $CPU_ENTRY_AREA_entry_stack + SIZEOF_entry_stack, %ecx
|
|
subl %eax, %ecx /* ecx = (end of entry_stack) - esp */
|
|
cmpl $SIZEOF_entry_stack, %ecx
|
|
jb .Lnmi_from_sysenter_stack
|
|
|
|
/* Not on SYSENTER stack. */
|
|
call exc_nmi
|
|
jmp .Lnmi_return
|
|
|
|
.Lnmi_from_sysenter_stack:
|
|
/*
|
|
* We're on the SYSENTER stack. Switch off. No one (not even debug)
|
|
* is using the thread stack right now, so it's safe for us to use it.
|
|
*/
|
|
movl %esp, %ebx
|
|
movl PER_CPU_VAR(cpu_current_top_of_stack), %esp
|
|
call exc_nmi
|
|
movl %ebx, %esp
|
|
|
|
.Lnmi_return:
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
testl $CS_FROM_ESPFIX, PT_CS(%esp)
|
|
jnz .Lnmi_from_espfix
|
|
#endif
|
|
|
|
CHECK_AND_APPLY_ESPFIX
|
|
RESTORE_ALL_NMI cr3_reg=%edi pop=4
|
|
jmp .Lirq_return
|
|
|
|
#ifdef CONFIG_X86_ESPFIX32
|
|
.Lnmi_espfix_stack:
|
|
/*
|
|
* Create the pointer to LSS back
|
|
*/
|
|
pushl %ss
|
|
pushl %esp
|
|
addl $4, (%esp)
|
|
|
|
/* Copy the (short) IRET frame */
|
|
pushl 4*4(%esp) # flags
|
|
pushl 4*4(%esp) # cs
|
|
pushl 4*4(%esp) # ip
|
|
|
|
pushl %eax # orig_ax
|
|
|
|
SAVE_ALL_NMI cr3_reg=%edi unwind_espfix=1
|
|
ENCODE_FRAME_POINTER
|
|
|
|
/* clear CS_FROM_KERNEL, set CS_FROM_ESPFIX */
|
|
xorl $(CS_FROM_ESPFIX | CS_FROM_KERNEL), PT_CS(%esp)
|
|
|
|
xorl %edx, %edx # zero error code
|
|
movl %esp, %eax # pt_regs pointer
|
|
jmp .Lnmi_from_sysenter_stack
|
|
|
|
.Lnmi_from_espfix:
|
|
RESTORE_ALL_NMI cr3_reg=%edi
|
|
/*
|
|
* Because we cleared CS_FROM_KERNEL, IRET_FRAME 'forgot' to
|
|
* fix up the gap and long frame:
|
|
*
|
|
* 3 - original frame (exception)
|
|
* 2 - ESPFIX block (above)
|
|
* 6 - gap (FIXUP_FRAME)
|
|
* 5 - long frame (FIXUP_FRAME)
|
|
* 1 - orig_ax
|
|
*/
|
|
lss (1+5+6)*4(%esp), %esp # back to espfix stack
|
|
jmp .Lirq_return
|
|
#endif
|
|
SYM_CODE_END(asm_exc_nmi)
|
|
|
|
.pushsection .text, "ax"
|
|
SYM_CODE_START(rewind_stack_do_exit)
|
|
/* Prevent any naive code from trying to unwind to our caller. */
|
|
xorl %ebp, %ebp
|
|
|
|
movl PER_CPU_VAR(cpu_current_top_of_stack), %esi
|
|
leal -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%esi), %esp
|
|
|
|
call do_exit
|
|
1: jmp 1b
|
|
SYM_CODE_END(rewind_stack_do_exit)
|
|
.popsection
|