OpenCloudOS-Kernel/drivers/infiniband/hw/hns/hns_roce_hem.c

1486 lines
37 KiB
C

/*
* Copyright (c) 2016 Hisilicon Limited.
* Copyright (c) 2007, 2008 Mellanox Technologies. All rights reserved.
*
* This software is available to you under a choice of one of two
* licenses. You may choose to be licensed under the terms of the GNU
* General Public License (GPL) Version 2, available from the file
* COPYING in the main directory of this source tree, or the
* OpenIB.org BSD license below:
*
* Redistribution and use in source and binary forms, with or
* without modification, are permitted provided that the following
* conditions are met:
*
* - Redistributions of source code must retain the above
* copyright notice, this list of conditions and the following
* disclaimer.
*
* - Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials
* provided with the distribution.
*
* THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
* EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
* MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
* NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
* BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
* ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
* CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
* SOFTWARE.
*/
#include "hns_roce_device.h"
#include "hns_roce_hem.h"
#include "hns_roce_common.h"
#define HEM_INDEX_BUF BIT(0)
#define HEM_INDEX_L0 BIT(1)
#define HEM_INDEX_L1 BIT(2)
struct hns_roce_hem_index {
u64 buf;
u64 l0;
u64 l1;
u32 inited; /* indicate which index is available */
};
bool hns_roce_check_whether_mhop(struct hns_roce_dev *hr_dev, u32 type)
{
int hop_num = 0;
switch (type) {
case HEM_TYPE_QPC:
hop_num = hr_dev->caps.qpc_hop_num;
break;
case HEM_TYPE_MTPT:
hop_num = hr_dev->caps.mpt_hop_num;
break;
case HEM_TYPE_CQC:
hop_num = hr_dev->caps.cqc_hop_num;
break;
case HEM_TYPE_SRQC:
hop_num = hr_dev->caps.srqc_hop_num;
break;
case HEM_TYPE_SCCC:
hop_num = hr_dev->caps.sccc_hop_num;
break;
case HEM_TYPE_QPC_TIMER:
hop_num = hr_dev->caps.qpc_timer_hop_num;
break;
case HEM_TYPE_CQC_TIMER:
hop_num = hr_dev->caps.cqc_timer_hop_num;
break;
case HEM_TYPE_GMV:
hop_num = hr_dev->caps.gmv_hop_num;
break;
default:
return false;
}
return hop_num ? true : false;
}
static bool hns_roce_check_hem_null(struct hns_roce_hem **hem, u64 hem_idx,
u32 bt_chunk_num, u64 hem_max_num)
{
u64 start_idx = round_down(hem_idx, bt_chunk_num);
u64 check_max_num = start_idx + bt_chunk_num;
u64 i;
for (i = start_idx; (i < check_max_num) && (i < hem_max_num); i++)
if (i != hem_idx && hem[i])
return false;
return true;
}
static bool hns_roce_check_bt_null(u64 **bt, u64 ba_idx, u32 bt_chunk_num)
{
u64 start_idx = round_down(ba_idx, bt_chunk_num);
int i;
for (i = 0; i < bt_chunk_num; i++)
if (i != ba_idx && bt[start_idx + i])
return false;
return true;
}
static int hns_roce_get_bt_num(u32 table_type, u32 hop_num)
{
if (check_whether_bt_num_3(table_type, hop_num))
return 3;
else if (check_whether_bt_num_2(table_type, hop_num))
return 2;
else if (check_whether_bt_num_1(table_type, hop_num))
return 1;
else
return 0;
}
static int get_hem_table_config(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_mhop *mhop,
u32 type)
{
struct device *dev = hr_dev->dev;
switch (type) {
case HEM_TYPE_QPC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.qpc_bt_num;
mhop->hop_num = hr_dev->caps.qpc_hop_num;
break;
case HEM_TYPE_MTPT:
mhop->buf_chunk_size = 1 << (hr_dev->caps.mpt_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.mpt_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.mpt_bt_num;
mhop->hop_num = hr_dev->caps.mpt_hop_num;
break;
case HEM_TYPE_CQC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.cqc_bt_num;
mhop->hop_num = hr_dev->caps.cqc_hop_num;
break;
case HEM_TYPE_SCCC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.sccc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.sccc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.sccc_bt_num;
mhop->hop_num = hr_dev->caps.sccc_hop_num;
break;
case HEM_TYPE_QPC_TIMER:
mhop->buf_chunk_size = 1 << (hr_dev->caps.qpc_timer_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.qpc_timer_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.qpc_timer_bt_num;
mhop->hop_num = hr_dev->caps.qpc_timer_hop_num;
break;
case HEM_TYPE_CQC_TIMER:
mhop->buf_chunk_size = 1 << (hr_dev->caps.cqc_timer_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.cqc_timer_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.cqc_timer_bt_num;
mhop->hop_num = hr_dev->caps.cqc_timer_hop_num;
break;
case HEM_TYPE_SRQC:
mhop->buf_chunk_size = 1 << (hr_dev->caps.srqc_buf_pg_sz
+ PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.srqc_ba_pg_sz
+ PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.srqc_bt_num;
mhop->hop_num = hr_dev->caps.srqc_hop_num;
break;
case HEM_TYPE_GMV:
mhop->buf_chunk_size = 1 << (hr_dev->caps.gmv_buf_pg_sz +
PAGE_SHIFT);
mhop->bt_chunk_size = 1 << (hr_dev->caps.gmv_ba_pg_sz +
PAGE_SHIFT);
mhop->ba_l0_num = hr_dev->caps.gmv_bt_num;
mhop->hop_num = hr_dev->caps.gmv_hop_num;
break;
default:
dev_err(dev, "table %u not support multi-hop addressing!\n",
type);
return -EINVAL;
}
return 0;
}
int hns_roce_calc_hem_mhop(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long *obj,
struct hns_roce_hem_mhop *mhop)
{
struct device *dev = hr_dev->dev;
u32 chunk_ba_num;
u32 chunk_size;
u32 table_idx;
u32 bt_num;
if (get_hem_table_config(hr_dev, mhop, table->type))
return -EINVAL;
if (!obj)
return 0;
/*
* QPC/MTPT/CQC/SRQC/SCCC alloc hem for buffer pages.
* MTT/CQE alloc hem for bt pages.
*/
bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num);
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
chunk_size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size :
mhop->bt_chunk_size;
table_idx = *obj / (chunk_size / table->obj_size);
switch (bt_num) {
case 3:
mhop->l2_idx = table_idx & (chunk_ba_num - 1);
mhop->l1_idx = table_idx / chunk_ba_num & (chunk_ba_num - 1);
mhop->l0_idx = (table_idx / chunk_ba_num) / chunk_ba_num;
break;
case 2:
mhop->l1_idx = table_idx & (chunk_ba_num - 1);
mhop->l0_idx = table_idx / chunk_ba_num;
break;
case 1:
mhop->l0_idx = table_idx;
break;
default:
dev_err(dev, "table %u not support hop_num = %u!\n",
table->type, mhop->hop_num);
return -EINVAL;
}
if (mhop->l0_idx >= mhop->ba_l0_num)
mhop->l0_idx %= mhop->ba_l0_num;
return 0;
}
static struct hns_roce_hem *hns_roce_alloc_hem(struct hns_roce_dev *hr_dev,
int npages,
unsigned long hem_alloc_size,
gfp_t gfp_mask)
{
struct hns_roce_hem_chunk *chunk = NULL;
struct hns_roce_hem *hem;
struct scatterlist *mem;
int order;
void *buf;
WARN_ON(gfp_mask & __GFP_HIGHMEM);
hem = kmalloc(sizeof(*hem),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!hem)
return NULL;
INIT_LIST_HEAD(&hem->chunk_list);
order = get_order(hem_alloc_size);
while (npages > 0) {
if (!chunk) {
chunk = kmalloc(sizeof(*chunk),
gfp_mask & ~(__GFP_HIGHMEM | __GFP_NOWARN));
if (!chunk)
goto fail;
sg_init_table(chunk->mem, HNS_ROCE_HEM_CHUNK_LEN);
chunk->npages = 0;
chunk->nsg = 0;
memset(chunk->buf, 0, sizeof(chunk->buf));
list_add_tail(&chunk->list, &hem->chunk_list);
}
while (1 << order > npages)
--order;
/*
* Alloc memory one time. If failed, don't alloc small block
* memory, directly return fail.
*/
mem = &chunk->mem[chunk->npages];
buf = dma_alloc_coherent(hr_dev->dev, PAGE_SIZE << order,
&sg_dma_address(mem), gfp_mask);
if (!buf)
goto fail;
chunk->buf[chunk->npages] = buf;
sg_dma_len(mem) = PAGE_SIZE << order;
++chunk->npages;
++chunk->nsg;
npages -= 1 << order;
}
return hem;
fail:
hns_roce_free_hem(hr_dev, hem);
return NULL;
}
void hns_roce_free_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem *hem)
{
struct hns_roce_hem_chunk *chunk, *tmp;
int i;
if (!hem)
return;
list_for_each_entry_safe(chunk, tmp, &hem->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i)
dma_free_coherent(hr_dev->dev,
sg_dma_len(&chunk->mem[i]),
chunk->buf[i],
sg_dma_address(&chunk->mem[i]));
kfree(chunk);
}
kfree(hem);
}
static int calc_hem_config(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
unsigned long mhop_obj = obj;
u32 l0_idx, l1_idx, l2_idx;
u32 chunk_ba_num;
u32 bt_num;
int ret;
ret = hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, mhop);
if (ret)
return ret;
l0_idx = mhop->l0_idx;
l1_idx = mhop->l1_idx;
l2_idx = mhop->l2_idx;
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
bt_num = hns_roce_get_bt_num(table->type, mhop->hop_num);
switch (bt_num) {
case 3:
index->l1 = l0_idx * chunk_ba_num + l1_idx;
index->l0 = l0_idx;
index->buf = l0_idx * chunk_ba_num * chunk_ba_num +
l1_idx * chunk_ba_num + l2_idx;
break;
case 2:
index->l0 = l0_idx;
index->buf = l0_idx * chunk_ba_num + l1_idx;
break;
case 1:
index->buf = l0_idx;
break;
default:
ibdev_err(ibdev, "table %u not support mhop.hop_num = %u!\n",
table->type, mhop->hop_num);
return -EINVAL;
}
if (unlikely(index->buf >= table->num_hem)) {
ibdev_err(ibdev, "table %u exceed hem limt idx %llu, max %lu!\n",
table->type, index->buf, table->num_hem);
return -EINVAL;
}
return 0;
}
static void free_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
u32 bt_size = mhop->bt_chunk_size;
struct device *dev = hr_dev->dev;
if (index->inited & HEM_INDEX_BUF) {
hns_roce_free_hem(hr_dev, table->hem[index->buf]);
table->hem[index->buf] = NULL;
}
if (index->inited & HEM_INDEX_L1) {
dma_free_coherent(dev, bt_size, table->bt_l1[index->l1],
table->bt_l1_dma_addr[index->l1]);
table->bt_l1[index->l1] = NULL;
}
if (index->inited & HEM_INDEX_L0) {
dma_free_coherent(dev, bt_size, table->bt_l0[index->l0],
table->bt_l0_dma_addr[index->l0]);
table->bt_l0[index->l0] = NULL;
}
}
static int alloc_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
u32 bt_size = mhop->bt_chunk_size;
struct device *dev = hr_dev->dev;
struct hns_roce_hem_iter iter;
gfp_t flag;
u64 bt_ba;
u32 size;
int ret;
/* alloc L1 BA's chunk */
if ((check_whether_bt_num_3(table->type, mhop->hop_num) ||
check_whether_bt_num_2(table->type, mhop->hop_num)) &&
!table->bt_l0[index->l0]) {
table->bt_l0[index->l0] = dma_alloc_coherent(dev, bt_size,
&table->bt_l0_dma_addr[index->l0],
GFP_KERNEL);
if (!table->bt_l0[index->l0]) {
ret = -ENOMEM;
goto out;
}
index->inited |= HEM_INDEX_L0;
}
/* alloc L2 BA's chunk */
if (check_whether_bt_num_3(table->type, mhop->hop_num) &&
!table->bt_l1[index->l1]) {
table->bt_l1[index->l1] = dma_alloc_coherent(dev, bt_size,
&table->bt_l1_dma_addr[index->l1],
GFP_KERNEL);
if (!table->bt_l1[index->l1]) {
ret = -ENOMEM;
goto err_alloc_hem;
}
index->inited |= HEM_INDEX_L1;
*(table->bt_l0[index->l0] + mhop->l1_idx) =
table->bt_l1_dma_addr[index->l1];
}
/*
* alloc buffer space chunk for QPC/MTPT/CQC/SRQC/SCCC.
* alloc bt space chunk for MTT/CQE.
*/
size = table->type < HEM_TYPE_MTT ? mhop->buf_chunk_size : bt_size;
flag = GFP_KERNEL | __GFP_NOWARN;
table->hem[index->buf] = hns_roce_alloc_hem(hr_dev, size >> PAGE_SHIFT,
size, flag);
if (!table->hem[index->buf]) {
ret = -ENOMEM;
goto err_alloc_hem;
}
index->inited |= HEM_INDEX_BUF;
hns_roce_hem_first(table->hem[index->buf], &iter);
bt_ba = hns_roce_hem_addr(&iter);
if (table->type < HEM_TYPE_MTT) {
if (mhop->hop_num == 2)
*(table->bt_l1[index->l1] + mhop->l2_idx) = bt_ba;
else if (mhop->hop_num == 1)
*(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba;
} else if (mhop->hop_num == 2) {
*(table->bt_l0[index->l0] + mhop->l1_idx) = bt_ba;
}
return 0;
err_alloc_hem:
free_mhop_hem(hr_dev, table, mhop, index);
out:
return ret;
}
static int set_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
u32 step_idx;
int ret = 0;
if (index->inited & HEM_INDEX_L0) {
ret = hr_dev->hw->set_hem(hr_dev, table, obj, 0);
if (ret) {
ibdev_err(ibdev, "set HEM step 0 failed!\n");
goto out;
}
}
if (index->inited & HEM_INDEX_L1) {
ret = hr_dev->hw->set_hem(hr_dev, table, obj, 1);
if (ret) {
ibdev_err(ibdev, "set HEM step 1 failed!\n");
goto out;
}
}
if (index->inited & HEM_INDEX_BUF) {
if (mhop->hop_num == HNS_ROCE_HOP_NUM_0)
step_idx = 0;
else
step_idx = mhop->hop_num;
ret = hr_dev->hw->set_hem(hr_dev, table, obj, step_idx);
if (ret)
ibdev_err(ibdev, "set HEM step last failed!\n");
}
out:
return ret;
}
static int hns_roce_table_mhop_get(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_hem_index index = {};
struct hns_roce_hem_mhop mhop = {};
int ret;
ret = calc_hem_config(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "calc hem config failed!\n");
return ret;
}
mutex_lock(&table->mutex);
if (table->hem[index.buf]) {
refcount_inc(&table->hem[index.buf]->refcount);
goto out;
}
ret = alloc_mhop_hem(hr_dev, table, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "alloc mhop hem failed!\n");
goto out;
}
/* set HEM base address to hardware */
if (table->type < HEM_TYPE_MTT) {
ret = set_mhop_hem(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "set HEM address to HW failed!\n");
goto err_alloc;
}
}
refcount_set(&table->hem[index.buf]->refcount, 1);
goto out;
err_alloc:
free_mhop_hem(hr_dev, table, &mhop, &index);
out:
mutex_unlock(&table->mutex);
return ret;
}
int hns_roce_table_get(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj)
{
struct device *dev = hr_dev->dev;
unsigned long i;
int ret = 0;
if (hns_roce_check_whether_mhop(hr_dev, table->type))
return hns_roce_table_mhop_get(hr_dev, table, obj);
i = obj / (table->table_chunk_size / table->obj_size);
mutex_lock(&table->mutex);
if (table->hem[i]) {
refcount_inc(&table->hem[i]->refcount);
goto out;
}
table->hem[i] = hns_roce_alloc_hem(hr_dev,
table->table_chunk_size >> PAGE_SHIFT,
table->table_chunk_size,
GFP_KERNEL | __GFP_NOWARN);
if (!table->hem[i]) {
ret = -ENOMEM;
goto out;
}
/* Set HEM base address(128K/page, pa) to Hardware */
if (hr_dev->hw->set_hem(hr_dev, table, obj, HEM_HOP_STEP_DIRECT)) {
hns_roce_free_hem(hr_dev, table->hem[i]);
table->hem[i] = NULL;
ret = -ENODEV;
dev_err(dev, "set HEM base address to HW failed.\n");
goto out;
}
refcount_set(&table->hem[i]->refcount, 1);
out:
mutex_unlock(&table->mutex);
return ret;
}
static void clear_mhop_hem(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj,
struct hns_roce_hem_mhop *mhop,
struct hns_roce_hem_index *index)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
u32 hop_num = mhop->hop_num;
u32 chunk_ba_num;
u32 step_idx;
index->inited = HEM_INDEX_BUF;
chunk_ba_num = mhop->bt_chunk_size / BA_BYTE_LEN;
if (check_whether_bt_num_2(table->type, hop_num)) {
if (hns_roce_check_hem_null(table->hem, index->buf,
chunk_ba_num, table->num_hem))
index->inited |= HEM_INDEX_L0;
} else if (check_whether_bt_num_3(table->type, hop_num)) {
if (hns_roce_check_hem_null(table->hem, index->buf,
chunk_ba_num, table->num_hem)) {
index->inited |= HEM_INDEX_L1;
if (hns_roce_check_bt_null(table->bt_l1, index->l1,
chunk_ba_num))
index->inited |= HEM_INDEX_L0;
}
}
if (table->type < HEM_TYPE_MTT) {
if (hop_num == HNS_ROCE_HOP_NUM_0)
step_idx = 0;
else
step_idx = hop_num;
if (hr_dev->hw->clear_hem(hr_dev, table, obj, step_idx))
ibdev_warn(ibdev, "failed to clear hop%u HEM.\n", hop_num);
if (index->inited & HEM_INDEX_L1)
if (hr_dev->hw->clear_hem(hr_dev, table, obj, 1))
ibdev_warn(ibdev, "failed to clear HEM step 1.\n");
if (index->inited & HEM_INDEX_L0)
if (hr_dev->hw->clear_hem(hr_dev, table, obj, 0))
ibdev_warn(ibdev, "failed to clear HEM step 0.\n");
}
}
static void hns_roce_table_mhop_put(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj,
int check_refcount)
{
struct ib_device *ibdev = &hr_dev->ib_dev;
struct hns_roce_hem_index index = {};
struct hns_roce_hem_mhop mhop = {};
int ret;
ret = calc_hem_config(hr_dev, table, obj, &mhop, &index);
if (ret) {
ibdev_err(ibdev, "calc hem config failed!\n");
return;
}
if (!check_refcount)
mutex_lock(&table->mutex);
else if (!refcount_dec_and_mutex_lock(&table->hem[index.buf]->refcount,
&table->mutex))
return;
clear_mhop_hem(hr_dev, table, obj, &mhop, &index);
free_mhop_hem(hr_dev, table, &mhop, &index);
mutex_unlock(&table->mutex);
}
void hns_roce_table_put(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, unsigned long obj)
{
struct device *dev = hr_dev->dev;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
hns_roce_table_mhop_put(hr_dev, table, obj, 1);
return;
}
i = obj / (table->table_chunk_size / table->obj_size);
if (!refcount_dec_and_mutex_lock(&table->hem[i]->refcount,
&table->mutex))
return;
if (hr_dev->hw->clear_hem(hr_dev, table, obj, HEM_HOP_STEP_DIRECT))
dev_warn(dev, "failed to clear HEM base address.\n");
hns_roce_free_hem(hr_dev, table->hem[i]);
table->hem[i] = NULL;
mutex_unlock(&table->mutex);
}
void *hns_roce_table_find(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table,
unsigned long obj, dma_addr_t *dma_handle)
{
struct hns_roce_hem_chunk *chunk;
struct hns_roce_hem_mhop mhop;
struct hns_roce_hem *hem;
unsigned long mhop_obj = obj;
unsigned long obj_per_chunk;
unsigned long idx_offset;
int offset, dma_offset;
void *addr = NULL;
u32 hem_idx = 0;
int length;
int i, j;
mutex_lock(&table->mutex);
if (!hns_roce_check_whether_mhop(hr_dev, table->type)) {
obj_per_chunk = table->table_chunk_size / table->obj_size;
hem = table->hem[obj / obj_per_chunk];
idx_offset = obj % obj_per_chunk;
dma_offset = offset = idx_offset * table->obj_size;
} else {
u32 seg_size = 64; /* 8 bytes per BA and 8 BA per segment */
if (hns_roce_calc_hem_mhop(hr_dev, table, &mhop_obj, &mhop))
goto out;
/* mtt mhop */
i = mhop.l0_idx;
j = mhop.l1_idx;
if (mhop.hop_num == 2)
hem_idx = i * (mhop.bt_chunk_size / BA_BYTE_LEN) + j;
else if (mhop.hop_num == 1 ||
mhop.hop_num == HNS_ROCE_HOP_NUM_0)
hem_idx = i;
hem = table->hem[hem_idx];
dma_offset = offset = obj * seg_size % mhop.bt_chunk_size;
if (mhop.hop_num == 2)
dma_offset = offset = 0;
}
if (!hem)
goto out;
list_for_each_entry(chunk, &hem->chunk_list, list) {
for (i = 0; i < chunk->npages; ++i) {
length = sg_dma_len(&chunk->mem[i]);
if (dma_handle && dma_offset >= 0) {
if (length > (u32)dma_offset)
*dma_handle = sg_dma_address(
&chunk->mem[i]) + dma_offset;
dma_offset -= length;
}
if (length > (u32)offset) {
addr = chunk->buf[i] + offset;
goto out;
}
offset -= length;
}
}
out:
mutex_unlock(&table->mutex);
return addr;
}
int hns_roce_init_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table, u32 type,
unsigned long obj_size, unsigned long nobj)
{
unsigned long obj_per_chunk;
unsigned long num_hem;
if (!hns_roce_check_whether_mhop(hr_dev, type)) {
table->table_chunk_size = hr_dev->caps.chunk_sz;
obj_per_chunk = table->table_chunk_size / obj_size;
num_hem = DIV_ROUND_UP(nobj, obj_per_chunk);
table->hem = kcalloc(num_hem, sizeof(*table->hem), GFP_KERNEL);
if (!table->hem)
return -ENOMEM;
} else {
struct hns_roce_hem_mhop mhop = {};
unsigned long buf_chunk_size;
unsigned long bt_chunk_size;
unsigned long bt_chunk_num;
unsigned long num_bt_l0;
u32 hop_num;
if (get_hem_table_config(hr_dev, &mhop, type))
return -EINVAL;
buf_chunk_size = mhop.buf_chunk_size;
bt_chunk_size = mhop.bt_chunk_size;
num_bt_l0 = mhop.ba_l0_num;
hop_num = mhop.hop_num;
obj_per_chunk = buf_chunk_size / obj_size;
num_hem = DIV_ROUND_UP(nobj, obj_per_chunk);
bt_chunk_num = bt_chunk_size / BA_BYTE_LEN;
if (type >= HEM_TYPE_MTT)
num_bt_l0 = bt_chunk_num;
table->hem = kcalloc(num_hem, sizeof(*table->hem),
GFP_KERNEL);
if (!table->hem)
goto err_kcalloc_hem_buf;
if (check_whether_bt_num_3(type, hop_num)) {
unsigned long num_bt_l1;
num_bt_l1 = DIV_ROUND_UP(num_hem, bt_chunk_num);
table->bt_l1 = kcalloc(num_bt_l1,
sizeof(*table->bt_l1),
GFP_KERNEL);
if (!table->bt_l1)
goto err_kcalloc_bt_l1;
table->bt_l1_dma_addr = kcalloc(num_bt_l1,
sizeof(*table->bt_l1_dma_addr),
GFP_KERNEL);
if (!table->bt_l1_dma_addr)
goto err_kcalloc_l1_dma;
}
if (check_whether_bt_num_2(type, hop_num) ||
check_whether_bt_num_3(type, hop_num)) {
table->bt_l0 = kcalloc(num_bt_l0, sizeof(*table->bt_l0),
GFP_KERNEL);
if (!table->bt_l0)
goto err_kcalloc_bt_l0;
table->bt_l0_dma_addr = kcalloc(num_bt_l0,
sizeof(*table->bt_l0_dma_addr),
GFP_KERNEL);
if (!table->bt_l0_dma_addr)
goto err_kcalloc_l0_dma;
}
}
table->type = type;
table->num_hem = num_hem;
table->obj_size = obj_size;
mutex_init(&table->mutex);
return 0;
err_kcalloc_l0_dma:
kfree(table->bt_l0);
table->bt_l0 = NULL;
err_kcalloc_bt_l0:
kfree(table->bt_l1_dma_addr);
table->bt_l1_dma_addr = NULL;
err_kcalloc_l1_dma:
kfree(table->bt_l1);
table->bt_l1 = NULL;
err_kcalloc_bt_l1:
kfree(table->hem);
table->hem = NULL;
err_kcalloc_hem_buf:
return -ENOMEM;
}
static void hns_roce_cleanup_mhop_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table)
{
struct hns_roce_hem_mhop mhop;
u32 buf_chunk_size;
u64 obj;
int i;
if (hns_roce_calc_hem_mhop(hr_dev, table, NULL, &mhop))
return;
buf_chunk_size = table->type < HEM_TYPE_MTT ? mhop.buf_chunk_size :
mhop.bt_chunk_size;
for (i = 0; i < table->num_hem; ++i) {
obj = i * buf_chunk_size / table->obj_size;
if (table->hem[i])
hns_roce_table_mhop_put(hr_dev, table, obj, 0);
}
kfree(table->hem);
table->hem = NULL;
kfree(table->bt_l1);
table->bt_l1 = NULL;
kfree(table->bt_l1_dma_addr);
table->bt_l1_dma_addr = NULL;
kfree(table->bt_l0);
table->bt_l0 = NULL;
kfree(table->bt_l0_dma_addr);
table->bt_l0_dma_addr = NULL;
}
void hns_roce_cleanup_hem_table(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_table *table)
{
struct device *dev = hr_dev->dev;
unsigned long i;
if (hns_roce_check_whether_mhop(hr_dev, table->type)) {
hns_roce_cleanup_mhop_hem_table(hr_dev, table);
return;
}
for (i = 0; i < table->num_hem; ++i)
if (table->hem[i]) {
if (hr_dev->hw->clear_hem(hr_dev, table,
i * table->table_chunk_size / table->obj_size, 0))
dev_err(dev, "clear HEM base address failed.\n");
hns_roce_free_hem(hr_dev, table->hem[i]);
}
kfree(table->hem);
}
void hns_roce_cleanup_hem(struct hns_roce_dev *hr_dev)
{
if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_SRQ)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->srq_table.table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->cq_table.table);
if (hr_dev->caps.qpc_timer_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qpc_timer_table);
if (hr_dev->caps.cqc_timer_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->cqc_timer_table);
if (hr_dev->caps.flags & HNS_ROCE_CAP_FLAG_QP_FLOW_CTRL)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qp_table.sccc_table);
if (hr_dev->caps.trrl_entry_sz)
hns_roce_cleanup_hem_table(hr_dev,
&hr_dev->qp_table.trrl_table);
if (hr_dev->caps.gmv_entry_sz)
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->gmv_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.irrl_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->qp_table.qp_table);
hns_roce_cleanup_hem_table(hr_dev, &hr_dev->mr_table.mtpt_table);
}
struct hns_roce_hem_item {
struct list_head list; /* link all hems in the same bt level */
struct list_head sibling; /* link all hems in last hop for mtt */
void *addr;
dma_addr_t dma_addr;
size_t count; /* max ba numbers */
int start; /* start buf offset in this hem */
int end; /* end buf offset in this hem */
};
/* All HEM items are linked in a tree structure */
struct hns_roce_hem_head {
struct list_head branch[HNS_ROCE_MAX_BT_REGION];
struct list_head root;
struct list_head leaf;
};
static struct hns_roce_hem_item *
hem_list_alloc_item(struct hns_roce_dev *hr_dev, int start, int end, int count,
bool exist_bt)
{
struct hns_roce_hem_item *hem;
hem = kzalloc(sizeof(*hem), GFP_KERNEL);
if (!hem)
return NULL;
if (exist_bt) {
hem->addr = dma_alloc_coherent(hr_dev->dev, count * BA_BYTE_LEN,
&hem->dma_addr, GFP_KERNEL);
if (!hem->addr) {
kfree(hem);
return NULL;
}
}
hem->count = count;
hem->start = start;
hem->end = end;
INIT_LIST_HEAD(&hem->list);
INIT_LIST_HEAD(&hem->sibling);
return hem;
}
static void hem_list_free_item(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_item *hem, bool exist_bt)
{
if (exist_bt)
dma_free_coherent(hr_dev->dev, hem->count * BA_BYTE_LEN,
hem->addr, hem->dma_addr);
kfree(hem);
}
static void hem_list_free_all(struct hns_roce_dev *hr_dev,
struct list_head *head, bool exist_bt)
{
struct hns_roce_hem_item *hem, *temp_hem;
list_for_each_entry_safe(hem, temp_hem, head, list) {
list_del(&hem->list);
hem_list_free_item(hr_dev, hem, exist_bt);
}
}
static void hem_list_link_bt(struct hns_roce_dev *hr_dev, void *base_addr,
u64 table_addr)
{
*(u64 *)(base_addr) = table_addr;
}
/* assign L0 table address to hem from root bt */
static void hem_list_assign_bt(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_item *hem, void *cpu_addr,
u64 phy_addr)
{
hem->addr = cpu_addr;
hem->dma_addr = (dma_addr_t)phy_addr;
}
static inline bool hem_list_page_is_in_range(struct hns_roce_hem_item *hem,
int offset)
{
return (hem->start <= offset && offset <= hem->end);
}
static struct hns_roce_hem_item *hem_list_search_item(struct list_head *ba_list,
int page_offset)
{
struct hns_roce_hem_item *hem, *temp_hem;
struct hns_roce_hem_item *found = NULL;
list_for_each_entry_safe(hem, temp_hem, ba_list, list) {
if (hem_list_page_is_in_range(hem, page_offset)) {
found = hem;
break;
}
}
return found;
}
static bool hem_list_is_bottom_bt(int hopnum, int bt_level)
{
/*
* hopnum base address table levels
* 0 L0(buf)
* 1 L0 -> buf
* 2 L0 -> L1 -> buf
* 3 L0 -> L1 -> L2 -> buf
*/
return bt_level >= (hopnum ? hopnum - 1 : hopnum);
}
/*
* calc base address entries num
* @hopnum: num of mutihop addressing
* @bt_level: base address table level
* @unit: ba entries per bt page
*/
static u32 hem_list_calc_ba_range(int hopnum, int bt_level, int unit)
{
u32 step;
int max;
int i;
if (hopnum <= bt_level)
return 0;
/*
* hopnum bt_level range
* 1 0 unit
* ------------
* 2 0 unit * unit
* 2 1 unit
* ------------
* 3 0 unit * unit * unit
* 3 1 unit * unit
* 3 2 unit
*/
step = 1;
max = hopnum - bt_level;
for (i = 0; i < max; i++)
step = step * unit;
return step;
}
/*
* calc the root ba entries which could cover all regions
* @regions: buf region array
* @region_cnt: array size of @regions
* @unit: ba entries per bt page
*/
int hns_roce_hem_list_calc_root_ba(const struct hns_roce_buf_region *regions,
int region_cnt, int unit)
{
struct hns_roce_buf_region *r;
int total = 0;
int step;
int i;
for (i = 0; i < region_cnt; i++) {
r = (struct hns_roce_buf_region *)&regions[i];
if (r->hopnum > 1) {
step = hem_list_calc_ba_range(r->hopnum, 1, unit);
if (step > 0)
total += (r->count + step - 1) / step;
} else {
total += r->count;
}
}
return total;
}
static int hem_list_alloc_mid_bt(struct hns_roce_dev *hr_dev,
const struct hns_roce_buf_region *r, int unit,
int offset, struct list_head *mid_bt,
struct list_head *btm_bt)
{
struct hns_roce_hem_item *hem_ptrs[HNS_ROCE_MAX_BT_LEVEL] = { NULL };
struct list_head temp_list[HNS_ROCE_MAX_BT_LEVEL];
struct hns_roce_hem_item *cur, *pre;
const int hopnum = r->hopnum;
int start_aligned;
int distance;
int ret = 0;
int max_ofs;
int level;
u32 step;
int end;
if (hopnum <= 1)
return 0;
if (hopnum > HNS_ROCE_MAX_BT_LEVEL) {
dev_err(hr_dev->dev, "invalid hopnum %d!\n", hopnum);
return -EINVAL;
}
if (offset < r->offset) {
dev_err(hr_dev->dev, "invalid offset %d, min %u!\n",
offset, r->offset);
return -EINVAL;
}
distance = offset - r->offset;
max_ofs = r->offset + r->count - 1;
for (level = 0; level < hopnum; level++)
INIT_LIST_HEAD(&temp_list[level]);
/* config L1 bt to last bt and link them to corresponding parent */
for (level = 1; level < hopnum; level++) {
cur = hem_list_search_item(&mid_bt[level], offset);
if (cur) {
hem_ptrs[level] = cur;
continue;
}
step = hem_list_calc_ba_range(hopnum, level, unit);
if (step < 1) {
ret = -EINVAL;
goto err_exit;
}
start_aligned = (distance / step) * step + r->offset;
end = min_t(int, start_aligned + step - 1, max_ofs);
cur = hem_list_alloc_item(hr_dev, start_aligned, end, unit,
true);
if (!cur) {
ret = -ENOMEM;
goto err_exit;
}
hem_ptrs[level] = cur;
list_add(&cur->list, &temp_list[level]);
if (hem_list_is_bottom_bt(hopnum, level))
list_add(&cur->sibling, &temp_list[0]);
/* link bt to parent bt */
if (level > 1) {
pre = hem_ptrs[level - 1];
step = (cur->start - pre->start) / step * BA_BYTE_LEN;
hem_list_link_bt(hr_dev, pre->addr + step,
cur->dma_addr);
}
}
list_splice(&temp_list[0], btm_bt);
for (level = 1; level < hopnum; level++)
list_splice(&temp_list[level], &mid_bt[level]);
return 0;
err_exit:
for (level = 1; level < hopnum; level++)
hem_list_free_all(hr_dev, &temp_list[level], true);
return ret;
}
static struct hns_roce_hem_item *
alloc_root_hem(struct hns_roce_dev *hr_dev, int unit, int *max_ba_num,
const struct hns_roce_buf_region *regions, int region_cnt)
{
const struct hns_roce_buf_region *r;
struct hns_roce_hem_item *hem;
int ba_num;
int offset;
ba_num = hns_roce_hem_list_calc_root_ba(regions, region_cnt, unit);
if (ba_num < 1)
return ERR_PTR(-ENOMEM);
if (ba_num > unit)
return ERR_PTR(-ENOBUFS);
offset = regions[0].offset;
/* indicate to last region */
r = &regions[region_cnt - 1];
hem = hem_list_alloc_item(hr_dev, offset, r->offset + r->count - 1,
ba_num, true);
if (!hem)
return ERR_PTR(-ENOMEM);
*max_ba_num = ba_num;
return hem;
}
static int alloc_fake_root_bt(struct hns_roce_dev *hr_dev, void *cpu_base,
u64 phy_base, const struct hns_roce_buf_region *r,
struct list_head *branch_head,
struct list_head *leaf_head)
{
struct hns_roce_hem_item *hem;
hem = hem_list_alloc_item(hr_dev, r->offset, r->offset + r->count - 1,
r->count, false);
if (!hem)
return -ENOMEM;
hem_list_assign_bt(hr_dev, hem, cpu_base, phy_base);
list_add(&hem->list, branch_head);
list_add(&hem->sibling, leaf_head);
return r->count;
}
static int setup_middle_bt(struct hns_roce_dev *hr_dev, void *cpu_base,
int unit, const struct hns_roce_buf_region *r,
const struct list_head *branch_head)
{
struct hns_roce_hem_item *hem, *temp_hem;
int total = 0;
int offset;
int step;
step = hem_list_calc_ba_range(r->hopnum, 1, unit);
if (step < 1)
return -EINVAL;
/* if exist mid bt, link L1 to L0 */
list_for_each_entry_safe(hem, temp_hem, branch_head, list) {
offset = (hem->start - r->offset) / step * BA_BYTE_LEN;
hem_list_link_bt(hr_dev, cpu_base + offset, hem->dma_addr);
total++;
}
return total;
}
static int
setup_root_hem(struct hns_roce_dev *hr_dev, struct hns_roce_hem_list *hem_list,
int unit, int max_ba_num, struct hns_roce_hem_head *head,
const struct hns_roce_buf_region *regions, int region_cnt)
{
const struct hns_roce_buf_region *r;
struct hns_roce_hem_item *root_hem;
void *cpu_base;
u64 phy_base;
int i, total;
int ret;
root_hem = list_first_entry(&head->root,
struct hns_roce_hem_item, list);
if (!root_hem)
return -ENOMEM;
total = 0;
for (i = 0; i < region_cnt && total < max_ba_num; i++) {
r = &regions[i];
if (!r->count)
continue;
/* all regions's mid[x][0] shared the root_bt's trunk */
cpu_base = root_hem->addr + total * BA_BYTE_LEN;
phy_base = root_hem->dma_addr + total * BA_BYTE_LEN;
/* if hopnum is 0 or 1, cut a new fake hem from the root bt
* which's address share to all regions.
*/
if (hem_list_is_bottom_bt(r->hopnum, 0))
ret = alloc_fake_root_bt(hr_dev, cpu_base, phy_base, r,
&head->branch[i], &head->leaf);
else
ret = setup_middle_bt(hr_dev, cpu_base, unit, r,
&hem_list->mid_bt[i][1]);
if (ret < 0)
return ret;
total += ret;
}
list_splice(&head->leaf, &hem_list->btm_bt);
list_splice(&head->root, &hem_list->root_bt);
for (i = 0; i < region_cnt; i++)
list_splice(&head->branch[i], &hem_list->mid_bt[i][0]);
return 0;
}
static int hem_list_alloc_root_bt(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list, int unit,
const struct hns_roce_buf_region *regions,
int region_cnt)
{
struct hns_roce_hem_item *root_hem;
struct hns_roce_hem_head head;
int max_ba_num;
int ret;
int i;
root_hem = hem_list_search_item(&hem_list->root_bt, regions[0].offset);
if (root_hem)
return 0;
max_ba_num = 0;
root_hem = alloc_root_hem(hr_dev, unit, &max_ba_num, regions,
region_cnt);
if (IS_ERR(root_hem))
return PTR_ERR(root_hem);
/* List head for storing all allocated HEM items */
INIT_LIST_HEAD(&head.root);
INIT_LIST_HEAD(&head.leaf);
for (i = 0; i < region_cnt; i++)
INIT_LIST_HEAD(&head.branch[i]);
hem_list->root_ba = root_hem->dma_addr;
list_add(&root_hem->list, &head.root);
ret = setup_root_hem(hr_dev, hem_list, unit, max_ba_num, &head, regions,
region_cnt);
if (ret) {
for (i = 0; i < region_cnt; i++)
hem_list_free_all(hr_dev, &head.branch[i], false);
hem_list_free_all(hr_dev, &head.root, true);
}
return ret;
}
/* construct the base address table and link them by address hop config */
int hns_roce_hem_list_request(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list,
const struct hns_roce_buf_region *regions,
int region_cnt, unsigned int bt_pg_shift)
{
const struct hns_roce_buf_region *r;
int ofs, end;
int unit;
int ret;
int i;
if (region_cnt > HNS_ROCE_MAX_BT_REGION) {
dev_err(hr_dev->dev, "invalid region region_cnt %d!\n",
region_cnt);
return -EINVAL;
}
unit = (1 << bt_pg_shift) / BA_BYTE_LEN;
for (i = 0; i < region_cnt; i++) {
r = &regions[i];
if (!r->count)
continue;
end = r->offset + r->count;
for (ofs = r->offset; ofs < end; ofs += unit) {
ret = hem_list_alloc_mid_bt(hr_dev, r, unit, ofs,
hem_list->mid_bt[i],
&hem_list->btm_bt);
if (ret) {
dev_err(hr_dev->dev,
"alloc hem trunk fail ret = %d!\n", ret);
goto err_alloc;
}
}
}
ret = hem_list_alloc_root_bt(hr_dev, hem_list, unit, regions,
region_cnt);
if (ret)
dev_err(hr_dev->dev, "alloc hem root fail ret = %d!\n", ret);
else
return 0;
err_alloc:
hns_roce_hem_list_release(hr_dev, hem_list);
return ret;
}
void hns_roce_hem_list_release(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list)
{
int i, j;
for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++)
for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++)
hem_list_free_all(hr_dev, &hem_list->mid_bt[i][j],
j != 0);
hem_list_free_all(hr_dev, &hem_list->root_bt, true);
INIT_LIST_HEAD(&hem_list->btm_bt);
hem_list->root_ba = 0;
}
void hns_roce_hem_list_init(struct hns_roce_hem_list *hem_list)
{
int i, j;
INIT_LIST_HEAD(&hem_list->root_bt);
INIT_LIST_HEAD(&hem_list->btm_bt);
for (i = 0; i < HNS_ROCE_MAX_BT_REGION; i++)
for (j = 0; j < HNS_ROCE_MAX_BT_LEVEL; j++)
INIT_LIST_HEAD(&hem_list->mid_bt[i][j]);
}
void *hns_roce_hem_list_find_mtt(struct hns_roce_dev *hr_dev,
struct hns_roce_hem_list *hem_list,
int offset, int *mtt_cnt)
{
struct list_head *head = &hem_list->btm_bt;
struct hns_roce_hem_item *hem, *temp_hem;
void *cpu_base = NULL;
int nr = 0;
list_for_each_entry_safe(hem, temp_hem, head, sibling) {
if (hem_list_page_is_in_range(hem, offset)) {
nr = offset - hem->start;
cpu_base = hem->addr + nr * BA_BYTE_LEN;
nr = hem->end + 1 - offset;
break;
}
}
if (mtt_cnt)
*mtt_cnt = nr;
return cpu_base;
}