OpenCloudOS-Kernel/drivers/gpu/drm/tegra/dsi.c

1561 lines
38 KiB
C

/*
* Copyright (C) 2013 NVIDIA Corporation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License version 2 as
* published by the Free Software Foundation.
*/
#include <linux/clk.h>
#include <linux/debugfs.h>
#include <linux/host1x.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/of_platform.h>
#include <linux/platform_device.h>
#include <linux/reset.h>
#include <linux/regulator/consumer.h>
#include <drm/drm_mipi_dsi.h>
#include <drm/drm_panel.h>
#include <video/mipi_display.h>
#include "dc.h"
#include "drm.h"
#include "dsi.h"
#include "mipi-phy.h"
struct tegra_dsi {
struct host1x_client client;
struct tegra_output output;
struct device *dev;
void __iomem *regs;
struct reset_control *rst;
struct clk *clk_parent;
struct clk *clk_lp;
struct clk *clk;
struct drm_info_list *debugfs_files;
struct drm_minor *minor;
struct dentry *debugfs;
unsigned long flags;
enum mipi_dsi_pixel_format format;
unsigned int lanes;
struct tegra_mipi_device *mipi;
struct mipi_dsi_host host;
struct regulator *vdd;
bool enabled;
unsigned int video_fifo_depth;
unsigned int host_fifo_depth;
/* for ganged-mode support */
struct tegra_dsi *master;
struct tegra_dsi *slave;
};
static inline struct tegra_dsi *
host1x_client_to_dsi(struct host1x_client *client)
{
return container_of(client, struct tegra_dsi, client);
}
static inline struct tegra_dsi *host_to_tegra(struct mipi_dsi_host *host)
{
return container_of(host, struct tegra_dsi, host);
}
static inline struct tegra_dsi *to_dsi(struct tegra_output *output)
{
return container_of(output, struct tegra_dsi, output);
}
static inline unsigned long tegra_dsi_readl(struct tegra_dsi *dsi,
unsigned long reg)
{
return readl(dsi->regs + (reg << 2));
}
static inline void tegra_dsi_writel(struct tegra_dsi *dsi, unsigned long value,
unsigned long reg)
{
writel(value, dsi->regs + (reg << 2));
}
static int tegra_dsi_show_regs(struct seq_file *s, void *data)
{
struct drm_info_node *node = s->private;
struct tegra_dsi *dsi = node->info_ent->data;
#define DUMP_REG(name) \
seq_printf(s, "%-32s %#05x %08lx\n", #name, name, \
tegra_dsi_readl(dsi, name))
DUMP_REG(DSI_INCR_SYNCPT);
DUMP_REG(DSI_INCR_SYNCPT_CONTROL);
DUMP_REG(DSI_INCR_SYNCPT_ERROR);
DUMP_REG(DSI_CTXSW);
DUMP_REG(DSI_RD_DATA);
DUMP_REG(DSI_WR_DATA);
DUMP_REG(DSI_POWER_CONTROL);
DUMP_REG(DSI_INT_ENABLE);
DUMP_REG(DSI_INT_STATUS);
DUMP_REG(DSI_INT_MASK);
DUMP_REG(DSI_HOST_CONTROL);
DUMP_REG(DSI_CONTROL);
DUMP_REG(DSI_SOL_DELAY);
DUMP_REG(DSI_MAX_THRESHOLD);
DUMP_REG(DSI_TRIGGER);
DUMP_REG(DSI_TX_CRC);
DUMP_REG(DSI_STATUS);
DUMP_REG(DSI_INIT_SEQ_CONTROL);
DUMP_REG(DSI_INIT_SEQ_DATA_0);
DUMP_REG(DSI_INIT_SEQ_DATA_1);
DUMP_REG(DSI_INIT_SEQ_DATA_2);
DUMP_REG(DSI_INIT_SEQ_DATA_3);
DUMP_REG(DSI_INIT_SEQ_DATA_4);
DUMP_REG(DSI_INIT_SEQ_DATA_5);
DUMP_REG(DSI_INIT_SEQ_DATA_6);
DUMP_REG(DSI_INIT_SEQ_DATA_7);
DUMP_REG(DSI_PKT_SEQ_0_LO);
DUMP_REG(DSI_PKT_SEQ_0_HI);
DUMP_REG(DSI_PKT_SEQ_1_LO);
DUMP_REG(DSI_PKT_SEQ_1_HI);
DUMP_REG(DSI_PKT_SEQ_2_LO);
DUMP_REG(DSI_PKT_SEQ_2_HI);
DUMP_REG(DSI_PKT_SEQ_3_LO);
DUMP_REG(DSI_PKT_SEQ_3_HI);
DUMP_REG(DSI_PKT_SEQ_4_LO);
DUMP_REG(DSI_PKT_SEQ_4_HI);
DUMP_REG(DSI_PKT_SEQ_5_LO);
DUMP_REG(DSI_PKT_SEQ_5_HI);
DUMP_REG(DSI_DCS_CMDS);
DUMP_REG(DSI_PKT_LEN_0_1);
DUMP_REG(DSI_PKT_LEN_2_3);
DUMP_REG(DSI_PKT_LEN_4_5);
DUMP_REG(DSI_PKT_LEN_6_7);
DUMP_REG(DSI_PHY_TIMING_0);
DUMP_REG(DSI_PHY_TIMING_1);
DUMP_REG(DSI_PHY_TIMING_2);
DUMP_REG(DSI_BTA_TIMING);
DUMP_REG(DSI_TIMEOUT_0);
DUMP_REG(DSI_TIMEOUT_1);
DUMP_REG(DSI_TO_TALLY);
DUMP_REG(DSI_PAD_CONTROL_0);
DUMP_REG(DSI_PAD_CONTROL_CD);
DUMP_REG(DSI_PAD_CD_STATUS);
DUMP_REG(DSI_VIDEO_MODE_CONTROL);
DUMP_REG(DSI_PAD_CONTROL_1);
DUMP_REG(DSI_PAD_CONTROL_2);
DUMP_REG(DSI_PAD_CONTROL_3);
DUMP_REG(DSI_PAD_CONTROL_4);
DUMP_REG(DSI_GANGED_MODE_CONTROL);
DUMP_REG(DSI_GANGED_MODE_START);
DUMP_REG(DSI_GANGED_MODE_SIZE);
DUMP_REG(DSI_RAW_DATA_BYTE_COUNT);
DUMP_REG(DSI_ULTRA_LOW_POWER_CONTROL);
DUMP_REG(DSI_INIT_SEQ_DATA_8);
DUMP_REG(DSI_INIT_SEQ_DATA_9);
DUMP_REG(DSI_INIT_SEQ_DATA_10);
DUMP_REG(DSI_INIT_SEQ_DATA_11);
DUMP_REG(DSI_INIT_SEQ_DATA_12);
DUMP_REG(DSI_INIT_SEQ_DATA_13);
DUMP_REG(DSI_INIT_SEQ_DATA_14);
DUMP_REG(DSI_INIT_SEQ_DATA_15);
#undef DUMP_REG
return 0;
}
static struct drm_info_list debugfs_files[] = {
{ "regs", tegra_dsi_show_regs, 0, NULL },
};
static int tegra_dsi_debugfs_init(struct tegra_dsi *dsi,
struct drm_minor *minor)
{
const char *name = dev_name(dsi->dev);
unsigned int i;
int err;
dsi->debugfs = debugfs_create_dir(name, minor->debugfs_root);
if (!dsi->debugfs)
return -ENOMEM;
dsi->debugfs_files = kmemdup(debugfs_files, sizeof(debugfs_files),
GFP_KERNEL);
if (!dsi->debugfs_files) {
err = -ENOMEM;
goto remove;
}
for (i = 0; i < ARRAY_SIZE(debugfs_files); i++)
dsi->debugfs_files[i].data = dsi;
err = drm_debugfs_create_files(dsi->debugfs_files,
ARRAY_SIZE(debugfs_files),
dsi->debugfs, minor);
if (err < 0)
goto free;
dsi->minor = minor;
return 0;
free:
kfree(dsi->debugfs_files);
dsi->debugfs_files = NULL;
remove:
debugfs_remove(dsi->debugfs);
dsi->debugfs = NULL;
return err;
}
static int tegra_dsi_debugfs_exit(struct tegra_dsi *dsi)
{
drm_debugfs_remove_files(dsi->debugfs_files, ARRAY_SIZE(debugfs_files),
dsi->minor);
dsi->minor = NULL;
kfree(dsi->debugfs_files);
dsi->debugfs_files = NULL;
debugfs_remove(dsi->debugfs);
dsi->debugfs = NULL;
return 0;
}
#define PKT_ID0(id) ((((id) & 0x3f) << 3) | (1 << 9))
#define PKT_LEN0(len) (((len) & 0x07) << 0)
#define PKT_ID1(id) ((((id) & 0x3f) << 13) | (1 << 19))
#define PKT_LEN1(len) (((len) & 0x07) << 10)
#define PKT_ID2(id) ((((id) & 0x3f) << 23) | (1 << 29))
#define PKT_LEN2(len) (((len) & 0x07) << 20)
#define PKT_LP (1 << 30)
#define NUM_PKT_SEQ 12
/*
* non-burst mode with sync pulses
*/
static const u32 pkt_seq_video_non_burst_sync_pulses[NUM_PKT_SEQ] = {
[ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 1] = 0,
[ 2] = PKT_ID0(MIPI_DSI_V_SYNC_END) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 3] = 0,
[ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0),
[ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) |
PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) |
PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4),
[ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0) |
PKT_LP,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(1) |
PKT_ID2(MIPI_DSI_H_SYNC_END) | PKT_LEN2(0),
[11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(2) |
PKT_ID1(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN1(3) |
PKT_ID2(MIPI_DSI_BLANKING_PACKET) | PKT_LEN2(4),
};
/*
* non-burst mode with sync events
*/
static const u32 pkt_seq_video_non_burst_sync_events[NUM_PKT_SEQ] = {
[ 0] = PKT_ID0(MIPI_DSI_V_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 1] = 0,
[ 2] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 3] = 0,
[ 4] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) |
PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3),
[ 7] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4),
[ 8] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_END_OF_TRANSMISSION) | PKT_LEN1(7) |
PKT_LP,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_H_SYNC_START) | PKT_LEN0(0) |
PKT_ID1(MIPI_DSI_BLANKING_PACKET) | PKT_LEN1(2) |
PKT_ID2(MIPI_DSI_PACKED_PIXEL_STREAM_24) | PKT_LEN2(3),
[11] = PKT_ID0(MIPI_DSI_BLANKING_PACKET) | PKT_LEN0(4),
};
static const u32 pkt_seq_command_mode[NUM_PKT_SEQ] = {
[ 0] = 0,
[ 1] = 0,
[ 2] = 0,
[ 3] = 0,
[ 4] = 0,
[ 5] = 0,
[ 6] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(3) | PKT_LP,
[ 7] = 0,
[ 8] = 0,
[ 9] = 0,
[10] = PKT_ID0(MIPI_DSI_DCS_LONG_WRITE) | PKT_LEN0(5) | PKT_LP,
[11] = 0,
};
static int tegra_dsi_set_phy_timing(struct tegra_dsi *dsi)
{
struct mipi_dphy_timing timing;
unsigned long value, period;
long rate;
int err;
rate = clk_get_rate(dsi->clk);
if (rate < 0)
return rate;
period = DIV_ROUND_CLOSEST(NSEC_PER_SEC, rate * 2);
err = mipi_dphy_timing_get_default(&timing, period);
if (err < 0)
return err;
err = mipi_dphy_timing_validate(&timing, period);
if (err < 0) {
dev_err(dsi->dev, "failed to validate D-PHY timing: %d\n", err);
return err;
}
/*
* The D-PHY timing fields below are expressed in byte-clock cycles,
* so multiply the period by 8.
*/
period *= 8;
value = DSI_TIMING_FIELD(timing.hsexit, period, 1) << 24 |
DSI_TIMING_FIELD(timing.hstrail, period, 0) << 16 |
DSI_TIMING_FIELD(timing.hszero, period, 3) << 8 |
DSI_TIMING_FIELD(timing.hsprepare, period, 1);
tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_0);
value = DSI_TIMING_FIELD(timing.clktrail, period, 1) << 24 |
DSI_TIMING_FIELD(timing.clkpost, period, 1) << 16 |
DSI_TIMING_FIELD(timing.clkzero, period, 1) << 8 |
DSI_TIMING_FIELD(timing.lpx, period, 1);
tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_1);
value = DSI_TIMING_FIELD(timing.clkprepare, period, 1) << 16 |
DSI_TIMING_FIELD(timing.clkpre, period, 1) << 8 |
DSI_TIMING_FIELD(0xff * period, period, 0) << 0;
tegra_dsi_writel(dsi, value, DSI_PHY_TIMING_2);
value = DSI_TIMING_FIELD(timing.taget, period, 1) << 16 |
DSI_TIMING_FIELD(timing.tasure, period, 1) << 8 |
DSI_TIMING_FIELD(timing.tago, period, 1);
tegra_dsi_writel(dsi, value, DSI_BTA_TIMING);
if (dsi->slave)
return tegra_dsi_set_phy_timing(dsi->slave);
return 0;
}
static int tegra_dsi_get_muldiv(enum mipi_dsi_pixel_format format,
unsigned int *mulp, unsigned int *divp)
{
switch (format) {
case MIPI_DSI_FMT_RGB666_PACKED:
case MIPI_DSI_FMT_RGB888:
*mulp = 3;
*divp = 1;
break;
case MIPI_DSI_FMT_RGB565:
*mulp = 2;
*divp = 1;
break;
case MIPI_DSI_FMT_RGB666:
*mulp = 9;
*divp = 4;
break;
default:
return -EINVAL;
}
return 0;
}
static int tegra_dsi_get_format(enum mipi_dsi_pixel_format format,
enum tegra_dsi_format *fmt)
{
switch (format) {
case MIPI_DSI_FMT_RGB888:
*fmt = TEGRA_DSI_FORMAT_24P;
break;
case MIPI_DSI_FMT_RGB666:
*fmt = TEGRA_DSI_FORMAT_18NP;
break;
case MIPI_DSI_FMT_RGB666_PACKED:
*fmt = TEGRA_DSI_FORMAT_18P;
break;
case MIPI_DSI_FMT_RGB565:
*fmt = TEGRA_DSI_FORMAT_16P;
break;
default:
return -EINVAL;
}
return 0;
}
static void tegra_dsi_ganged_enable(struct tegra_dsi *dsi, unsigned int start,
unsigned int size)
{
u32 value;
tegra_dsi_writel(dsi, start, DSI_GANGED_MODE_START);
tegra_dsi_writel(dsi, size << 16 | size, DSI_GANGED_MODE_SIZE);
value = DSI_GANGED_MODE_CONTROL_ENABLE;
tegra_dsi_writel(dsi, value, DSI_GANGED_MODE_CONTROL);
}
static void tegra_dsi_enable(struct tegra_dsi *dsi)
{
u32 value;
value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL);
value |= DSI_POWER_CONTROL_ENABLE;
tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL);
if (dsi->slave)
tegra_dsi_enable(dsi->slave);
}
static unsigned int tegra_dsi_get_lanes(struct tegra_dsi *dsi)
{
if (dsi->master)
return dsi->master->lanes + dsi->lanes;
if (dsi->slave)
return dsi->lanes + dsi->slave->lanes;
return dsi->lanes;
}
static int tegra_dsi_configure(struct tegra_dsi *dsi, unsigned int pipe,
const struct drm_display_mode *mode)
{
unsigned int hact, hsw, hbp, hfp, i, mul, div;
enum tegra_dsi_format format;
const u32 *pkt_seq;
u32 value;
int err;
if (dsi->flags & MIPI_DSI_MODE_VIDEO_SYNC_PULSE) {
DRM_DEBUG_KMS("Non-burst video mode with sync pulses\n");
pkt_seq = pkt_seq_video_non_burst_sync_pulses;
} else if (dsi->flags & MIPI_DSI_MODE_VIDEO) {
DRM_DEBUG_KMS("Non-burst video mode with sync events\n");
pkt_seq = pkt_seq_video_non_burst_sync_events;
} else {
DRM_DEBUG_KMS("Command mode\n");
pkt_seq = pkt_seq_command_mode;
}
err = tegra_dsi_get_muldiv(dsi->format, &mul, &div);
if (err < 0)
return err;
err = tegra_dsi_get_format(dsi->format, &format);
if (err < 0)
return err;
value = DSI_CONTROL_CHANNEL(0) | DSI_CONTROL_FORMAT(format) |
DSI_CONTROL_LANES(dsi->lanes - 1) |
DSI_CONTROL_SOURCE(pipe);
tegra_dsi_writel(dsi, value, DSI_CONTROL);
tegra_dsi_writel(dsi, dsi->video_fifo_depth, DSI_MAX_THRESHOLD);
value = DSI_HOST_CONTROL_HS;
tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL);
value = tegra_dsi_readl(dsi, DSI_CONTROL);
if (dsi->flags & MIPI_DSI_CLOCK_NON_CONTINUOUS)
value |= DSI_CONTROL_HS_CLK_CTRL;
value &= ~DSI_CONTROL_TX_TRIG(3);
/* enable DCS commands for command mode */
if (dsi->flags & MIPI_DSI_MODE_VIDEO)
value &= ~DSI_CONTROL_DCS_ENABLE;
else
value |= DSI_CONTROL_DCS_ENABLE;
value |= DSI_CONTROL_VIDEO_ENABLE;
value &= ~DSI_CONTROL_HOST_ENABLE;
tegra_dsi_writel(dsi, value, DSI_CONTROL);
for (i = 0; i < NUM_PKT_SEQ; i++)
tegra_dsi_writel(dsi, pkt_seq[i], DSI_PKT_SEQ_0_LO + i);
if (dsi->flags & MIPI_DSI_MODE_VIDEO) {
/* horizontal active pixels */
hact = mode->hdisplay * mul / div;
/* horizontal sync width */
hsw = (mode->hsync_end - mode->hsync_start) * mul / div;
hsw -= 10;
/* horizontal back porch */
hbp = (mode->htotal - mode->hsync_end) * mul / div;
hbp -= 14;
/* horizontal front porch */
hfp = (mode->hsync_start - mode->hdisplay) * mul / div;
hfp -= 8;
tegra_dsi_writel(dsi, hsw << 16 | 0, DSI_PKT_LEN_0_1);
tegra_dsi_writel(dsi, hact << 16 | hbp, DSI_PKT_LEN_2_3);
tegra_dsi_writel(dsi, hfp, DSI_PKT_LEN_4_5);
tegra_dsi_writel(dsi, 0x0f0f << 16, DSI_PKT_LEN_6_7);
/* set SOL delay (for non-burst mode only) */
tegra_dsi_writel(dsi, 8 * mul / div, DSI_SOL_DELAY);
/* TODO: implement ganged mode */
} else {
u16 bytes;
if (dsi->master || dsi->slave) {
/*
* For ganged mode, assume symmetric left-right mode.
*/
bytes = 1 + (mode->hdisplay / 2) * mul / div;
} else {
/* 1 byte (DCS command) + pixel data */
bytes = 1 + mode->hdisplay * mul / div;
}
tegra_dsi_writel(dsi, 0, DSI_PKT_LEN_0_1);
tegra_dsi_writel(dsi, bytes << 16, DSI_PKT_LEN_2_3);
tegra_dsi_writel(dsi, bytes << 16, DSI_PKT_LEN_4_5);
tegra_dsi_writel(dsi, 0, DSI_PKT_LEN_6_7);
value = MIPI_DCS_WRITE_MEMORY_START << 8 |
MIPI_DCS_WRITE_MEMORY_CONTINUE;
tegra_dsi_writel(dsi, value, DSI_DCS_CMDS);
/* set SOL delay */
if (dsi->master || dsi->slave) {
unsigned int lanes = tegra_dsi_get_lanes(dsi);
unsigned long delay, bclk, bclk_ganged;
/* SOL to valid, valid to FIFO and FIFO write delay */
delay = 4 + 4 + 2;
delay = DIV_ROUND_UP(delay * mul, div * lanes);
/* FIFO read delay */
delay = delay + 6;
bclk = DIV_ROUND_UP(mode->htotal * mul, div * lanes);
bclk_ganged = DIV_ROUND_UP(bclk * lanes / 2, lanes);
value = bclk - bclk_ganged + delay + 20;
} else {
/* TODO: revisit for non-ganged mode */
value = 8 * mul / div;
}
tegra_dsi_writel(dsi, value, DSI_SOL_DELAY);
}
if (dsi->slave) {
err = tegra_dsi_configure(dsi->slave, pipe, mode);
if (err < 0)
return err;
/*
* TODO: Support modes other than symmetrical left-right
* split.
*/
tegra_dsi_ganged_enable(dsi, 0, mode->hdisplay / 2);
tegra_dsi_ganged_enable(dsi->slave, mode->hdisplay / 2,
mode->hdisplay / 2);
}
return 0;
}
static int tegra_output_dsi_enable(struct tegra_output *output)
{
struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc);
const struct drm_display_mode *mode = &dc->base.mode;
struct tegra_dsi *dsi = to_dsi(output);
u32 value;
int err;
if (dsi->enabled)
return 0;
err = tegra_dsi_configure(dsi, dc->pipe, mode);
if (err < 0)
return err;
/* enable display controller */
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value |= DSI_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
value |= DISP_CTRL_MODE_C_DISPLAY;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value |= PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
/* enable DSI controller */
tegra_dsi_enable(dsi);
dsi->enabled = true;
return 0;
}
static int tegra_dsi_wait_idle(struct tegra_dsi *dsi, unsigned long timeout)
{
u32 value;
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
value = tegra_dsi_readl(dsi, DSI_STATUS);
if (value & DSI_STATUS_IDLE)
return 0;
usleep_range(1000, 2000);
}
return -ETIMEDOUT;
}
static void tegra_dsi_video_disable(struct tegra_dsi *dsi)
{
u32 value;
value = tegra_dsi_readl(dsi, DSI_CONTROL);
value &= ~DSI_CONTROL_VIDEO_ENABLE;
tegra_dsi_writel(dsi, value, DSI_CONTROL);
if (dsi->slave)
tegra_dsi_video_disable(dsi->slave);
}
static void tegra_dsi_ganged_disable(struct tegra_dsi *dsi)
{
tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_START);
tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_SIZE);
tegra_dsi_writel(dsi, 0, DSI_GANGED_MODE_CONTROL);
}
static void tegra_dsi_disable(struct tegra_dsi *dsi)
{
u32 value;
if (dsi->slave) {
tegra_dsi_ganged_disable(dsi->slave);
tegra_dsi_ganged_disable(dsi);
}
value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL);
value &= ~DSI_POWER_CONTROL_ENABLE;
tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL);
if (dsi->slave)
tegra_dsi_disable(dsi->slave);
usleep_range(5000, 10000);
}
static int tegra_output_dsi_disable(struct tegra_output *output)
{
struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc);
struct tegra_dsi *dsi = to_dsi(output);
unsigned long value;
int err;
if (!dsi->enabled)
return 0;
tegra_dsi_video_disable(dsi);
/*
* The following accesses registers of the display controller, so make
* sure it's only executed when the output is attached to one.
*/
if (dc) {
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_POWER_CONTROL);
value &= ~(PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
PW4_ENABLE | PM0_ENABLE | PM1_ENABLE);
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
value = tegra_dc_readl(dc, DC_CMD_DISPLAY_COMMAND);
value &= ~DISP_CTRL_MODE_MASK;
tegra_dc_writel(dc, value, DC_CMD_DISPLAY_COMMAND);
value = tegra_dc_readl(dc, DC_DISP_DISP_WIN_OPTIONS);
value &= ~DSI_ENABLE;
tegra_dc_writel(dc, value, DC_DISP_DISP_WIN_OPTIONS);
tegra_dc_writel(dc, GENERAL_ACT_REQ << 8, DC_CMD_STATE_CONTROL);
tegra_dc_writel(dc, GENERAL_ACT_REQ, DC_CMD_STATE_CONTROL);
}
err = tegra_dsi_wait_idle(dsi, 100);
if (err < 0)
dev_dbg(dsi->dev, "failed to idle DSI: %d\n", err);
tegra_dsi_disable(dsi);
dsi->enabled = false;
return 0;
}
static void tegra_dsi_set_timeout(struct tegra_dsi *dsi, unsigned long bclk,
unsigned int vrefresh)
{
unsigned int timeout;
u32 value;
/* one frame high-speed transmission timeout */
timeout = (bclk / vrefresh) / 512;
value = DSI_TIMEOUT_LRX(0x2000) | DSI_TIMEOUT_HTX(timeout);
tegra_dsi_writel(dsi, value, DSI_TIMEOUT_0);
/* 2 ms peripheral timeout for panel */
timeout = 2 * bclk / 512 * 1000;
value = DSI_TIMEOUT_PR(timeout) | DSI_TIMEOUT_TA(0x2000);
tegra_dsi_writel(dsi, value, DSI_TIMEOUT_1);
value = DSI_TALLY_TA(0) | DSI_TALLY_LRX(0) | DSI_TALLY_HTX(0);
tegra_dsi_writel(dsi, value, DSI_TO_TALLY);
if (dsi->slave)
tegra_dsi_set_timeout(dsi->slave, bclk, vrefresh);
}
static int tegra_output_dsi_setup_clock(struct tegra_output *output,
struct clk *clk, unsigned long pclk,
unsigned int *divp)
{
struct tegra_dc *dc = to_tegra_dc(output->encoder.crtc);
struct drm_display_mode *mode = &dc->base.mode;
struct tegra_dsi *dsi = to_dsi(output);
unsigned int mul, div, vrefresh, lanes;
unsigned long bclk, plld;
int err;
lanes = tegra_dsi_get_lanes(dsi);
err = tegra_dsi_get_muldiv(dsi->format, &mul, &div);
if (err < 0)
return err;
DRM_DEBUG_KMS("mul: %u, div: %u, lanes: %u\n", mul, div, lanes);
vrefresh = drm_mode_vrefresh(mode);
DRM_DEBUG_KMS("vrefresh: %u\n", vrefresh);
/* compute byte clock */
bclk = (pclk * mul) / (div * lanes);
/*
* Compute bit clock and round up to the next MHz.
*/
plld = DIV_ROUND_UP(bclk * 8, USEC_PER_SEC) * USEC_PER_SEC;
/*
* We divide the frequency by two here, but we make up for that by
* setting the shift clock divider (further below) to half of the
* correct value.
*/
plld /= 2;
err = clk_set_parent(clk, dsi->clk_parent);
if (err < 0) {
dev_err(dsi->dev, "failed to set parent clock: %d\n", err);
return err;
}
err = clk_set_rate(dsi->clk_parent, plld);
if (err < 0) {
dev_err(dsi->dev, "failed to set base clock rate to %lu Hz\n",
plld);
return err;
}
/*
* Derive pixel clock from bit clock using the shift clock divider.
* Note that this is only half of what we would expect, but we need
* that to make up for the fact that we divided the bit clock by a
* factor of two above.
*
* It's not clear exactly why this is necessary, but the display is
* not working properly otherwise. Perhaps the PLLs cannot generate
* frequencies sufficiently high.
*/
*divp = ((8 * mul) / (div * lanes)) - 2;
/*
* XXX: Move the below somewhere else so that we don't need to have
* access to the vrefresh in this function?
*/
tegra_dsi_set_timeout(dsi, bclk, vrefresh);
err = tegra_dsi_set_phy_timing(dsi);
if (err < 0)
return err;
return 0;
}
static int tegra_output_dsi_check_mode(struct tegra_output *output,
struct drm_display_mode *mode,
enum drm_mode_status *status)
{
/*
* FIXME: For now, always assume that the mode is okay.
*/
*status = MODE_OK;
return 0;
}
static const struct tegra_output_ops dsi_ops = {
.enable = tegra_output_dsi_enable,
.disable = tegra_output_dsi_disable,
.setup_clock = tegra_output_dsi_setup_clock,
.check_mode = tegra_output_dsi_check_mode,
};
static int tegra_dsi_pad_enable(struct tegra_dsi *dsi)
{
unsigned long value;
value = DSI_PAD_CONTROL_VS1_PULLDN(0) | DSI_PAD_CONTROL_VS1_PDIO(0);
tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_0);
return 0;
}
static int tegra_dsi_pad_calibrate(struct tegra_dsi *dsi)
{
u32 value;
tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_0);
tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_1);
tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_2);
tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_3);
tegra_dsi_writel(dsi, 0, DSI_PAD_CONTROL_4);
/* start calibration */
tegra_dsi_pad_enable(dsi);
value = DSI_PAD_SLEW_UP(0x7) | DSI_PAD_SLEW_DN(0x7) |
DSI_PAD_LP_UP(0x1) | DSI_PAD_LP_DN(0x1) |
DSI_PAD_OUT_CLK(0x0);
tegra_dsi_writel(dsi, value, DSI_PAD_CONTROL_2);
return tegra_mipi_calibrate(dsi->mipi);
}
static int tegra_dsi_init(struct host1x_client *client)
{
struct drm_device *drm = dev_get_drvdata(client->parent);
struct tegra_dsi *dsi = host1x_client_to_dsi(client);
int err;
/* Gangsters must not register their own outputs. */
if (!dsi->master) {
dsi->output.type = TEGRA_OUTPUT_DSI;
dsi->output.dev = client->dev;
dsi->output.ops = &dsi_ops;
err = tegra_output_init(drm, &dsi->output);
if (err < 0) {
dev_err(client->dev, "output setup failed: %d\n", err);
return err;
}
}
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dsi_debugfs_init(dsi, drm->primary);
if (err < 0)
dev_err(dsi->dev, "debugfs setup failed: %d\n", err);
}
return 0;
}
static int tegra_dsi_exit(struct host1x_client *client)
{
struct tegra_dsi *dsi = host1x_client_to_dsi(client);
int err;
if (IS_ENABLED(CONFIG_DEBUG_FS)) {
err = tegra_dsi_debugfs_exit(dsi);
if (err < 0)
dev_err(dsi->dev, "debugfs cleanup failed: %d\n", err);
}
if (!dsi->master) {
err = tegra_output_disable(&dsi->output);
if (err < 0) {
dev_err(client->dev, "output failed to disable: %d\n",
err);
return err;
}
err = tegra_output_exit(&dsi->output);
if (err < 0) {
dev_err(client->dev, "output cleanup failed: %d\n",
err);
return err;
}
}
return 0;
}
static const struct host1x_client_ops dsi_client_ops = {
.init = tegra_dsi_init,
.exit = tegra_dsi_exit,
};
static int tegra_dsi_setup_clocks(struct tegra_dsi *dsi)
{
struct clk *parent;
int err;
parent = clk_get_parent(dsi->clk);
if (!parent)
return -EINVAL;
err = clk_set_parent(parent, dsi->clk_parent);
if (err < 0)
return err;
return 0;
}
static const char * const error_report[16] = {
"SoT Error",
"SoT Sync Error",
"EoT Sync Error",
"Escape Mode Entry Command Error",
"Low-Power Transmit Sync Error",
"Peripheral Timeout Error",
"False Control Error",
"Contention Detected",
"ECC Error, single-bit",
"ECC Error, multi-bit",
"Checksum Error",
"DSI Data Type Not Recognized",
"DSI VC ID Invalid",
"Invalid Transmission Length",
"Reserved",
"DSI Protocol Violation",
};
static ssize_t tegra_dsi_read_response(struct tegra_dsi *dsi,
const struct mipi_dsi_msg *msg,
size_t count)
{
u8 *rx = msg->rx_buf;
unsigned int i, j, k;
size_t size = 0;
u16 errors;
u32 value;
/* read and parse packet header */
value = tegra_dsi_readl(dsi, DSI_RD_DATA);
switch (value & 0x3f) {
case MIPI_DSI_RX_ACKNOWLEDGE_AND_ERROR_REPORT:
errors = (value >> 8) & 0xffff;
dev_dbg(dsi->dev, "Acknowledge and error report: %04x\n",
errors);
for (i = 0; i < ARRAY_SIZE(error_report); i++)
if (errors & BIT(i))
dev_dbg(dsi->dev, " %2u: %s\n", i,
error_report[i]);
break;
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_1BYTE:
rx[0] = (value >> 8) & 0xff;
size = 1;
break;
case MIPI_DSI_RX_DCS_SHORT_READ_RESPONSE_2BYTE:
rx[0] = (value >> 8) & 0xff;
rx[1] = (value >> 16) & 0xff;
size = 2;
break;
case MIPI_DSI_RX_DCS_LONG_READ_RESPONSE:
size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff);
break;
case MIPI_DSI_RX_GENERIC_LONG_READ_RESPONSE:
size = ((value >> 8) & 0xff00) | ((value >> 8) & 0xff);
break;
default:
dev_err(dsi->dev, "unhandled response type: %02x\n",
value & 0x3f);
return -EPROTO;
}
size = min(size, msg->rx_len);
if (msg->rx_buf && size > 0) {
for (i = 0, j = 0; i < count - 1; i++, j += 4) {
u8 *rx = msg->rx_buf + j;
value = tegra_dsi_readl(dsi, DSI_RD_DATA);
for (k = 0; k < 4 && (j + k) < msg->rx_len; k++)
rx[j + k] = (value >> (k << 3)) & 0xff;
}
}
return size;
}
static int tegra_dsi_transmit(struct tegra_dsi *dsi, unsigned long timeout)
{
tegra_dsi_writel(dsi, DSI_TRIGGER_HOST, DSI_TRIGGER);
timeout = jiffies + msecs_to_jiffies(timeout);
while (time_before(jiffies, timeout)) {
u32 value = tegra_dsi_readl(dsi, DSI_TRIGGER);
if ((value & DSI_TRIGGER_HOST) == 0)
return 0;
usleep_range(1000, 2000);
}
DRM_DEBUG_KMS("timeout waiting for transmission to complete\n");
return -ETIMEDOUT;
}
static int tegra_dsi_wait_for_response(struct tegra_dsi *dsi,
unsigned long timeout)
{
timeout = jiffies + msecs_to_jiffies(250);
while (time_before(jiffies, timeout)) {
u32 value = tegra_dsi_readl(dsi, DSI_STATUS);
u8 count = value & 0x1f;
if (count > 0)
return count;
usleep_range(1000, 2000);
}
DRM_DEBUG_KMS("peripheral returned no data\n");
return -ETIMEDOUT;
}
static void tegra_dsi_writesl(struct tegra_dsi *dsi, unsigned long offset,
const void *buffer, size_t size)
{
const u8 *buf = buffer;
size_t i, j;
u32 value;
for (j = 0; j < size; j += 4) {
value = 0;
for (i = 0; i < 4 && j + i < size; i++)
value |= buf[j + i] << (i << 3);
tegra_dsi_writel(dsi, value, DSI_WR_DATA);
}
}
static ssize_t tegra_dsi_host_transfer(struct mipi_dsi_host *host,
const struct mipi_dsi_msg *msg)
{
struct tegra_dsi *dsi = host_to_tegra(host);
struct mipi_dsi_packet packet;
const u8 *header;
size_t count;
ssize_t err;
u32 value;
err = mipi_dsi_create_packet(&packet, msg);
if (err < 0)
return err;
header = packet.header;
/* maximum FIFO depth is 1920 words */
if (packet.size > dsi->video_fifo_depth * 4)
return -ENOSPC;
/* reset underflow/overflow flags */
value = tegra_dsi_readl(dsi, DSI_STATUS);
if (value & (DSI_STATUS_UNDERFLOW | DSI_STATUS_OVERFLOW)) {
value = DSI_HOST_CONTROL_FIFO_RESET;
tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL);
usleep_range(10, 20);
}
value = tegra_dsi_readl(dsi, DSI_POWER_CONTROL);
value |= DSI_POWER_CONTROL_ENABLE;
tegra_dsi_writel(dsi, value, DSI_POWER_CONTROL);
usleep_range(5000, 10000);
value = DSI_HOST_CONTROL_CRC_RESET | DSI_HOST_CONTROL_TX_TRIG_HOST |
DSI_HOST_CONTROL_CS | DSI_HOST_CONTROL_ECC;
if ((msg->flags & MIPI_DSI_MSG_USE_LPM) == 0)
value |= DSI_HOST_CONTROL_HS;
/*
* The host FIFO has a maximum of 64 words, so larger transmissions
* need to use the video FIFO.
*/
if (packet.size > dsi->host_fifo_depth * 4)
value |= DSI_HOST_CONTROL_FIFO_SEL;
tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL);
/*
* For reads and messages with explicitly requested ACK, generate a
* BTA sequence after the transmission of the packet.
*/
if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) ||
(msg->rx_buf && msg->rx_len > 0)) {
value = tegra_dsi_readl(dsi, DSI_HOST_CONTROL);
value |= DSI_HOST_CONTROL_PKT_BTA;
tegra_dsi_writel(dsi, value, DSI_HOST_CONTROL);
}
value = DSI_CONTROL_LANES(0) | DSI_CONTROL_HOST_ENABLE;
tegra_dsi_writel(dsi, value, DSI_CONTROL);
/* write packet header, ECC is generated by hardware */
value = header[2] << 16 | header[1] << 8 | header[0];
tegra_dsi_writel(dsi, value, DSI_WR_DATA);
/* write payload (if any) */
if (packet.payload_length > 0)
tegra_dsi_writesl(dsi, DSI_WR_DATA, packet.payload,
packet.payload_length);
err = tegra_dsi_transmit(dsi, 250);
if (err < 0)
return err;
if ((msg->flags & MIPI_DSI_MSG_REQ_ACK) ||
(msg->rx_buf && msg->rx_len > 0)) {
err = tegra_dsi_wait_for_response(dsi, 250);
if (err < 0)
return err;
count = err;
value = tegra_dsi_readl(dsi, DSI_RD_DATA);
switch (value) {
case 0x84:
/*
dev_dbg(dsi->dev, "ACK\n");
*/
break;
case 0x87:
/*
dev_dbg(dsi->dev, "ESCAPE\n");
*/
break;
default:
dev_err(dsi->dev, "unknown status: %08x\n", value);
break;
}
if (count > 1) {
err = tegra_dsi_read_response(dsi, msg, count);
if (err < 0)
dev_err(dsi->dev,
"failed to parse response: %zd\n",
err);
else {
/*
* For read commands, return the number of
* bytes returned by the peripheral.
*/
count = err;
}
}
} else {
/*
* For write commands, we have transmitted the 4-byte header
* plus the variable-length payload.
*/
count = 4 + packet.payload_length;
}
return count;
}
static int tegra_dsi_ganged_setup(struct tegra_dsi *dsi)
{
struct clk *parent;
int err;
/* make sure both DSI controllers share the same PLL */
parent = clk_get_parent(dsi->slave->clk);
if (!parent)
return -EINVAL;
err = clk_set_parent(parent, dsi->clk_parent);
if (err < 0)
return err;
return 0;
}
static int tegra_dsi_host_attach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct tegra_dsi *dsi = host_to_tegra(host);
dsi->flags = device->mode_flags;
dsi->format = device->format;
dsi->lanes = device->lanes;
if (dsi->slave) {
int err;
dev_dbg(dsi->dev, "attaching dual-channel device %s\n",
dev_name(&device->dev));
err = tegra_dsi_ganged_setup(dsi);
if (err < 0) {
dev_err(dsi->dev, "failed to set up ganged mode: %d\n",
err);
return err;
}
}
/*
* Slaves don't have a panel associated with them, so they provide
* merely the second channel.
*/
if (!dsi->master) {
struct tegra_output *output = &dsi->output;
output->panel = of_drm_find_panel(device->dev.of_node);
if (output->panel && output->connector.dev) {
drm_panel_attach(output->panel, &output->connector);
drm_helper_hpd_irq_event(output->connector.dev);
}
}
return 0;
}
static int tegra_dsi_host_detach(struct mipi_dsi_host *host,
struct mipi_dsi_device *device)
{
struct tegra_dsi *dsi = host_to_tegra(host);
struct tegra_output *output = &dsi->output;
if (output->panel && &device->dev == output->panel->dev) {
output->panel = NULL;
if (output->connector.dev)
drm_helper_hpd_irq_event(output->connector.dev);
}
return 0;
}
static const struct mipi_dsi_host_ops tegra_dsi_host_ops = {
.attach = tegra_dsi_host_attach,
.detach = tegra_dsi_host_detach,
.transfer = tegra_dsi_host_transfer,
};
static int tegra_dsi_ganged_probe(struct tegra_dsi *dsi)
{
struct device_node *np;
np = of_parse_phandle(dsi->dev->of_node, "nvidia,ganged-mode", 0);
if (np) {
struct platform_device *gangster = of_find_device_by_node(np);
dsi->slave = platform_get_drvdata(gangster);
of_node_put(np);
if (!dsi->slave)
return -EPROBE_DEFER;
dsi->slave->master = dsi;
}
return 0;
}
static int tegra_dsi_probe(struct platform_device *pdev)
{
struct tegra_dsi *dsi;
struct resource *regs;
int err;
dsi = devm_kzalloc(&pdev->dev, sizeof(*dsi), GFP_KERNEL);
if (!dsi)
return -ENOMEM;
dsi->output.dev = dsi->dev = &pdev->dev;
dsi->video_fifo_depth = 1920;
dsi->host_fifo_depth = 64;
err = tegra_dsi_ganged_probe(dsi);
if (err < 0)
return err;
err = tegra_output_probe(&dsi->output);
if (err < 0)
return err;
dsi->output.connector.polled = DRM_CONNECTOR_POLL_HPD;
/*
* Assume these values by default. When a DSI peripheral driver
* attaches to the DSI host, the parameters will be taken from
* the attached device.
*/
dsi->flags = MIPI_DSI_MODE_VIDEO;
dsi->format = MIPI_DSI_FMT_RGB888;
dsi->lanes = 4;
dsi->rst = devm_reset_control_get(&pdev->dev, "dsi");
if (IS_ERR(dsi->rst))
return PTR_ERR(dsi->rst);
err = reset_control_deassert(dsi->rst);
if (err < 0) {
dev_err(&pdev->dev, "failed to bring DSI out of reset: %d\n",
err);
return err;
}
dsi->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(dsi->clk)) {
dev_err(&pdev->dev, "cannot get DSI clock\n");
err = PTR_ERR(dsi->clk);
goto reset;
}
err = clk_prepare_enable(dsi->clk);
if (err < 0) {
dev_err(&pdev->dev, "cannot enable DSI clock\n");
goto reset;
}
dsi->clk_lp = devm_clk_get(&pdev->dev, "lp");
if (IS_ERR(dsi->clk_lp)) {
dev_err(&pdev->dev, "cannot get low-power clock\n");
err = PTR_ERR(dsi->clk_lp);
goto disable_clk;
}
err = clk_prepare_enable(dsi->clk_lp);
if (err < 0) {
dev_err(&pdev->dev, "cannot enable low-power clock\n");
goto disable_clk;
}
dsi->clk_parent = devm_clk_get(&pdev->dev, "parent");
if (IS_ERR(dsi->clk_parent)) {
dev_err(&pdev->dev, "cannot get parent clock\n");
err = PTR_ERR(dsi->clk_parent);
goto disable_clk_lp;
}
dsi->vdd = devm_regulator_get(&pdev->dev, "avdd-dsi-csi");
if (IS_ERR(dsi->vdd)) {
dev_err(&pdev->dev, "cannot get VDD supply\n");
err = PTR_ERR(dsi->vdd);
goto disable_clk_lp;
}
err = regulator_enable(dsi->vdd);
if (err < 0) {
dev_err(&pdev->dev, "cannot enable VDD supply\n");
goto disable_clk_lp;
}
err = tegra_dsi_setup_clocks(dsi);
if (err < 0) {
dev_err(&pdev->dev, "cannot setup clocks\n");
goto disable_vdd;
}
regs = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dsi->regs = devm_ioremap_resource(&pdev->dev, regs);
if (IS_ERR(dsi->regs)) {
err = PTR_ERR(dsi->regs);
goto disable_vdd;
}
dsi->mipi = tegra_mipi_request(&pdev->dev);
if (IS_ERR(dsi->mipi)) {
err = PTR_ERR(dsi->mipi);
goto disable_vdd;
}
err = tegra_dsi_pad_calibrate(dsi);
if (err < 0) {
dev_err(dsi->dev, "MIPI calibration failed: %d\n", err);
goto mipi_free;
}
dsi->host.ops = &tegra_dsi_host_ops;
dsi->host.dev = &pdev->dev;
err = mipi_dsi_host_register(&dsi->host);
if (err < 0) {
dev_err(&pdev->dev, "failed to register DSI host: %d\n", err);
goto mipi_free;
}
INIT_LIST_HEAD(&dsi->client.list);
dsi->client.ops = &dsi_client_ops;
dsi->client.dev = &pdev->dev;
err = host1x_client_register(&dsi->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to register host1x client: %d\n",
err);
goto unregister;
}
platform_set_drvdata(pdev, dsi);
return 0;
unregister:
mipi_dsi_host_unregister(&dsi->host);
mipi_free:
tegra_mipi_free(dsi->mipi);
disable_vdd:
regulator_disable(dsi->vdd);
disable_clk_lp:
clk_disable_unprepare(dsi->clk_lp);
disable_clk:
clk_disable_unprepare(dsi->clk);
reset:
reset_control_assert(dsi->rst);
return err;
}
static int tegra_dsi_remove(struct platform_device *pdev)
{
struct tegra_dsi *dsi = platform_get_drvdata(pdev);
int err;
err = host1x_client_unregister(&dsi->client);
if (err < 0) {
dev_err(&pdev->dev, "failed to unregister host1x client: %d\n",
err);
return err;
}
mipi_dsi_host_unregister(&dsi->host);
tegra_mipi_free(dsi->mipi);
regulator_disable(dsi->vdd);
clk_disable_unprepare(dsi->clk_lp);
clk_disable_unprepare(dsi->clk);
reset_control_assert(dsi->rst);
err = tegra_output_remove(&dsi->output);
if (err < 0) {
dev_err(&pdev->dev, "failed to remove output: %d\n", err);
return err;
}
return 0;
}
static const struct of_device_id tegra_dsi_of_match[] = {
{ .compatible = "nvidia,tegra114-dsi", },
{ },
};
MODULE_DEVICE_TABLE(of, tegra_dsi_of_match);
struct platform_driver tegra_dsi_driver = {
.driver = {
.name = "tegra-dsi",
.of_match_table = tegra_dsi_of_match,
},
.probe = tegra_dsi_probe,
.remove = tegra_dsi_remove,
};