OpenCloudOS-Kernel/drivers/misc/habanalabs/common/debugfs.c

1944 lines
47 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Copyright 2016-2021 HabanaLabs, Ltd.
* All Rights Reserved.
*/
#include "habanalabs.h"
#include "../include/hw_ip/mmu/mmu_general.h"
#include <linux/pci.h>
#include <linux/uaccess.h>
#include <linux/vmalloc.h>
#include <linux/iommu.h>
#define MMU_ADDR_BUF_SIZE 40
#define MMU_ASID_BUF_SIZE 10
#define MMU_KBUF_SIZE (MMU_ADDR_BUF_SIZE + MMU_ASID_BUF_SIZE)
#define I2C_MAX_TRANSACTION_LEN 8
static struct dentry *hl_debug_root;
static int hl_debugfs_i2c_read(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
u8 i2c_reg, u8 i2c_len, u64 *val)
{
struct cpucp_packet pkt;
int rc;
if (!hl_device_operational(hdev, NULL))
return -EBUSY;
if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
i2c_len, I2C_MAX_TRANSACTION_LEN);
return -EINVAL;
}
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_RD <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.i2c_bus = i2c_bus;
pkt.i2c_addr = i2c_addr;
pkt.i2c_reg = i2c_reg;
pkt.i2c_len = i2c_len;
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, val);
if (rc)
dev_err(hdev->dev, "Failed to read from I2C, error %d\n", rc);
return rc;
}
static int hl_debugfs_i2c_write(struct hl_device *hdev, u8 i2c_bus, u8 i2c_addr,
u8 i2c_reg, u8 i2c_len, u64 val)
{
struct cpucp_packet pkt;
int rc;
if (!hl_device_operational(hdev, NULL))
return -EBUSY;
if (i2c_len > I2C_MAX_TRANSACTION_LEN) {
dev_err(hdev->dev, "I2C transaction length %u, exceeds maximum of %u\n",
i2c_len, I2C_MAX_TRANSACTION_LEN);
return -EINVAL;
}
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_I2C_WR <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.i2c_bus = i2c_bus;
pkt.i2c_addr = i2c_addr;
pkt.i2c_reg = i2c_reg;
pkt.i2c_len = i2c_len;
pkt.value = cpu_to_le64(val);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev, "Failed to write to I2C, error %d\n", rc);
return rc;
}
static void hl_debugfs_led_set(struct hl_device *hdev, u8 led, u8 state)
{
struct cpucp_packet pkt;
int rc;
if (!hl_device_operational(hdev, NULL))
return;
memset(&pkt, 0, sizeof(pkt));
pkt.ctl = cpu_to_le32(CPUCP_PACKET_LED_SET <<
CPUCP_PKT_CTL_OPCODE_SHIFT);
pkt.led_index = cpu_to_le32(led);
pkt.value = cpu_to_le64(state);
rc = hdev->asic_funcs->send_cpu_message(hdev, (u32 *) &pkt, sizeof(pkt),
0, NULL);
if (rc)
dev_err(hdev->dev, "Failed to set LED %d, error %d\n", led, rc);
}
static int command_buffers_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cb *cb;
bool first = true;
spin_lock(&dev_entry->cb_spinlock);
list_for_each_entry(cb, &dev_entry->cb_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " CB ID CTX ID CB size CB RefCnt mmap? CS counter\n");
seq_puts(s, "---------------------------------------------------------------\n");
}
seq_printf(s,
" %03llu %d 0x%08x %d %d %d\n",
cb->buf->handle, cb->ctx->asid, cb->size,
kref_read(&cb->buf->refcount),
atomic_read(&cb->buf->mmap), atomic_read(&cb->cs_cnt));
}
spin_unlock(&dev_entry->cb_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int command_submission_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cs *cs;
bool first = true;
spin_lock(&dev_entry->cs_spinlock);
list_for_each_entry(cs, &dev_entry->cs_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " CS ID CS TYPE CTX ASID CS RefCnt Submitted Completed\n");
seq_puts(s, "----------------------------------------------------------------\n");
}
seq_printf(s,
" %llu %d %d %d %d %d\n",
cs->sequence, cs->type, cs->ctx->asid,
kref_read(&cs->refcount),
cs->submitted, cs->completed);
}
spin_unlock(&dev_entry->cs_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int command_submission_jobs_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_cs_job *job;
bool first = true;
spin_lock(&dev_entry->cs_job_spinlock);
list_for_each_entry(job, &dev_entry->cs_job_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " JOB ID CS ID CS TYPE CTX ASID JOB RefCnt H/W Queue\n");
seq_puts(s, "---------------------------------------------------------------\n");
}
if (job->cs)
seq_printf(s,
" %02d %llu %d %d %d %d\n",
job->id, job->cs->sequence, job->cs->type,
job->cs->ctx->asid, kref_read(&job->refcount),
job->hw_queue_id);
else
seq_printf(s,
" %02d 0 0 %d %d %d\n",
job->id, HL_KERNEL_ASID_ID,
kref_read(&job->refcount), job->hw_queue_id);
}
spin_unlock(&dev_entry->cs_job_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int userptr_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_userptr *userptr;
char dma_dir[4][30] = {"DMA_BIDIRECTIONAL", "DMA_TO_DEVICE",
"DMA_FROM_DEVICE", "DMA_NONE"};
bool first = true;
spin_lock(&dev_entry->userptr_spinlock);
list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " pid user virtual address size dma dir\n");
seq_puts(s, "----------------------------------------------------------\n");
}
seq_printf(s, " %-7d 0x%-14llx %-10llu %-30s\n",
userptr->pid, userptr->addr, userptr->size,
dma_dir[userptr->dir]);
}
spin_unlock(&dev_entry->userptr_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static int vm_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_vm_hw_block_list_node *lnode;
struct hl_ctx *ctx;
struct hl_vm *vm;
struct hl_vm_hash_node *hnode;
struct hl_userptr *userptr;
struct hl_vm_phys_pg_pack *phys_pg_pack = NULL;
struct hl_va_range *va_range;
struct hl_vm_va_block *va_block;
enum vm_type *vm_type;
bool once = true;
u64 j;
int i;
if (!dev_entry->hdev->mmu_enable)
return 0;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_for_each_entry(ctx, &dev_entry->ctx_mem_hash_list, debugfs_list) {
once = false;
seq_puts(s, "\n\n----------------------------------------------------");
seq_puts(s, "\n----------------------------------------------------\n\n");
seq_printf(s, "ctx asid: %u\n", ctx->asid);
seq_puts(s, "\nmappings:\n\n");
seq_puts(s, " virtual address size handle\n");
seq_puts(s, "----------------------------------------------------\n");
mutex_lock(&ctx->mem_hash_lock);
hash_for_each(ctx->mem_hash, i, hnode, node) {
vm_type = hnode->ptr;
if (*vm_type == VM_TYPE_USERPTR) {
userptr = hnode->ptr;
seq_printf(s,
" 0x%-14llx %-10llu\n",
hnode->vaddr, userptr->size);
} else {
phys_pg_pack = hnode->ptr;
seq_printf(s,
" 0x%-14llx %-10llu %-4u\n",
hnode->vaddr, phys_pg_pack->total_size,
phys_pg_pack->handle);
}
}
mutex_unlock(&ctx->mem_hash_lock);
if (ctx->asid != HL_KERNEL_ASID_ID &&
!list_empty(&ctx->hw_block_mem_list)) {
seq_puts(s, "\nhw_block mappings:\n\n");
seq_puts(s,
" virtual address block size mapped size HW block id\n");
seq_puts(s,
"---------------------------------------------------------------\n");
mutex_lock(&ctx->hw_block_list_lock);
list_for_each_entry(lnode, &ctx->hw_block_mem_list, node) {
seq_printf(s,
" 0x%-14lx %-6u %-6u %-9u\n",
lnode->vaddr, lnode->block_size, lnode->mapped_size,
lnode->id);
}
mutex_unlock(&ctx->hw_block_list_lock);
}
vm = &ctx->hdev->vm;
spin_lock(&vm->idr_lock);
if (!idr_is_empty(&vm->phys_pg_pack_handles))
seq_puts(s, "\n\nallocations:\n");
idr_for_each_entry(&vm->phys_pg_pack_handles, phys_pg_pack, i) {
if (phys_pg_pack->asid != ctx->asid)
continue;
seq_printf(s, "\nhandle: %u\n", phys_pg_pack->handle);
seq_printf(s, "page size: %u\n\n",
phys_pg_pack->page_size);
seq_puts(s, " physical address\n");
seq_puts(s, "---------------------\n");
for (j = 0 ; j < phys_pg_pack->npages ; j++) {
seq_printf(s, " 0x%-14llx\n",
phys_pg_pack->pages[j]);
}
}
spin_unlock(&vm->idr_lock);
}
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
ctx = hl_get_compute_ctx(dev_entry->hdev);
if (ctx) {
seq_puts(s, "\nVA ranges:\n\n");
for (i = HL_VA_RANGE_TYPE_HOST ; i < HL_VA_RANGE_TYPE_MAX ; ++i) {
va_range = ctx->va_range[i];
seq_printf(s, " va_range %d\n", i);
seq_puts(s, "---------------------\n");
mutex_lock(&va_range->lock);
list_for_each_entry(va_block, &va_range->list, node) {
seq_printf(s, "%#16llx - %#16llx (%#llx)\n",
va_block->start, va_block->end,
va_block->size);
}
mutex_unlock(&va_range->lock);
seq_puts(s, "\n");
}
hl_ctx_put(ctx);
}
if (!once)
seq_puts(s, "\n");
return 0;
}
static int userptr_lookup_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct scatterlist *sg;
struct hl_userptr *userptr;
bool first = true;
u64 total_npages, npages, sg_start, sg_end;
dma_addr_t dma_addr;
int i;
spin_lock(&dev_entry->userptr_spinlock);
list_for_each_entry(userptr, &dev_entry->userptr_list, debugfs_list) {
if (dev_entry->userptr_lookup >= userptr->addr &&
dev_entry->userptr_lookup < userptr->addr + userptr->size) {
total_npages = 0;
for_each_sgtable_dma_sg(userptr->sgt, sg, i) {
npages = hl_get_sg_info(sg, &dma_addr);
sg_start = userptr->addr +
total_npages * PAGE_SIZE;
sg_end = userptr->addr +
(total_npages + npages) * PAGE_SIZE;
if (dev_entry->userptr_lookup >= sg_start &&
dev_entry->userptr_lookup < sg_end) {
dma_addr += (dev_entry->userptr_lookup -
sg_start);
if (first) {
first = false;
seq_puts(s, "\n");
seq_puts(s, " user virtual address dma address pid region start region size\n");
seq_puts(s, "---------------------------------------------------------------------------------------\n");
}
seq_printf(s, " 0x%-18llx 0x%-16llx %-8u 0x%-16llx %-12llu\n",
dev_entry->userptr_lookup,
(u64)dma_addr, userptr->pid,
userptr->addr, userptr->size);
}
total_npages += npages;
}
}
}
spin_unlock(&dev_entry->userptr_spinlock);
if (!first)
seq_puts(s, "\n");
return 0;
}
static ssize_t userptr_lookup_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct seq_file *s = file->private_data;
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
ssize_t rc;
u64 value;
rc = kstrtoull_from_user(buf, count, 16, &value);
if (rc)
return rc;
dev_entry->userptr_lookup = value;
return count;
}
static int mmu_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
struct hl_ctx *ctx;
struct hl_mmu_hop_info hops_info = {0};
u64 virt_addr = dev_entry->mmu_addr, phys_addr;
int i;
if (!hdev->mmu_enable)
return 0;
if (dev_entry->mmu_asid == HL_KERNEL_ASID_ID)
ctx = hdev->kernel_ctx;
else
ctx = hl_get_compute_ctx(hdev);
if (!ctx) {
dev_err(hdev->dev, "no ctx available\n");
return 0;
}
if (hl_mmu_get_tlb_info(ctx, virt_addr, &hops_info)) {
dev_err(hdev->dev, "virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
goto put_ctx;
}
hl_mmu_va_to_pa(ctx, virt_addr, &phys_addr);
if (hops_info.scrambled_vaddr &&
(dev_entry->mmu_addr != hops_info.scrambled_vaddr))
seq_printf(s,
"asid: %u, virt_addr: 0x%llx, scrambled virt_addr: 0x%llx,\nphys_addr: 0x%llx, scrambled_phys_addr: 0x%llx\n",
dev_entry->mmu_asid, dev_entry->mmu_addr,
hops_info.scrambled_vaddr,
hops_info.unscrambled_paddr, phys_addr);
else
seq_printf(s,
"asid: %u, virt_addr: 0x%llx, phys_addr: 0x%llx\n",
dev_entry->mmu_asid, dev_entry->mmu_addr, phys_addr);
for (i = 0 ; i < hops_info.used_hops ; i++) {
seq_printf(s, "hop%d_addr: 0x%llx\n",
i, hops_info.hop_info[i].hop_addr);
seq_printf(s, "hop%d_pte_addr: 0x%llx\n",
i, hops_info.hop_info[i].hop_pte_addr);
seq_printf(s, "hop%d_pte: 0x%llx\n",
i, hops_info.hop_info[i].hop_pte_val);
}
put_ctx:
if (dev_entry->mmu_asid != HL_KERNEL_ASID_ID)
hl_ctx_put(ctx);
return 0;
}
static ssize_t mmu_asid_va_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct seq_file *s = file->private_data;
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
char kbuf[MMU_KBUF_SIZE];
char *c;
ssize_t rc;
if (!hdev->mmu_enable)
return count;
if (count > sizeof(kbuf) - 1)
goto err;
if (copy_from_user(kbuf, buf, count))
goto err;
kbuf[count] = 0;
c = strchr(kbuf, ' ');
if (!c)
goto err;
*c = '\0';
rc = kstrtouint(kbuf, 10, &dev_entry->mmu_asid);
if (rc)
goto err;
if (strncmp(c+1, "0x", 2))
goto err;
rc = kstrtoull(c+3, 16, &dev_entry->mmu_addr);
if (rc)
goto err;
return count;
err:
dev_err(hdev->dev, "usage: echo <asid> <0xaddr> > mmu\n");
return -EINVAL;
}
static int mmu_ack_error(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
int rc;
if (!hdev->mmu_enable)
return 0;
if (!dev_entry->mmu_cap_mask) {
dev_err(hdev->dev, "mmu_cap_mask is not set\n");
goto err;
}
rc = hdev->asic_funcs->ack_mmu_errors(hdev, dev_entry->mmu_cap_mask);
if (rc)
goto err;
return 0;
err:
return -EINVAL;
}
static ssize_t mmu_ack_error_value_write(struct file *file,
const char __user *buf,
size_t count, loff_t *f_pos)
{
struct seq_file *s = file->private_data;
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
char kbuf[MMU_KBUF_SIZE];
ssize_t rc;
if (!hdev->mmu_enable)
return count;
if (count > sizeof(kbuf) - 1)
goto err;
if (copy_from_user(kbuf, buf, count))
goto err;
kbuf[count] = 0;
if (strncmp(kbuf, "0x", 2))
goto err;
rc = kstrtoull(kbuf, 16, &dev_entry->mmu_cap_mask);
if (rc)
goto err;
return count;
err:
dev_err(hdev->dev, "usage: echo <0xmmu_cap_mask > > mmu_error\n");
return -EINVAL;
}
static int engines_show(struct seq_file *s, void *data)
{
struct hl_debugfs_entry *entry = s->private;
struct hl_dbg_device_entry *dev_entry = entry->dev_entry;
struct hl_device *hdev = dev_entry->hdev;
struct engines_data eng_data;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev,
"Can't check device idle during reset\n");
return 0;
}
eng_data.actual_size = 0;
eng_data.allocated_buf_size = HL_ENGINES_DATA_MAX_SIZE;
eng_data.buf = vmalloc(eng_data.allocated_buf_size);
if (!eng_data.buf)
return -ENOMEM;
hdev->asic_funcs->is_device_idle(hdev, NULL, 0, &eng_data);
if (eng_data.actual_size > eng_data.allocated_buf_size) {
dev_err(hdev->dev,
"Engines data size (%d Bytes) is bigger than allocated size (%u Bytes)\n",
eng_data.actual_size, eng_data.allocated_buf_size);
vfree(eng_data.buf);
return -ENOMEM;
}
seq_write(s, eng_data.buf, eng_data.actual_size);
vfree(eng_data.buf);
return 0;
}
static ssize_t hl_memory_scrub(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 val = hdev->memory_scrub_val;
int rc;
if (!hl_device_operational(hdev, NULL)) {
dev_warn_ratelimited(hdev->dev, "Can't scrub memory, device is not operational\n");
return -EIO;
}
mutex_lock(&hdev->fpriv_list_lock);
if (hdev->is_compute_ctx_active) {
mutex_unlock(&hdev->fpriv_list_lock);
dev_err(hdev->dev, "can't scrub dram, context exist\n");
return -EBUSY;
}
hdev->is_in_dram_scrub = true;
mutex_unlock(&hdev->fpriv_list_lock);
rc = hdev->asic_funcs->scrub_device_dram(hdev, val);
mutex_lock(&hdev->fpriv_list_lock);
hdev->is_in_dram_scrub = false;
mutex_unlock(&hdev->fpriv_list_lock);
if (rc)
return rc;
return count;
}
static bool hl_is_device_va(struct hl_device *hdev, u64 addr)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
if (!hdev->mmu_enable)
goto out;
if (prop->dram_supports_virtual_memory &&
(addr >= prop->dmmu.start_addr && addr < prop->dmmu.end_addr))
return true;
if (addr >= prop->pmmu.start_addr &&
addr < prop->pmmu.end_addr)
return true;
if (addr >= prop->pmmu_huge.start_addr &&
addr < prop->pmmu_huge.end_addr)
return true;
out:
return false;
}
static bool hl_is_device_internal_memory_va(struct hl_device *hdev, u64 addr,
u32 size)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 dram_start_addr, dram_end_addr;
if (!hdev->mmu_enable)
return false;
if (prop->dram_supports_virtual_memory) {
dram_start_addr = prop->dmmu.start_addr;
dram_end_addr = prop->dmmu.end_addr;
} else {
dram_start_addr = prop->dram_base_address;
dram_end_addr = prop->dram_end_address;
}
if (hl_mem_area_inside_range(addr, size, dram_start_addr,
dram_end_addr))
return true;
if (hl_mem_area_inside_range(addr, size, prop->sram_base_address,
prop->sram_end_address))
return true;
return false;
}
static int device_va_to_pa(struct hl_device *hdev, u64 virt_addr, u32 size,
u64 *phys_addr)
{
struct hl_vm_phys_pg_pack *phys_pg_pack;
struct hl_ctx *ctx;
struct hl_vm_hash_node *hnode;
u64 end_address, range_size;
struct hl_userptr *userptr;
enum vm_type *vm_type;
bool valid = false;
int i, rc = 0;
ctx = hl_get_compute_ctx(hdev);
if (!ctx) {
dev_err(hdev->dev, "no ctx available\n");
return -EINVAL;
}
/* Verify address is mapped */
mutex_lock(&ctx->mem_hash_lock);
hash_for_each(ctx->mem_hash, i, hnode, node) {
vm_type = hnode->ptr;
if (*vm_type == VM_TYPE_USERPTR) {
userptr = hnode->ptr;
range_size = userptr->size;
} else {
phys_pg_pack = hnode->ptr;
range_size = phys_pg_pack->total_size;
}
end_address = virt_addr + size;
if ((virt_addr >= hnode->vaddr) &&
(end_address <= hnode->vaddr + range_size)) {
valid = true;
break;
}
}
mutex_unlock(&ctx->mem_hash_lock);
if (!valid) {
dev_err(hdev->dev,
"virt addr 0x%llx is not mapped\n",
virt_addr);
rc = -EINVAL;
goto put_ctx;
}
rc = hl_mmu_va_to_pa(ctx, virt_addr, phys_addr);
if (rc) {
dev_err(hdev->dev,
"virt addr 0x%llx is not mapped to phys addr\n",
virt_addr);
rc = -EINVAL;
}
put_ctx:
hl_ctx_put(ctx);
return rc;
}
static int hl_access_dev_mem_by_region(struct hl_device *hdev, u64 addr,
u64 *val, enum debugfs_access_type acc_type, bool *found)
{
size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
sizeof(u64) : sizeof(u32);
struct pci_mem_region *mem_reg;
int i;
for (i = 0; i < PCI_REGION_NUMBER; i++) {
mem_reg = &hdev->pci_mem_region[i];
if (!mem_reg->used)
continue;
if (addr >= mem_reg->region_base &&
addr <= mem_reg->region_base + mem_reg->region_size - acc_size) {
*found = true;
return hdev->asic_funcs->access_dev_mem(hdev, i, addr, val, acc_type);
}
}
return 0;
}
static void hl_access_host_mem(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type)
{
struct asic_fixed_properties *prop = &hdev->asic_prop;
u64 offset = prop->device_dma_offset_for_host_access;
switch (acc_type) {
case DEBUGFS_READ32:
*val = *(u32 *) phys_to_virt(addr - offset);
break;
case DEBUGFS_WRITE32:
*(u32 *) phys_to_virt(addr - offset) = *val;
break;
case DEBUGFS_READ64:
*val = *(u64 *) phys_to_virt(addr - offset);
break;
case DEBUGFS_WRITE64:
*(u64 *) phys_to_virt(addr - offset) = *val;
break;
default:
dev_err(hdev->dev, "hostmem access-type %d id not supported\n", acc_type);
break;
}
}
static int hl_access_mem(struct hl_device *hdev, u64 addr, u64 *val,
enum debugfs_access_type acc_type)
{
size_t acc_size = (acc_type == DEBUGFS_READ64 || acc_type == DEBUGFS_WRITE64) ?
sizeof(u64) : sizeof(u32);
u64 host_start = hdev->asic_prop.host_base_address;
u64 host_end = hdev->asic_prop.host_end_address;
bool user_address, found = false;
int rc;
user_address = hl_is_device_va(hdev, addr);
if (user_address) {
rc = device_va_to_pa(hdev, addr, acc_size, &addr);
if (rc)
return rc;
}
rc = hl_access_dev_mem_by_region(hdev, addr, val, acc_type, &found);
if (rc) {
dev_err(hdev->dev,
"Failed reading addr %#llx from dev mem (%d)\n",
addr, rc);
return rc;
}
if (found)
return 0;
if (!user_address || device_iommu_mapped(&hdev->pdev->dev)) {
rc = -EINVAL;
goto err;
}
if (addr >= host_start && addr <= host_end - acc_size) {
hl_access_host_mem(hdev, addr, val, acc_type);
} else {
rc = -EINVAL;
goto err;
}
return 0;
err:
dev_err(hdev->dev, "invalid addr %#llx\n", addr);
return rc;
}
static ssize_t hl_data_read32(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 value64, addr = entry->addr;
char tmp_buf[32];
ssize_t rc;
u32 val;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
return 0;
}
if (*ppos)
return 0;
rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_READ32);
if (rc)
return rc;
val = value64; /* downcast back to 32 */
sprintf(tmp_buf, "0x%08x\n", val);
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
strlen(tmp_buf));
}
static ssize_t hl_data_write32(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 value64, addr = entry->addr;
u32 value;
ssize_t rc;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
return 0;
}
rc = kstrtouint_from_user(buf, count, 16, &value);
if (rc)
return rc;
value64 = value;
rc = hl_access_mem(hdev, addr, &value64, DEBUGFS_WRITE32);
if (rc)
return rc;
return count;
}
static ssize_t hl_data_read64(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 addr = entry->addr;
char tmp_buf[32];
ssize_t rc;
u64 val;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't read during reset\n");
return 0;
}
if (*ppos)
return 0;
rc = hl_access_mem(hdev, addr, &val, DEBUGFS_READ64);
if (rc)
return rc;
sprintf(tmp_buf, "0x%016llx\n", val);
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
strlen(tmp_buf));
}
static ssize_t hl_data_write64(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 addr = entry->addr;
u64 value;
ssize_t rc;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't write during reset\n");
return 0;
}
rc = kstrtoull_from_user(buf, count, 16, &value);
if (rc)
return rc;
rc = hl_access_mem(hdev, addr, &value, DEBUGFS_WRITE64);
if (rc)
return rc;
return count;
}
static ssize_t hl_dma_size_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 addr = entry->addr;
ssize_t rc;
u32 size;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't DMA during reset\n");
return 0;
}
rc = kstrtouint_from_user(buf, count, 16, &size);
if (rc)
return rc;
if (!size) {
dev_err(hdev->dev, "DMA read failed. size can't be 0\n");
return -EINVAL;
}
if (size > SZ_128M) {
dev_err(hdev->dev,
"DMA read failed. size can't be larger than 128MB\n");
return -EINVAL;
}
if (!hl_is_device_internal_memory_va(hdev, addr, size)) {
dev_err(hdev->dev,
"DMA read failed. Invalid 0x%010llx + 0x%08x\n",
addr, size);
return -EINVAL;
}
/* Free the previous allocation, if there was any */
entry->data_dma_blob_desc.size = 0;
vfree(entry->data_dma_blob_desc.data);
entry->data_dma_blob_desc.data = vmalloc(size);
if (!entry->data_dma_blob_desc.data)
return -ENOMEM;
rc = hdev->asic_funcs->debugfs_read_dma(hdev, addr, size,
entry->data_dma_blob_desc.data);
if (rc) {
dev_err(hdev->dev, "Failed to DMA from 0x%010llx\n", addr);
vfree(entry->data_dma_blob_desc.data);
entry->data_dma_blob_desc.data = NULL;
return -EIO;
}
entry->data_dma_blob_desc.size = size;
return count;
}
static ssize_t hl_monitor_dump_trigger(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 size, trig;
ssize_t rc;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev, "Can't dump monitors during reset\n");
return 0;
}
rc = kstrtouint_from_user(buf, count, 10, &trig);
if (rc)
return rc;
if (trig != 1) {
dev_err(hdev->dev, "Must write 1 to trigger monitor dump\n");
return -EINVAL;
}
size = sizeof(struct cpucp_monitor_dump);
/* Free the previous allocation, if there was any */
entry->mon_dump_blob_desc.size = 0;
vfree(entry->mon_dump_blob_desc.data);
entry->mon_dump_blob_desc.data = vmalloc(size);
if (!entry->mon_dump_blob_desc.data)
return -ENOMEM;
rc = hdev->asic_funcs->get_monitor_dump(hdev, entry->mon_dump_blob_desc.data);
if (rc) {
dev_err(hdev->dev, "Failed to dump monitors\n");
vfree(entry->mon_dump_blob_desc.data);
entry->mon_dump_blob_desc.data = NULL;
return -EIO;
}
entry->mon_dump_blob_desc.size = size;
return count;
}
static ssize_t hl_get_power_state(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[200];
int i;
if (*ppos)
return 0;
if (hdev->pdev->current_state == PCI_D0)
i = 1;
else if (hdev->pdev->current_state == PCI_D3hot)
i = 2;
else
i = 3;
sprintf(tmp_buf,
"current power state: %d\n1 - D0\n2 - D3hot\n3 - Unknown\n", i);
return simple_read_from_buffer(buf, count, ppos, tmp_buf,
strlen(tmp_buf));
}
static ssize_t hl_set_power_state(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
if (value == 1) {
pci_set_power_state(hdev->pdev, PCI_D0);
pci_restore_state(hdev->pdev);
rc = pci_enable_device(hdev->pdev);
if (rc < 0)
return rc;
} else if (value == 2) {
pci_save_state(hdev->pdev);
pci_disable_device(hdev->pdev);
pci_set_power_state(hdev->pdev, PCI_D3hot);
} else {
dev_dbg(hdev->dev, "invalid power state value %u\n", value);
return -EINVAL;
}
return count;
}
static ssize_t hl_i2c_data_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[32];
u64 val;
ssize_t rc;
if (*ppos)
return 0;
rc = hl_debugfs_i2c_read(hdev, entry->i2c_bus, entry->i2c_addr,
entry->i2c_reg, entry->i2c_len, &val);
if (rc) {
dev_err(hdev->dev,
"Failed to read from I2C bus %d, addr %d, reg %d, len %d\n",
entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
return rc;
}
sprintf(tmp_buf, "%#02llx\n", val);
rc = simple_read_from_buffer(buf, count, ppos, tmp_buf,
strlen(tmp_buf));
return rc;
}
static ssize_t hl_i2c_data_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u64 value;
ssize_t rc;
rc = kstrtou64_from_user(buf, count, 16, &value);
if (rc)
return rc;
rc = hl_debugfs_i2c_write(hdev, entry->i2c_bus, entry->i2c_addr,
entry->i2c_reg, entry->i2c_len, value);
if (rc) {
dev_err(hdev->dev,
"Failed to write %#02llx to I2C bus %d, addr %d, reg %d, len %d\n",
value, entry->i2c_bus, entry->i2c_addr, entry->i2c_reg, entry->i2c_len);
return rc;
}
return count;
}
static ssize_t hl_led0_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 0, value);
return count;
}
static ssize_t hl_led1_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 1, value);
return count;
}
static ssize_t hl_led2_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
value = value ? 1 : 0;
hl_debugfs_led_set(hdev, 2, value);
return count;
}
static ssize_t hl_device_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
static const char *help =
"Valid values: disable, enable, suspend, resume, cpu_timeout\n";
return simple_read_from_buffer(buf, count, ppos, help, strlen(help));
}
static ssize_t hl_device_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char data[30] = {0};
/* don't allow partial writes */
if (*ppos != 0)
return 0;
simple_write_to_buffer(data, 29, ppos, buf, count);
if (strncmp("disable", data, strlen("disable")) == 0) {
hdev->disabled = true;
} else if (strncmp("enable", data, strlen("enable")) == 0) {
hdev->disabled = false;
} else if (strncmp("suspend", data, strlen("suspend")) == 0) {
hdev->asic_funcs->suspend(hdev);
} else if (strncmp("resume", data, strlen("resume")) == 0) {
hdev->asic_funcs->resume(hdev);
} else if (strncmp("cpu_timeout", data, strlen("cpu_timeout")) == 0) {
hdev->device_cpu_disabled = true;
} else {
dev_err(hdev->dev,
"Valid values: disable, enable, suspend, resume, cpu_timeout\n");
count = -EINVAL;
}
return count;
}
static ssize_t hl_clk_gate_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
return 0;
}
static ssize_t hl_clk_gate_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
return count;
}
static ssize_t hl_stop_on_err_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[200];
ssize_t rc;
if (!hdev->asic_prop.configurable_stop_on_err)
return -EOPNOTSUPP;
if (*ppos)
return 0;
sprintf(tmp_buf, "%d\n", hdev->stop_on_err);
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_stop_on_err_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
if (!hdev->asic_prop.configurable_stop_on_err)
return -EOPNOTSUPP;
if (hdev->reset_info.in_reset) {
dev_warn_ratelimited(hdev->dev,
"Can't change stop on error during reset\n");
return 0;
}
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
hdev->stop_on_err = value ? 1 : 0;
hl_device_reset(hdev, 0);
return count;
}
static ssize_t hl_security_violations_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
hdev->asic_funcs->ack_protection_bits_errors(hdev);
return 0;
}
static ssize_t hl_state_dump_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
ssize_t rc;
down_read(&entry->state_dump_sem);
if (!entry->state_dump[entry->state_dump_head])
rc = 0;
else
rc = simple_read_from_buffer(
buf, count, ppos,
entry->state_dump[entry->state_dump_head],
strlen(entry->state_dump[entry->state_dump_head]));
up_read(&entry->state_dump_sem);
return rc;
}
static ssize_t hl_state_dump_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
ssize_t rc;
u32 size;
int i;
rc = kstrtouint_from_user(buf, count, 10, &size);
if (rc)
return rc;
if (size <= 0 || size >= ARRAY_SIZE(entry->state_dump)) {
dev_err(hdev->dev, "Invalid number of dumps to skip\n");
return -EINVAL;
}
if (entry->state_dump[entry->state_dump_head]) {
down_write(&entry->state_dump_sem);
for (i = 0; i < size; ++i) {
vfree(entry->state_dump[entry->state_dump_head]);
entry->state_dump[entry->state_dump_head] = NULL;
if (entry->state_dump_head > 0)
entry->state_dump_head--;
else
entry->state_dump_head =
ARRAY_SIZE(entry->state_dump) - 1;
}
up_write(&entry->state_dump_sem);
}
return count;
}
static ssize_t hl_timeout_locked_read(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
char tmp_buf[200];
ssize_t rc;
if (*ppos)
return 0;
sprintf(tmp_buf, "%d\n",
jiffies_to_msecs(hdev->timeout_jiffies) / 1000);
rc = simple_read_from_buffer(buf, strlen(tmp_buf) + 1, ppos, tmp_buf,
strlen(tmp_buf) + 1);
return rc;
}
static ssize_t hl_timeout_locked_write(struct file *f, const char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
u32 value;
ssize_t rc;
rc = kstrtouint_from_user(buf, count, 10, &value);
if (rc)
return rc;
if (value)
hdev->timeout_jiffies = msecs_to_jiffies(value * 1000);
else
hdev->timeout_jiffies = MAX_SCHEDULE_TIMEOUT;
return count;
}
static ssize_t hl_check_razwi_happened(struct file *f, char __user *buf,
size_t count, loff_t *ppos)
{
struct hl_dbg_device_entry *entry = file_inode(f)->i_private;
struct hl_device *hdev = entry->hdev;
hdev->asic_funcs->check_if_razwi_happened(hdev);
return 0;
}
static const struct file_operations hl_mem_scrub_fops = {
.owner = THIS_MODULE,
.write = hl_memory_scrub,
};
static const struct file_operations hl_data32b_fops = {
.owner = THIS_MODULE,
.read = hl_data_read32,
.write = hl_data_write32
};
static const struct file_operations hl_data64b_fops = {
.owner = THIS_MODULE,
.read = hl_data_read64,
.write = hl_data_write64
};
static const struct file_operations hl_dma_size_fops = {
.owner = THIS_MODULE,
.write = hl_dma_size_write
};
static const struct file_operations hl_monitor_dump_fops = {
.owner = THIS_MODULE,
.write = hl_monitor_dump_trigger
};
static const struct file_operations hl_i2c_data_fops = {
.owner = THIS_MODULE,
.read = hl_i2c_data_read,
.write = hl_i2c_data_write
};
static const struct file_operations hl_power_fops = {
.owner = THIS_MODULE,
.read = hl_get_power_state,
.write = hl_set_power_state
};
static const struct file_operations hl_led0_fops = {
.owner = THIS_MODULE,
.write = hl_led0_write
};
static const struct file_operations hl_led1_fops = {
.owner = THIS_MODULE,
.write = hl_led1_write
};
static const struct file_operations hl_led2_fops = {
.owner = THIS_MODULE,
.write = hl_led2_write
};
static const struct file_operations hl_device_fops = {
.owner = THIS_MODULE,
.read = hl_device_read,
.write = hl_device_write
};
static const struct file_operations hl_clk_gate_fops = {
.owner = THIS_MODULE,
.read = hl_clk_gate_read,
.write = hl_clk_gate_write
};
static const struct file_operations hl_stop_on_err_fops = {
.owner = THIS_MODULE,
.read = hl_stop_on_err_read,
.write = hl_stop_on_err_write
};
static const struct file_operations hl_security_violations_fops = {
.owner = THIS_MODULE,
.read = hl_security_violations_read
};
static const struct file_operations hl_state_dump_fops = {
.owner = THIS_MODULE,
.read = hl_state_dump_read,
.write = hl_state_dump_write
};
static const struct file_operations hl_timeout_locked_fops = {
.owner = THIS_MODULE,
.read = hl_timeout_locked_read,
.write = hl_timeout_locked_write
};
static const struct file_operations hl_razwi_check_fops = {
.owner = THIS_MODULE,
.read = hl_check_razwi_happened
};
static const struct hl_info_list hl_debugfs_list[] = {
{"command_buffers", command_buffers_show, NULL},
{"command_submission", command_submission_show, NULL},
{"command_submission_jobs", command_submission_jobs_show, NULL},
{"userptr", userptr_show, NULL},
{"vm", vm_show, NULL},
{"userptr_lookup", userptr_lookup_show, userptr_lookup_write},
{"mmu", mmu_show, mmu_asid_va_write},
{"mmu_error", mmu_ack_error, mmu_ack_error_value_write},
{"engines", engines_show, NULL},
};
static int hl_debugfs_open(struct inode *inode, struct file *file)
{
struct hl_debugfs_entry *node = inode->i_private;
return single_open(file, node->info_ent->show, node);
}
static ssize_t hl_debugfs_write(struct file *file, const char __user *buf,
size_t count, loff_t *f_pos)
{
struct hl_debugfs_entry *node = file->f_inode->i_private;
if (node->info_ent->write)
return node->info_ent->write(file, buf, count, f_pos);
else
return -EINVAL;
}
static const struct file_operations hl_debugfs_fops = {
.owner = THIS_MODULE,
.open = hl_debugfs_open,
.read = seq_read,
.write = hl_debugfs_write,
.llseek = seq_lseek,
.release = single_release,
};
static void add_secured_nodes(struct hl_dbg_device_entry *dev_entry)
{
debugfs_create_u8("i2c_bus",
0644,
dev_entry->root,
&dev_entry->i2c_bus);
debugfs_create_u8("i2c_addr",
0644,
dev_entry->root,
&dev_entry->i2c_addr);
debugfs_create_u8("i2c_reg",
0644,
dev_entry->root,
&dev_entry->i2c_reg);
debugfs_create_u8("i2c_len",
0644,
dev_entry->root,
&dev_entry->i2c_len);
debugfs_create_file("i2c_data",
0644,
dev_entry->root,
dev_entry,
&hl_i2c_data_fops);
debugfs_create_file("led0",
0200,
dev_entry->root,
dev_entry,
&hl_led0_fops);
debugfs_create_file("led1",
0200,
dev_entry->root,
dev_entry,
&hl_led1_fops);
debugfs_create_file("led2",
0200,
dev_entry->root,
dev_entry,
&hl_led2_fops);
}
void hl_debugfs_add_device(struct hl_device *hdev)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
int count = ARRAY_SIZE(hl_debugfs_list);
struct hl_debugfs_entry *entry;
int i;
dev_entry->hdev = hdev;
dev_entry->entry_arr = kmalloc_array(count,
sizeof(struct hl_debugfs_entry),
GFP_KERNEL);
if (!dev_entry->entry_arr)
return;
dev_entry->data_dma_blob_desc.size = 0;
dev_entry->data_dma_blob_desc.data = NULL;
dev_entry->mon_dump_blob_desc.size = 0;
dev_entry->mon_dump_blob_desc.data = NULL;
INIT_LIST_HEAD(&dev_entry->file_list);
INIT_LIST_HEAD(&dev_entry->cb_list);
INIT_LIST_HEAD(&dev_entry->cs_list);
INIT_LIST_HEAD(&dev_entry->cs_job_list);
INIT_LIST_HEAD(&dev_entry->userptr_list);
INIT_LIST_HEAD(&dev_entry->ctx_mem_hash_list);
mutex_init(&dev_entry->file_mutex);
init_rwsem(&dev_entry->state_dump_sem);
spin_lock_init(&dev_entry->cb_spinlock);
spin_lock_init(&dev_entry->cs_spinlock);
spin_lock_init(&dev_entry->cs_job_spinlock);
spin_lock_init(&dev_entry->userptr_spinlock);
spin_lock_init(&dev_entry->ctx_mem_hash_spinlock);
dev_entry->root = debugfs_create_dir(dev_name(hdev->dev),
hl_debug_root);
debugfs_create_x64("memory_scrub_val",
0644,
dev_entry->root,
&hdev->memory_scrub_val);
debugfs_create_file("memory_scrub",
0200,
dev_entry->root,
dev_entry,
&hl_mem_scrub_fops);
debugfs_create_x64("addr",
0644,
dev_entry->root,
&dev_entry->addr);
debugfs_create_file("data32",
0644,
dev_entry->root,
dev_entry,
&hl_data32b_fops);
debugfs_create_file("data64",
0644,
dev_entry->root,
dev_entry,
&hl_data64b_fops);
debugfs_create_file("set_power_state",
0200,
dev_entry->root,
dev_entry,
&hl_power_fops);
debugfs_create_file("device",
0200,
dev_entry->root,
dev_entry,
&hl_device_fops);
debugfs_create_file("clk_gate",
0200,
dev_entry->root,
dev_entry,
&hl_clk_gate_fops);
debugfs_create_file("stop_on_err",
0644,
dev_entry->root,
dev_entry,
&hl_stop_on_err_fops);
debugfs_create_file("dump_security_violations",
0644,
dev_entry->root,
dev_entry,
&hl_security_violations_fops);
debugfs_create_file("dump_razwi_events",
0644,
dev_entry->root,
dev_entry,
&hl_razwi_check_fops);
debugfs_create_file("dma_size",
0200,
dev_entry->root,
dev_entry,
&hl_dma_size_fops);
debugfs_create_blob("data_dma",
0400,
dev_entry->root,
&dev_entry->data_dma_blob_desc);
debugfs_create_file("monitor_dump_trig",
0200,
dev_entry->root,
dev_entry,
&hl_monitor_dump_fops);
debugfs_create_blob("monitor_dump",
0400,
dev_entry->root,
&dev_entry->mon_dump_blob_desc);
debugfs_create_x8("skip_reset_on_timeout",
0644,
dev_entry->root,
&hdev->reset_info.skip_reset_on_timeout);
debugfs_create_file("state_dump",
0600,
dev_entry->root,
dev_entry,
&hl_state_dump_fops);
debugfs_create_file("timeout_locked",
0644,
dev_entry->root,
dev_entry,
&hl_timeout_locked_fops);
for (i = 0, entry = dev_entry->entry_arr ; i < count ; i++, entry++) {
debugfs_create_file(hl_debugfs_list[i].name,
0444,
dev_entry->root,
entry,
&hl_debugfs_fops);
entry->info_ent = &hl_debugfs_list[i];
entry->dev_entry = dev_entry;
}
if (!hdev->asic_prop.fw_security_enabled)
add_secured_nodes(dev_entry);
}
void hl_debugfs_remove_device(struct hl_device *hdev)
{
struct hl_dbg_device_entry *entry = &hdev->hl_debugfs;
int i;
debugfs_remove_recursive(entry->root);
mutex_destroy(&entry->file_mutex);
vfree(entry->data_dma_blob_desc.data);
vfree(entry->mon_dump_blob_desc.data);
for (i = 0; i < ARRAY_SIZE(entry->state_dump); ++i)
vfree(entry->state_dump[i]);
kfree(entry->entry_arr);
}
void hl_debugfs_add_file(struct hl_fpriv *hpriv)
{
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
mutex_lock(&dev_entry->file_mutex);
list_add(&hpriv->debugfs_list, &dev_entry->file_list);
mutex_unlock(&dev_entry->file_mutex);
}
void hl_debugfs_remove_file(struct hl_fpriv *hpriv)
{
struct hl_dbg_device_entry *dev_entry = &hpriv->hdev->hl_debugfs;
mutex_lock(&dev_entry->file_mutex);
list_del(&hpriv->debugfs_list);
mutex_unlock(&dev_entry->file_mutex);
}
void hl_debugfs_add_cb(struct hl_cb *cb)
{
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
spin_lock(&dev_entry->cb_spinlock);
list_add(&cb->debugfs_list, &dev_entry->cb_list);
spin_unlock(&dev_entry->cb_spinlock);
}
void hl_debugfs_remove_cb(struct hl_cb *cb)
{
struct hl_dbg_device_entry *dev_entry = &cb->hdev->hl_debugfs;
spin_lock(&dev_entry->cb_spinlock);
list_del(&cb->debugfs_list);
spin_unlock(&dev_entry->cb_spinlock);
}
void hl_debugfs_add_cs(struct hl_cs *cs)
{
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
spin_lock(&dev_entry->cs_spinlock);
list_add(&cs->debugfs_list, &dev_entry->cs_list);
spin_unlock(&dev_entry->cs_spinlock);
}
void hl_debugfs_remove_cs(struct hl_cs *cs)
{
struct hl_dbg_device_entry *dev_entry = &cs->ctx->hdev->hl_debugfs;
spin_lock(&dev_entry->cs_spinlock);
list_del(&cs->debugfs_list);
spin_unlock(&dev_entry->cs_spinlock);
}
void hl_debugfs_add_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->cs_job_spinlock);
list_add(&job->debugfs_list, &dev_entry->cs_job_list);
spin_unlock(&dev_entry->cs_job_spinlock);
}
void hl_debugfs_remove_job(struct hl_device *hdev, struct hl_cs_job *job)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->cs_job_spinlock);
list_del(&job->debugfs_list);
spin_unlock(&dev_entry->cs_job_spinlock);
}
void hl_debugfs_add_userptr(struct hl_device *hdev, struct hl_userptr *userptr)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->userptr_spinlock);
list_add(&userptr->debugfs_list, &dev_entry->userptr_list);
spin_unlock(&dev_entry->userptr_spinlock);
}
void hl_debugfs_remove_userptr(struct hl_device *hdev,
struct hl_userptr *userptr)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->userptr_spinlock);
list_del(&userptr->debugfs_list);
spin_unlock(&dev_entry->userptr_spinlock);
}
void hl_debugfs_add_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_add(&ctx->debugfs_list, &dev_entry->ctx_mem_hash_list);
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
}
void hl_debugfs_remove_ctx_mem_hash(struct hl_device *hdev, struct hl_ctx *ctx)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
spin_lock(&dev_entry->ctx_mem_hash_spinlock);
list_del(&ctx->debugfs_list);
spin_unlock(&dev_entry->ctx_mem_hash_spinlock);
}
/**
* hl_debugfs_set_state_dump - register state dump making it accessible via
* debugfs
* @hdev: pointer to the device structure
* @data: the actual dump data
* @length: the length of the data
*/
void hl_debugfs_set_state_dump(struct hl_device *hdev, char *data,
unsigned long length)
{
struct hl_dbg_device_entry *dev_entry = &hdev->hl_debugfs;
down_write(&dev_entry->state_dump_sem);
dev_entry->state_dump_head = (dev_entry->state_dump_head + 1) %
ARRAY_SIZE(dev_entry->state_dump);
vfree(dev_entry->state_dump[dev_entry->state_dump_head]);
dev_entry->state_dump[dev_entry->state_dump_head] = data;
up_write(&dev_entry->state_dump_sem);
}
void __init hl_debugfs_init(void)
{
hl_debug_root = debugfs_create_dir("habanalabs", NULL);
}
void hl_debugfs_fini(void)
{
debugfs_remove_recursive(hl_debug_root);
}