OpenCloudOS-Kernel/drivers/mmc/host/sdhci.c

2141 lines
52 KiB
C

/*
* linux/drivers/mmc/host/sdhci.c - Secure Digital Host Controller Interface driver
*
* Copyright (C) 2005-2008 Pierre Ossman, All Rights Reserved.
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or (at
* your option) any later version.
*
* Thanks to the following companies for their support:
*
* - JMicron (hardware and technical support)
*/
#include <linux/delay.h>
#include <linux/highmem.h>
#include <linux/io.h>
#include <linux/dma-mapping.h>
#include <linux/slab.h>
#include <linux/scatterlist.h>
#include <linux/regulator/consumer.h>
#include <linux/leds.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/host.h>
#include "sdhci.h"
#define DRIVER_NAME "sdhci"
#define DBG(f, x...) \
pr_debug(DRIVER_NAME " [%s()]: " f, __func__,## x)
#if defined(CONFIG_LEDS_CLASS) || (defined(CONFIG_LEDS_CLASS_MODULE) && \
defined(CONFIG_MMC_SDHCI_MODULE))
#define SDHCI_USE_LEDS_CLASS
#endif
static unsigned int debug_quirks = 0;
static void sdhci_prepare_data(struct sdhci_host *, struct mmc_data *);
static void sdhci_finish_data(struct sdhci_host *);
static void sdhci_send_command(struct sdhci_host *, struct mmc_command *);
static void sdhci_finish_command(struct sdhci_host *);
static void sdhci_dumpregs(struct sdhci_host *host)
{
printk(KERN_DEBUG DRIVER_NAME ": =========== REGISTER DUMP (%s)===========\n",
mmc_hostname(host->mmc));
printk(KERN_DEBUG DRIVER_NAME ": Sys addr: 0x%08x | Version: 0x%08x\n",
sdhci_readl(host, SDHCI_DMA_ADDRESS),
sdhci_readw(host, SDHCI_HOST_VERSION));
printk(KERN_DEBUG DRIVER_NAME ": Blk size: 0x%08x | Blk cnt: 0x%08x\n",
sdhci_readw(host, SDHCI_BLOCK_SIZE),
sdhci_readw(host, SDHCI_BLOCK_COUNT));
printk(KERN_DEBUG DRIVER_NAME ": Argument: 0x%08x | Trn mode: 0x%08x\n",
sdhci_readl(host, SDHCI_ARGUMENT),
sdhci_readw(host, SDHCI_TRANSFER_MODE));
printk(KERN_DEBUG DRIVER_NAME ": Present: 0x%08x | Host ctl: 0x%08x\n",
sdhci_readl(host, SDHCI_PRESENT_STATE),
sdhci_readb(host, SDHCI_HOST_CONTROL));
printk(KERN_DEBUG DRIVER_NAME ": Power: 0x%08x | Blk gap: 0x%08x\n",
sdhci_readb(host, SDHCI_POWER_CONTROL),
sdhci_readb(host, SDHCI_BLOCK_GAP_CONTROL));
printk(KERN_DEBUG DRIVER_NAME ": Wake-up: 0x%08x | Clock: 0x%08x\n",
sdhci_readb(host, SDHCI_WAKE_UP_CONTROL),
sdhci_readw(host, SDHCI_CLOCK_CONTROL));
printk(KERN_DEBUG DRIVER_NAME ": Timeout: 0x%08x | Int stat: 0x%08x\n",
sdhci_readb(host, SDHCI_TIMEOUT_CONTROL),
sdhci_readl(host, SDHCI_INT_STATUS));
printk(KERN_DEBUG DRIVER_NAME ": Int enab: 0x%08x | Sig enab: 0x%08x\n",
sdhci_readl(host, SDHCI_INT_ENABLE),
sdhci_readl(host, SDHCI_SIGNAL_ENABLE));
printk(KERN_DEBUG DRIVER_NAME ": AC12 err: 0x%08x | Slot int: 0x%08x\n",
sdhci_readw(host, SDHCI_ACMD12_ERR),
sdhci_readw(host, SDHCI_SLOT_INT_STATUS));
printk(KERN_DEBUG DRIVER_NAME ": Caps: 0x%08x | Caps_1: 0x%08x\n",
sdhci_readl(host, SDHCI_CAPABILITIES),
sdhci_readl(host, SDHCI_CAPABILITIES_1));
printk(KERN_DEBUG DRIVER_NAME ": Cmd: 0x%08x | Max curr: 0x%08x\n",
sdhci_readw(host, SDHCI_COMMAND),
sdhci_readl(host, SDHCI_MAX_CURRENT));
if (host->flags & SDHCI_USE_ADMA)
printk(KERN_DEBUG DRIVER_NAME ": ADMA Err: 0x%08x | ADMA Ptr: 0x%08x\n",
readl(host->ioaddr + SDHCI_ADMA_ERROR),
readl(host->ioaddr + SDHCI_ADMA_ADDRESS));
printk(KERN_DEBUG DRIVER_NAME ": ===========================================\n");
}
/*****************************************************************************\
* *
* Low level functions *
* *
\*****************************************************************************/
static void sdhci_clear_set_irqs(struct sdhci_host *host, u32 clear, u32 set)
{
u32 ier;
ier = sdhci_readl(host, SDHCI_INT_ENABLE);
ier &= ~clear;
ier |= set;
sdhci_writel(host, ier, SDHCI_INT_ENABLE);
sdhci_writel(host, ier, SDHCI_SIGNAL_ENABLE);
}
static void sdhci_unmask_irqs(struct sdhci_host *host, u32 irqs)
{
sdhci_clear_set_irqs(host, 0, irqs);
}
static void sdhci_mask_irqs(struct sdhci_host *host, u32 irqs)
{
sdhci_clear_set_irqs(host, irqs, 0);
}
static void sdhci_set_card_detection(struct sdhci_host *host, bool enable)
{
u32 irqs = SDHCI_INT_CARD_REMOVE | SDHCI_INT_CARD_INSERT;
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
return;
if (enable)
sdhci_unmask_irqs(host, irqs);
else
sdhci_mask_irqs(host, irqs);
}
static void sdhci_enable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, true);
}
static void sdhci_disable_card_detection(struct sdhci_host *host)
{
sdhci_set_card_detection(host, false);
}
static void sdhci_reset(struct sdhci_host *host, u8 mask)
{
unsigned long timeout;
u32 uninitialized_var(ier);
if (host->quirks & SDHCI_QUIRK_NO_CARD_NO_RESET) {
if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT))
return;
}
if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET)
ier = sdhci_readl(host, SDHCI_INT_ENABLE);
sdhci_writeb(host, mask, SDHCI_SOFTWARE_RESET);
if (mask & SDHCI_RESET_ALL)
host->clock = 0;
/* Wait max 100 ms */
timeout = 100;
/* hw clears the bit when it's done */
while (sdhci_readb(host, SDHCI_SOFTWARE_RESET) & mask) {
if (timeout == 0) {
printk(KERN_ERR "%s: Reset 0x%x never completed.\n",
mmc_hostname(host->mmc), (int)mask);
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
if (host->quirks & SDHCI_QUIRK_RESTORE_IRQS_AFTER_RESET)
sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK, ier);
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios);
static void sdhci_init(struct sdhci_host *host, int soft)
{
if (soft)
sdhci_reset(host, SDHCI_RESET_CMD|SDHCI_RESET_DATA);
else
sdhci_reset(host, SDHCI_RESET_ALL);
sdhci_clear_set_irqs(host, SDHCI_INT_ALL_MASK,
SDHCI_INT_BUS_POWER | SDHCI_INT_DATA_END_BIT |
SDHCI_INT_DATA_CRC | SDHCI_INT_DATA_TIMEOUT | SDHCI_INT_INDEX |
SDHCI_INT_END_BIT | SDHCI_INT_CRC | SDHCI_INT_TIMEOUT |
SDHCI_INT_DATA_END | SDHCI_INT_RESPONSE);
if (soft) {
/* force clock reconfiguration */
host->clock = 0;
sdhci_set_ios(host->mmc, &host->mmc->ios);
}
}
static void sdhci_reinit(struct sdhci_host *host)
{
sdhci_init(host, 0);
sdhci_enable_card_detection(host);
}
static void sdhci_activate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl |= SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
static void sdhci_deactivate_led(struct sdhci_host *host)
{
u8 ctrl;
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_LED;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
#ifdef SDHCI_USE_LEDS_CLASS
static void sdhci_led_control(struct led_classdev *led,
enum led_brightness brightness)
{
struct sdhci_host *host = container_of(led, struct sdhci_host, led);
unsigned long flags;
spin_lock_irqsave(&host->lock, flags);
if (brightness == LED_OFF)
sdhci_deactivate_led(host);
else
sdhci_activate_led(host);
spin_unlock_irqrestore(&host->lock, flags);
}
#endif
/*****************************************************************************\
* *
* Core functions *
* *
\*****************************************************************************/
static void sdhci_read_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 uninitialized_var(scratch);
u8 *buf;
DBG("PIO reading\n");
blksize = host->data->blksz;
chunk = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
if (chunk == 0) {
scratch = sdhci_readl(host, SDHCI_BUFFER);
chunk = 4;
}
*buf = scratch & 0xFF;
buf++;
scratch >>= 8;
chunk--;
len--;
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_write_block_pio(struct sdhci_host *host)
{
unsigned long flags;
size_t blksize, len, chunk;
u32 scratch;
u8 *buf;
DBG("PIO writing\n");
blksize = host->data->blksz;
chunk = 0;
scratch = 0;
local_irq_save(flags);
while (blksize) {
if (!sg_miter_next(&host->sg_miter))
BUG();
len = min(host->sg_miter.length, blksize);
blksize -= len;
host->sg_miter.consumed = len;
buf = host->sg_miter.addr;
while (len) {
scratch |= (u32)*buf << (chunk * 8);
buf++;
chunk++;
len--;
if ((chunk == 4) || ((len == 0) && (blksize == 0))) {
sdhci_writel(host, scratch, SDHCI_BUFFER);
chunk = 0;
scratch = 0;
}
}
}
sg_miter_stop(&host->sg_miter);
local_irq_restore(flags);
}
static void sdhci_transfer_pio(struct sdhci_host *host)
{
u32 mask;
BUG_ON(!host->data);
if (host->blocks == 0)
return;
if (host->data->flags & MMC_DATA_READ)
mask = SDHCI_DATA_AVAILABLE;
else
mask = SDHCI_SPACE_AVAILABLE;
/*
* Some controllers (JMicron JMB38x) mess up the buffer bits
* for transfers < 4 bytes. As long as it is just one block,
* we can ignore the bits.
*/
if ((host->quirks & SDHCI_QUIRK_BROKEN_SMALL_PIO) &&
(host->data->blocks == 1))
mask = ~0;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (host->quirks & SDHCI_QUIRK_PIO_NEEDS_DELAY)
udelay(100);
if (host->data->flags & MMC_DATA_READ)
sdhci_read_block_pio(host);
else
sdhci_write_block_pio(host);
host->blocks--;
if (host->blocks == 0)
break;
}
DBG("PIO transfer complete.\n");
}
static char *sdhci_kmap_atomic(struct scatterlist *sg, unsigned long *flags)
{
local_irq_save(*flags);
return kmap_atomic(sg_page(sg), KM_BIO_SRC_IRQ) + sg->offset;
}
static void sdhci_kunmap_atomic(void *buffer, unsigned long *flags)
{
kunmap_atomic(buffer, KM_BIO_SRC_IRQ);
local_irq_restore(*flags);
}
static void sdhci_set_adma_desc(u8 *desc, u32 addr, int len, unsigned cmd)
{
__le32 *dataddr = (__le32 __force *)(desc + 4);
__le16 *cmdlen = (__le16 __force *)desc;
/* SDHCI specification says ADMA descriptors should be 4 byte
* aligned, so using 16 or 32bit operations should be safe. */
cmdlen[0] = cpu_to_le16(cmd);
cmdlen[1] = cpu_to_le16(len);
dataddr[0] = cpu_to_le32(addr);
}
static int sdhci_adma_table_pre(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
u8 *desc;
u8 *align;
dma_addr_t addr;
dma_addr_t align_addr;
int len, offset;
struct scatterlist *sg;
int i;
char *buffer;
unsigned long flags;
/*
* The spec does not specify endianness of descriptor table.
* We currently guess that it is LE.
*/
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
/*
* The ADMA descriptor table is mapped further down as we
* need to fill it with data first.
*/
host->align_addr = dma_map_single(mmc_dev(host->mmc),
host->align_buffer, 128 * 4, direction);
if (dma_mapping_error(mmc_dev(host->mmc), host->align_addr))
goto fail;
BUG_ON(host->align_addr & 0x3);
host->sg_count = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len, direction);
if (host->sg_count == 0)
goto unmap_align;
desc = host->adma_desc;
align = host->align_buffer;
align_addr = host->align_addr;
for_each_sg(data->sg, sg, host->sg_count, i) {
addr = sg_dma_address(sg);
len = sg_dma_len(sg);
/*
* The SDHCI specification states that ADMA
* addresses must be 32-bit aligned. If they
* aren't, then we use a bounce buffer for
* the (up to three) bytes that screw up the
* alignment.
*/
offset = (4 - (addr & 0x3)) & 0x3;
if (offset) {
if (data->flags & MMC_DATA_WRITE) {
buffer = sdhci_kmap_atomic(sg, &flags);
WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3));
memcpy(align, buffer, offset);
sdhci_kunmap_atomic(buffer, &flags);
}
/* tran, valid */
sdhci_set_adma_desc(desc, align_addr, offset, 0x21);
BUG_ON(offset > 65536);
align += 4;
align_addr += 4;
desc += 8;
addr += offset;
len -= offset;
}
BUG_ON(len > 65536);
/* tran, valid */
sdhci_set_adma_desc(desc, addr, len, 0x21);
desc += 8;
/*
* If this triggers then we have a calculation bug
* somewhere. :/
*/
WARN_ON((desc - host->adma_desc) > (128 * 2 + 1) * 4);
}
if (host->quirks & SDHCI_QUIRK_NO_ENDATTR_IN_NOPDESC) {
/*
* Mark the last descriptor as the terminating descriptor
*/
if (desc != host->adma_desc) {
desc -= 8;
desc[0] |= 0x2; /* end */
}
} else {
/*
* Add a terminating entry.
*/
/* nop, end, valid */
sdhci_set_adma_desc(desc, 0, 0, 0x3);
}
/*
* Resync align buffer as we might have changed it.
*/
if (data->flags & MMC_DATA_WRITE) {
dma_sync_single_for_device(mmc_dev(host->mmc),
host->align_addr, 128 * 4, direction);
}
host->adma_addr = dma_map_single(mmc_dev(host->mmc),
host->adma_desc, (128 * 2 + 1) * 4, DMA_TO_DEVICE);
if (dma_mapping_error(mmc_dev(host->mmc), host->adma_addr))
goto unmap_entries;
BUG_ON(host->adma_addr & 0x3);
return 0;
unmap_entries:
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
unmap_align:
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
128 * 4, direction);
fail:
return -EINVAL;
}
static void sdhci_adma_table_post(struct sdhci_host *host,
struct mmc_data *data)
{
int direction;
struct scatterlist *sg;
int i, size;
u8 *align;
char *buffer;
unsigned long flags;
if (data->flags & MMC_DATA_READ)
direction = DMA_FROM_DEVICE;
else
direction = DMA_TO_DEVICE;
dma_unmap_single(mmc_dev(host->mmc), host->adma_addr,
(128 * 2 + 1) * 4, DMA_TO_DEVICE);
dma_unmap_single(mmc_dev(host->mmc), host->align_addr,
128 * 4, direction);
if (data->flags & MMC_DATA_READ) {
dma_sync_sg_for_cpu(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
align = host->align_buffer;
for_each_sg(data->sg, sg, host->sg_count, i) {
if (sg_dma_address(sg) & 0x3) {
size = 4 - (sg_dma_address(sg) & 0x3);
buffer = sdhci_kmap_atomic(sg, &flags);
WARN_ON(((long)buffer & PAGE_MASK) > (PAGE_SIZE - 3));
memcpy(buffer, align, size);
sdhci_kunmap_atomic(buffer, &flags);
align += 4;
}
}
}
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, direction);
}
static u8 sdhci_calc_timeout(struct sdhci_host *host, struct mmc_data *data)
{
u8 count;
unsigned target_timeout, current_timeout;
/*
* If the host controller provides us with an incorrect timeout
* value, just skip the check and use 0xE. The hardware may take
* longer to time out, but that's much better than having a too-short
* timeout value.
*/
if (host->quirks & SDHCI_QUIRK_BROKEN_TIMEOUT_VAL)
return 0xE;
/* timeout in us */
target_timeout = data->timeout_ns / 1000 +
data->timeout_clks / host->clock;
if (host->quirks & SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)
host->timeout_clk = host->clock / 1000;
/*
* Figure out needed cycles.
* We do this in steps in order to fit inside a 32 bit int.
* The first step is the minimum timeout, which will have a
* minimum resolution of 6 bits:
* (1) 2^13*1000 > 2^22,
* (2) host->timeout_clk < 2^16
* =>
* (1) / (2) > 2^6
*/
count = 0;
current_timeout = (1 << 13) * 1000 / host->timeout_clk;
while (current_timeout < target_timeout) {
count++;
current_timeout <<= 1;
if (count >= 0xF)
break;
}
if (count >= 0xF) {
printk(KERN_WARNING "%s: Too large timeout requested!\n",
mmc_hostname(host->mmc));
count = 0xE;
}
return count;
}
static void sdhci_set_transfer_irqs(struct sdhci_host *host)
{
u32 pio_irqs = SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL;
u32 dma_irqs = SDHCI_INT_DMA_END | SDHCI_INT_ADMA_ERROR;
if (host->flags & SDHCI_REQ_USE_DMA)
sdhci_clear_set_irqs(host, pio_irqs, dma_irqs);
else
sdhci_clear_set_irqs(host, dma_irqs, pio_irqs);
}
static void sdhci_prepare_data(struct sdhci_host *host, struct mmc_data *data)
{
u8 count;
u8 ctrl;
int ret;
WARN_ON(host->data);
if (data == NULL)
return;
/* Sanity checks */
BUG_ON(data->blksz * data->blocks > 524288);
BUG_ON(data->blksz > host->mmc->max_blk_size);
BUG_ON(data->blocks > 65535);
host->data = data;
host->data_early = 0;
count = sdhci_calc_timeout(host, data);
sdhci_writeb(host, count, SDHCI_TIMEOUT_CONTROL);
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))
host->flags |= SDHCI_REQ_USE_DMA;
/*
* FIXME: This doesn't account for merging when mapping the
* scatterlist.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_SIZE)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->length & 0x3) {
DBG("Reverting to PIO because of "
"transfer size (%d)\n",
sg->length);
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
/*
* The assumption here being that alignment is the same after
* translation to device address space.
*/
if (host->flags & SDHCI_REQ_USE_DMA) {
int broken, i;
struct scatterlist *sg;
broken = 0;
if (host->flags & SDHCI_USE_ADMA) {
/*
* As we use 3 byte chunks to work around
* alignment problems, we need to check this
* quirk.
*/
if (host->quirks & SDHCI_QUIRK_32BIT_ADMA_SIZE)
broken = 1;
} else {
if (host->quirks & SDHCI_QUIRK_32BIT_DMA_ADDR)
broken = 1;
}
if (unlikely(broken)) {
for_each_sg(data->sg, sg, data->sg_len, i) {
if (sg->offset & 0x3) {
DBG("Reverting to PIO because of "
"bad alignment\n");
host->flags &= ~SDHCI_REQ_USE_DMA;
break;
}
}
}
}
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA) {
ret = sdhci_adma_table_pre(host, data);
if (ret) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
sdhci_writel(host, host->adma_addr,
SDHCI_ADMA_ADDRESS);
}
} else {
int sg_cnt;
sg_cnt = dma_map_sg(mmc_dev(host->mmc),
data->sg, data->sg_len,
(data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE :
DMA_TO_DEVICE);
if (sg_cnt == 0) {
/*
* This only happens when someone fed
* us an invalid request.
*/
WARN_ON(1);
host->flags &= ~SDHCI_REQ_USE_DMA;
} else {
WARN_ON(sg_cnt != 1);
sdhci_writel(host, sg_dma_address(data->sg),
SDHCI_DMA_ADDRESS);
}
}
}
/*
* Always adjust the DMA selection as some controllers
* (e.g. JMicron) can't do PIO properly when the selection
* is ADMA.
*/
if (host->version >= SDHCI_SPEC_200) {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
ctrl &= ~SDHCI_CTRL_DMA_MASK;
if ((host->flags & SDHCI_REQ_USE_DMA) &&
(host->flags & SDHCI_USE_ADMA))
ctrl |= SDHCI_CTRL_ADMA32;
else
ctrl |= SDHCI_CTRL_SDMA;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
if (!(host->flags & SDHCI_REQ_USE_DMA)) {
int flags;
flags = SG_MITER_ATOMIC;
if (host->data->flags & MMC_DATA_READ)
flags |= SG_MITER_TO_SG;
else
flags |= SG_MITER_FROM_SG;
sg_miter_start(&host->sg_miter, data->sg, data->sg_len, flags);
host->blocks = data->blocks;
}
sdhci_set_transfer_irqs(host);
/* We do not handle DMA boundaries, so set it to max (512 KiB) */
sdhci_writew(host, SDHCI_MAKE_BLKSZ(7, data->blksz), SDHCI_BLOCK_SIZE);
sdhci_writew(host, data->blocks, SDHCI_BLOCK_COUNT);
}
static void sdhci_set_transfer_mode(struct sdhci_host *host,
struct mmc_data *data)
{
u16 mode;
if (data == NULL)
return;
WARN_ON(!host->data);
mode = SDHCI_TRNS_BLK_CNT_EN;
if (data->blocks > 1) {
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12)
mode |= SDHCI_TRNS_MULTI | SDHCI_TRNS_ACMD12;
else
mode |= SDHCI_TRNS_MULTI;
}
if (data->flags & MMC_DATA_READ)
mode |= SDHCI_TRNS_READ;
if (host->flags & SDHCI_REQ_USE_DMA)
mode |= SDHCI_TRNS_DMA;
sdhci_writew(host, mode, SDHCI_TRANSFER_MODE);
}
static void sdhci_finish_data(struct sdhci_host *host)
{
struct mmc_data *data;
BUG_ON(!host->data);
data = host->data;
host->data = NULL;
if (host->flags & SDHCI_REQ_USE_DMA) {
if (host->flags & SDHCI_USE_ADMA)
sdhci_adma_table_post(host, data);
else {
dma_unmap_sg(mmc_dev(host->mmc), data->sg,
data->sg_len, (data->flags & MMC_DATA_READ) ?
DMA_FROM_DEVICE : DMA_TO_DEVICE);
}
}
/*
* The specification states that the block count register must
* be updated, but it does not specify at what point in the
* data flow. That makes the register entirely useless to read
* back so we have to assume that nothing made it to the card
* in the event of an error.
*/
if (data->error)
data->bytes_xfered = 0;
else
data->bytes_xfered = data->blksz * data->blocks;
if (data->stop) {
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (data->error) {
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
}
sdhci_send_command(host, data->stop);
} else
tasklet_schedule(&host->finish_tasklet);
}
static void sdhci_send_command(struct sdhci_host *host, struct mmc_command *cmd)
{
int flags;
u32 mask;
unsigned long timeout;
WARN_ON(host->cmd);
/* Wait max 10 ms */
timeout = 10;
mask = SDHCI_CMD_INHIBIT;
if ((cmd->data != NULL) || (cmd->flags & MMC_RSP_BUSY))
mask |= SDHCI_DATA_INHIBIT;
/* We shouldn't wait for data inihibit for stop commands, even
though they might use busy signaling */
if (host->mrq->data && (cmd == host->mrq->data->stop))
mask &= ~SDHCI_DATA_INHIBIT;
while (sdhci_readl(host, SDHCI_PRESENT_STATE) & mask) {
if (timeout == 0) {
printk(KERN_ERR "%s: Controller never released "
"inhibit bit(s).\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
cmd->error = -EIO;
tasklet_schedule(&host->finish_tasklet);
return;
}
timeout--;
mdelay(1);
}
mod_timer(&host->timer, jiffies + 10 * HZ);
host->cmd = cmd;
sdhci_prepare_data(host, cmd->data);
sdhci_writel(host, cmd->arg, SDHCI_ARGUMENT);
sdhci_set_transfer_mode(host, cmd->data);
if ((cmd->flags & MMC_RSP_136) && (cmd->flags & MMC_RSP_BUSY)) {
printk(KERN_ERR "%s: Unsupported response type!\n",
mmc_hostname(host->mmc));
cmd->error = -EINVAL;
tasklet_schedule(&host->finish_tasklet);
return;
}
if (!(cmd->flags & MMC_RSP_PRESENT))
flags = SDHCI_CMD_RESP_NONE;
else if (cmd->flags & MMC_RSP_136)
flags = SDHCI_CMD_RESP_LONG;
else if (cmd->flags & MMC_RSP_BUSY)
flags = SDHCI_CMD_RESP_SHORT_BUSY;
else
flags = SDHCI_CMD_RESP_SHORT;
if (cmd->flags & MMC_RSP_CRC)
flags |= SDHCI_CMD_CRC;
if (cmd->flags & MMC_RSP_OPCODE)
flags |= SDHCI_CMD_INDEX;
if (cmd->data)
flags |= SDHCI_CMD_DATA;
sdhci_writew(host, SDHCI_MAKE_CMD(cmd->opcode, flags), SDHCI_COMMAND);
}
static void sdhci_finish_command(struct sdhci_host *host)
{
int i;
BUG_ON(host->cmd == NULL);
if (host->cmd->flags & MMC_RSP_PRESENT) {
if (host->cmd->flags & MMC_RSP_136) {
/* CRC is stripped so we need to do some shifting. */
for (i = 0;i < 4;i++) {
host->cmd->resp[i] = sdhci_readl(host,
SDHCI_RESPONSE + (3-i)*4) << 8;
if (i != 3)
host->cmd->resp[i] |=
sdhci_readb(host,
SDHCI_RESPONSE + (3-i)*4-1);
}
} else {
host->cmd->resp[0] = sdhci_readl(host, SDHCI_RESPONSE);
}
}
host->cmd->error = 0;
if (host->data && host->data_early)
sdhci_finish_data(host);
if (!host->cmd->data)
tasklet_schedule(&host->finish_tasklet);
host->cmd = NULL;
}
static void sdhci_set_clock(struct sdhci_host *host, unsigned int clock)
{
int div;
u16 clk;
unsigned long timeout;
if (clock == host->clock)
return;
if (host->ops->set_clock) {
host->ops->set_clock(host, clock);
if (host->quirks & SDHCI_QUIRK_NONSTANDARD_CLOCK)
return;
}
sdhci_writew(host, 0, SDHCI_CLOCK_CONTROL);
if (clock == 0)
goto out;
if (host->version >= SDHCI_SPEC_300) {
/* Version 3.00 divisors must be a multiple of 2. */
if (host->max_clk <= clock)
div = 1;
else {
for (div = 2; div < SDHCI_MAX_DIV_SPEC_300; div += 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
} else {
/* Version 2.00 divisors must be a power of 2. */
for (div = 1; div < SDHCI_MAX_DIV_SPEC_200; div *= 2) {
if ((host->max_clk / div) <= clock)
break;
}
}
div >>= 1;
clk = (div & SDHCI_DIV_MASK) << SDHCI_DIVIDER_SHIFT;
clk |= ((div & SDHCI_DIV_HI_MASK) >> SDHCI_DIV_MASK_LEN)
<< SDHCI_DIVIDER_HI_SHIFT;
clk |= SDHCI_CLOCK_INT_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
/* Wait max 20 ms */
timeout = 20;
while (!((clk = sdhci_readw(host, SDHCI_CLOCK_CONTROL))
& SDHCI_CLOCK_INT_STABLE)) {
if (timeout == 0) {
printk(KERN_ERR "%s: Internal clock never "
"stabilised.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
return;
}
timeout--;
mdelay(1);
}
clk |= SDHCI_CLOCK_CARD_EN;
sdhci_writew(host, clk, SDHCI_CLOCK_CONTROL);
out:
host->clock = clock;
}
static void sdhci_set_power(struct sdhci_host *host, unsigned short power)
{
u8 pwr = 0;
if (power != (unsigned short)-1) {
switch (1 << power) {
case MMC_VDD_165_195:
pwr = SDHCI_POWER_180;
break;
case MMC_VDD_29_30:
case MMC_VDD_30_31:
pwr = SDHCI_POWER_300;
break;
case MMC_VDD_32_33:
case MMC_VDD_33_34:
pwr = SDHCI_POWER_330;
break;
default:
BUG();
}
}
if (host->pwr == pwr)
return;
host->pwr = pwr;
if (pwr == 0) {
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
return;
}
/*
* Spec says that we should clear the power reg before setting
* a new value. Some controllers don't seem to like this though.
*/
if (!(host->quirks & SDHCI_QUIRK_SINGLE_POWER_WRITE))
sdhci_writeb(host, 0, SDHCI_POWER_CONTROL);
/*
* At least the Marvell CaFe chip gets confused if we set the voltage
* and set turn on power at the same time, so set the voltage first.
*/
if (host->quirks & SDHCI_QUIRK_NO_SIMULT_VDD_AND_POWER)
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
pwr |= SDHCI_POWER_ON;
sdhci_writeb(host, pwr, SDHCI_POWER_CONTROL);
/*
* Some controllers need an extra 10ms delay of 10ms before they
* can apply clock after applying power
*/
if (host->quirks & SDHCI_QUIRK_DELAY_AFTER_POWER)
mdelay(10);
}
/*****************************************************************************\
* *
* MMC callbacks *
* *
\*****************************************************************************/
static void sdhci_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct sdhci_host *host;
bool present;
unsigned long flags;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
WARN_ON(host->mrq != NULL);
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_activate_led(host);
#endif
if (host->quirks & SDHCI_QUIRK_MULTIBLOCK_READ_ACMD12) {
if (mrq->stop) {
mrq->data->stop = NULL;
mrq->stop = NULL;
}
}
host->mrq = mrq;
/* If polling, assume that the card is always present. */
if (host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION)
present = true;
else
present = sdhci_readl(host, SDHCI_PRESENT_STATE) &
SDHCI_CARD_PRESENT;
if (!present || host->flags & SDHCI_DEVICE_DEAD) {
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
} else
sdhci_send_command(host, mrq->cmd);
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static void sdhci_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct sdhci_host *host;
unsigned long flags;
u8 ctrl;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
goto out;
/*
* Reset the chip on each power off.
* Should clear out any weird states.
*/
if (ios->power_mode == MMC_POWER_OFF) {
sdhci_writel(host, 0, SDHCI_SIGNAL_ENABLE);
sdhci_reinit(host);
}
sdhci_set_clock(host, ios->clock);
if (ios->power_mode == MMC_POWER_OFF)
sdhci_set_power(host, -1);
else
sdhci_set_power(host, ios->vdd);
if (host->ops->platform_send_init_74_clocks)
host->ops->platform_send_init_74_clocks(host, ios->power_mode);
/*
* If your platform has 8-bit width support but is not a v3 controller,
* or if it requires special setup code, you should implement that in
* platform_8bit_width().
*/
if (host->ops->platform_8bit_width)
host->ops->platform_8bit_width(host, ios->bus_width);
else {
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if (ios->bus_width == MMC_BUS_WIDTH_8) {
ctrl &= ~SDHCI_CTRL_4BITBUS;
if (host->version >= SDHCI_SPEC_300)
ctrl |= SDHCI_CTRL_8BITBUS;
} else {
if (host->version >= SDHCI_SPEC_300)
ctrl &= ~SDHCI_CTRL_8BITBUS;
if (ios->bus_width == MMC_BUS_WIDTH_4)
ctrl |= SDHCI_CTRL_4BITBUS;
else
ctrl &= ~SDHCI_CTRL_4BITBUS;
}
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
}
ctrl = sdhci_readb(host, SDHCI_HOST_CONTROL);
if ((ios->timing == MMC_TIMING_SD_HS ||
ios->timing == MMC_TIMING_MMC_HS)
&& !(host->quirks & SDHCI_QUIRK_NO_HISPD_BIT))
ctrl |= SDHCI_CTRL_HISPD;
else
ctrl &= ~SDHCI_CTRL_HISPD;
sdhci_writeb(host, ctrl, SDHCI_HOST_CONTROL);
/*
* Some (ENE) controllers go apeshit on some ios operation,
* signalling timeout and CRC errors even on CMD0. Resetting
* it on each ios seems to solve the problem.
*/
if(host->quirks & SDHCI_QUIRK_RESET_CMD_DATA_ON_IOS)
sdhci_reset(host, SDHCI_RESET_CMD | SDHCI_RESET_DATA);
out:
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static int sdhci_get_ro(struct mmc_host *mmc)
{
struct sdhci_host *host;
unsigned long flags;
int is_readonly;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
is_readonly = 0;
else if (host->ops->get_ro)
is_readonly = host->ops->get_ro(host);
else
is_readonly = !(sdhci_readl(host, SDHCI_PRESENT_STATE)
& SDHCI_WRITE_PROTECT);
spin_unlock_irqrestore(&host->lock, flags);
/* This quirk needs to be replaced by a callback-function later */
return host->quirks & SDHCI_QUIRK_INVERTED_WRITE_PROTECT ?
!is_readonly : is_readonly;
}
static void sdhci_enable_sdio_irq(struct mmc_host *mmc, int enable)
{
struct sdhci_host *host;
unsigned long flags;
host = mmc_priv(mmc);
spin_lock_irqsave(&host->lock, flags);
if (host->flags & SDHCI_DEVICE_DEAD)
goto out;
if (enable)
sdhci_unmask_irqs(host, SDHCI_INT_CARD_INT);
else
sdhci_mask_irqs(host, SDHCI_INT_CARD_INT);
out:
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
static const struct mmc_host_ops sdhci_ops = {
.request = sdhci_request,
.set_ios = sdhci_set_ios,
.get_ro = sdhci_get_ro,
.enable_sdio_irq = sdhci_enable_sdio_irq,
};
/*****************************************************************************\
* *
* Tasklets *
* *
\*****************************************************************************/
static void sdhci_tasklet_card(unsigned long param)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host*)param;
spin_lock_irqsave(&host->lock, flags);
if (!(sdhci_readl(host, SDHCI_PRESENT_STATE) & SDHCI_CARD_PRESENT)) {
if (host->mrq) {
printk(KERN_ERR "%s: Card removed during transfer!\n",
mmc_hostname(host->mmc));
printk(KERN_ERR "%s: Resetting controller.\n",
mmc_hostname(host->mmc));
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
}
spin_unlock_irqrestore(&host->lock, flags);
mmc_detect_change(host->mmc, msecs_to_jiffies(200));
}
static void sdhci_tasklet_finish(unsigned long param)
{
struct sdhci_host *host;
unsigned long flags;
struct mmc_request *mrq;
host = (struct sdhci_host*)param;
spin_lock_irqsave(&host->lock, flags);
del_timer(&host->timer);
mrq = host->mrq;
/*
* The controller needs a reset of internal state machines
* upon error conditions.
*/
if (!(host->flags & SDHCI_DEVICE_DEAD) &&
(mrq->cmd->error ||
(mrq->data && (mrq->data->error ||
(mrq->data->stop && mrq->data->stop->error))) ||
(host->quirks & SDHCI_QUIRK_RESET_AFTER_REQUEST))) {
/* Some controllers need this kick or reset won't work here */
if (host->quirks & SDHCI_QUIRK_CLOCK_BEFORE_RESET) {
unsigned int clock;
/* This is to force an update */
clock = host->clock;
host->clock = 0;
sdhci_set_clock(host, clock);
}
/* Spec says we should do both at the same time, but Ricoh
controllers do not like that. */
sdhci_reset(host, SDHCI_RESET_CMD);
sdhci_reset(host, SDHCI_RESET_DATA);
}
host->mrq = NULL;
host->cmd = NULL;
host->data = NULL;
#ifndef SDHCI_USE_LEDS_CLASS
sdhci_deactivate_led(host);
#endif
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
mmc_request_done(host->mmc, mrq);
}
static void sdhci_timeout_timer(unsigned long data)
{
struct sdhci_host *host;
unsigned long flags;
host = (struct sdhci_host*)data;
spin_lock_irqsave(&host->lock, flags);
if (host->mrq) {
printk(KERN_ERR "%s: Timeout waiting for hardware "
"interrupt.\n", mmc_hostname(host->mmc));
sdhci_dumpregs(host);
if (host->data) {
host->data->error = -ETIMEDOUT;
sdhci_finish_data(host);
} else {
if (host->cmd)
host->cmd->error = -ETIMEDOUT;
else
host->mrq->cmd->error = -ETIMEDOUT;
tasklet_schedule(&host->finish_tasklet);
}
}
mmiowb();
spin_unlock_irqrestore(&host->lock, flags);
}
/*****************************************************************************\
* *
* Interrupt handling *
* *
\*****************************************************************************/
static void sdhci_cmd_irq(struct sdhci_host *host, u32 intmask)
{
BUG_ON(intmask == 0);
if (!host->cmd) {
printk(KERN_ERR "%s: Got command interrupt 0x%08x even "
"though no command operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_TIMEOUT)
host->cmd->error = -ETIMEDOUT;
else if (intmask & (SDHCI_INT_CRC | SDHCI_INT_END_BIT |
SDHCI_INT_INDEX))
host->cmd->error = -EILSEQ;
if (host->cmd->error) {
tasklet_schedule(&host->finish_tasklet);
return;
}
/*
* The host can send and interrupt when the busy state has
* ended, allowing us to wait without wasting CPU cycles.
* Unfortunately this is overloaded on the "data complete"
* interrupt, so we need to take some care when handling
* it.
*
* Note: The 1.0 specification is a bit ambiguous about this
* feature so there might be some problems with older
* controllers.
*/
if (host->cmd->flags & MMC_RSP_BUSY) {
if (host->cmd->data)
DBG("Cannot wait for busy signal when also "
"doing a data transfer");
else if (!(host->quirks & SDHCI_QUIRK_NO_BUSY_IRQ))
return;
/* The controller does not support the end-of-busy IRQ,
* fall through and take the SDHCI_INT_RESPONSE */
}
if (intmask & SDHCI_INT_RESPONSE)
sdhci_finish_command(host);
}
#ifdef CONFIG_MMC_DEBUG
static void sdhci_show_adma_error(struct sdhci_host *host)
{
const char *name = mmc_hostname(host->mmc);
u8 *desc = host->adma_desc;
__le32 *dma;
__le16 *len;
u8 attr;
sdhci_dumpregs(host);
while (true) {
dma = (__le32 *)(desc + 4);
len = (__le16 *)(desc + 2);
attr = *desc;
DBG("%s: %p: DMA 0x%08x, LEN 0x%04x, Attr=0x%02x\n",
name, desc, le32_to_cpu(*dma), le16_to_cpu(*len), attr);
desc += 8;
if (attr & 2)
break;
}
}
#else
static void sdhci_show_adma_error(struct sdhci_host *host) { }
#endif
static void sdhci_data_irq(struct sdhci_host *host, u32 intmask)
{
BUG_ON(intmask == 0);
if (!host->data) {
/*
* The "data complete" interrupt is also used to
* indicate that a busy state has ended. See comment
* above in sdhci_cmd_irq().
*/
if (host->cmd && (host->cmd->flags & MMC_RSP_BUSY)) {
if (intmask & SDHCI_INT_DATA_END) {
sdhci_finish_command(host);
return;
}
}
printk(KERN_ERR "%s: Got data interrupt 0x%08x even "
"though no data operation was in progress.\n",
mmc_hostname(host->mmc), (unsigned)intmask);
sdhci_dumpregs(host);
return;
}
if (intmask & SDHCI_INT_DATA_TIMEOUT)
host->data->error = -ETIMEDOUT;
else if (intmask & SDHCI_INT_DATA_END_BIT)
host->data->error = -EILSEQ;
else if ((intmask & SDHCI_INT_DATA_CRC) &&
SDHCI_GET_CMD(sdhci_readw(host, SDHCI_COMMAND))
!= MMC_BUS_TEST_R)
host->data->error = -EILSEQ;
else if (intmask & SDHCI_INT_ADMA_ERROR) {
printk(KERN_ERR "%s: ADMA error\n", mmc_hostname(host->mmc));
sdhci_show_adma_error(host);
host->data->error = -EIO;
}
if (host->data->error)
sdhci_finish_data(host);
else {
if (intmask & (SDHCI_INT_DATA_AVAIL | SDHCI_INT_SPACE_AVAIL))
sdhci_transfer_pio(host);
/*
* We currently don't do anything fancy with DMA
* boundaries, but as we can't disable the feature
* we need to at least restart the transfer.
*/
if (intmask & SDHCI_INT_DMA_END)
sdhci_writel(host, sdhci_readl(host, SDHCI_DMA_ADDRESS),
SDHCI_DMA_ADDRESS);
if (intmask & SDHCI_INT_DATA_END) {
if (host->cmd) {
/*
* Data managed to finish before the
* command completed. Make sure we do
* things in the proper order.
*/
host->data_early = 1;
} else {
sdhci_finish_data(host);
}
}
}
}
static irqreturn_t sdhci_irq(int irq, void *dev_id)
{
irqreturn_t result;
struct sdhci_host* host = dev_id;
u32 intmask;
int cardint = 0;
spin_lock(&host->lock);
intmask = sdhci_readl(host, SDHCI_INT_STATUS);
if (!intmask || intmask == 0xffffffff) {
result = IRQ_NONE;
goto out;
}
DBG("*** %s got interrupt: 0x%08x\n",
mmc_hostname(host->mmc), intmask);
if (intmask & (SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE)) {
sdhci_writel(host, intmask & (SDHCI_INT_CARD_INSERT |
SDHCI_INT_CARD_REMOVE), SDHCI_INT_STATUS);
tasklet_schedule(&host->card_tasklet);
}
intmask &= ~(SDHCI_INT_CARD_INSERT | SDHCI_INT_CARD_REMOVE);
if (intmask & SDHCI_INT_CMD_MASK) {
sdhci_writel(host, intmask & SDHCI_INT_CMD_MASK,
SDHCI_INT_STATUS);
sdhci_cmd_irq(host, intmask & SDHCI_INT_CMD_MASK);
}
if (intmask & SDHCI_INT_DATA_MASK) {
sdhci_writel(host, intmask & SDHCI_INT_DATA_MASK,
SDHCI_INT_STATUS);
sdhci_data_irq(host, intmask & SDHCI_INT_DATA_MASK);
}
intmask &= ~(SDHCI_INT_CMD_MASK | SDHCI_INT_DATA_MASK);
intmask &= ~SDHCI_INT_ERROR;
if (intmask & SDHCI_INT_BUS_POWER) {
printk(KERN_ERR "%s: Card is consuming too much power!\n",
mmc_hostname(host->mmc));
sdhci_writel(host, SDHCI_INT_BUS_POWER, SDHCI_INT_STATUS);
}
intmask &= ~SDHCI_INT_BUS_POWER;
if (intmask & SDHCI_INT_CARD_INT)
cardint = 1;
intmask &= ~SDHCI_INT_CARD_INT;
if (intmask) {
printk(KERN_ERR "%s: Unexpected interrupt 0x%08x.\n",
mmc_hostname(host->mmc), intmask);
sdhci_dumpregs(host);
sdhci_writel(host, intmask, SDHCI_INT_STATUS);
}
result = IRQ_HANDLED;
mmiowb();
out:
spin_unlock(&host->lock);
/*
* We have to delay this as it calls back into the driver.
*/
if (cardint)
mmc_signal_sdio_irq(host->mmc);
return result;
}
/*****************************************************************************\
* *
* Suspend/resume *
* *
\*****************************************************************************/
#ifdef CONFIG_PM
int sdhci_suspend_host(struct sdhci_host *host, pm_message_t state)
{
int ret;
sdhci_disable_card_detection(host);
ret = mmc_suspend_host(host->mmc);
if (ret)
return ret;
free_irq(host->irq, host);
if (host->vmmc)
ret = regulator_disable(host->vmmc);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_suspend_host);
int sdhci_resume_host(struct sdhci_host *host)
{
int ret;
if (host->vmmc) {
int ret = regulator_enable(host->vmmc);
if (ret)
return ret;
}
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma)
host->ops->enable_dma(host);
}
ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,
mmc_hostname(host->mmc), host);
if (ret)
return ret;
sdhci_init(host, (host->mmc->pm_flags & MMC_PM_KEEP_POWER));
mmiowb();
ret = mmc_resume_host(host->mmc);
sdhci_enable_card_detection(host);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_resume_host);
void sdhci_enable_irq_wakeups(struct sdhci_host *host)
{
u8 val;
val = sdhci_readb(host, SDHCI_WAKE_UP_CONTROL);
val |= SDHCI_WAKE_ON_INT;
sdhci_writeb(host, val, SDHCI_WAKE_UP_CONTROL);
}
EXPORT_SYMBOL_GPL(sdhci_enable_irq_wakeups);
#endif /* CONFIG_PM */
/*****************************************************************************\
* *
* Device allocation/registration *
* *
\*****************************************************************************/
struct sdhci_host *sdhci_alloc_host(struct device *dev,
size_t priv_size)
{
struct mmc_host *mmc;
struct sdhci_host *host;
WARN_ON(dev == NULL);
mmc = mmc_alloc_host(sizeof(struct sdhci_host) + priv_size, dev);
if (!mmc)
return ERR_PTR(-ENOMEM);
host = mmc_priv(mmc);
host->mmc = mmc;
return host;
}
EXPORT_SYMBOL_GPL(sdhci_alloc_host);
int sdhci_add_host(struct sdhci_host *host)
{
struct mmc_host *mmc;
unsigned int caps, ocr_avail;
int ret;
WARN_ON(host == NULL);
if (host == NULL)
return -EINVAL;
mmc = host->mmc;
if (debug_quirks)
host->quirks = debug_quirks;
sdhci_reset(host, SDHCI_RESET_ALL);
host->version = sdhci_readw(host, SDHCI_HOST_VERSION);
host->version = (host->version & SDHCI_SPEC_VER_MASK)
>> SDHCI_SPEC_VER_SHIFT;
if (host->version > SDHCI_SPEC_300) {
printk(KERN_ERR "%s: Unknown controller version (%d). "
"You may experience problems.\n", mmc_hostname(mmc),
host->version);
}
caps = (host->quirks & SDHCI_QUIRK_MISSING_CAPS) ? host->caps :
sdhci_readl(host, SDHCI_CAPABILITIES);
if (host->quirks & SDHCI_QUIRK_FORCE_DMA)
host->flags |= SDHCI_USE_SDMA;
else if (!(caps & SDHCI_CAN_DO_SDMA))
DBG("Controller doesn't have SDMA capability\n");
else
host->flags |= SDHCI_USE_SDMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_DMA) &&
(host->flags & SDHCI_USE_SDMA)) {
DBG("Disabling DMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_SDMA;
}
if ((host->version >= SDHCI_SPEC_200) && (caps & SDHCI_CAN_DO_ADMA2))
host->flags |= SDHCI_USE_ADMA;
if ((host->quirks & SDHCI_QUIRK_BROKEN_ADMA) &&
(host->flags & SDHCI_USE_ADMA)) {
DBG("Disabling ADMA as it is marked broken\n");
host->flags &= ~SDHCI_USE_ADMA;
}
if (host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA)) {
if (host->ops->enable_dma) {
if (host->ops->enable_dma(host)) {
printk(KERN_WARNING "%s: No suitable DMA "
"available. Falling back to PIO.\n",
mmc_hostname(mmc));
host->flags &=
~(SDHCI_USE_SDMA | SDHCI_USE_ADMA);
}
}
}
if (host->flags & SDHCI_USE_ADMA) {
/*
* We need to allocate descriptors for all sg entries
* (128) and potentially one alignment transfer for
* each of those entries.
*/
host->adma_desc = kmalloc((128 * 2 + 1) * 4, GFP_KERNEL);
host->align_buffer = kmalloc(128 * 4, GFP_KERNEL);
if (!host->adma_desc || !host->align_buffer) {
kfree(host->adma_desc);
kfree(host->align_buffer);
printk(KERN_WARNING "%s: Unable to allocate ADMA "
"buffers. Falling back to standard DMA.\n",
mmc_hostname(mmc));
host->flags &= ~SDHCI_USE_ADMA;
}
}
/*
* If we use DMA, then it's up to the caller to set the DMA
* mask, but PIO does not need the hw shim so we set a new
* mask here in that case.
*/
if (!(host->flags & (SDHCI_USE_SDMA | SDHCI_USE_ADMA))) {
host->dma_mask = DMA_BIT_MASK(64);
mmc_dev(host->mmc)->dma_mask = &host->dma_mask;
}
if (host->version >= SDHCI_SPEC_300)
host->max_clk = (caps & SDHCI_CLOCK_V3_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
else
host->max_clk = (caps & SDHCI_CLOCK_BASE_MASK)
>> SDHCI_CLOCK_BASE_SHIFT;
host->max_clk *= 1000000;
if (host->max_clk == 0 || host->quirks &
SDHCI_QUIRK_CAP_CLOCK_BASE_BROKEN) {
if (!host->ops->get_max_clock) {
printk(KERN_ERR
"%s: Hardware doesn't specify base clock "
"frequency.\n", mmc_hostname(mmc));
return -ENODEV;
}
host->max_clk = host->ops->get_max_clock(host);
}
host->timeout_clk =
(caps & SDHCI_TIMEOUT_CLK_MASK) >> SDHCI_TIMEOUT_CLK_SHIFT;
if (host->timeout_clk == 0) {
if (host->ops->get_timeout_clock) {
host->timeout_clk = host->ops->get_timeout_clock(host);
} else if (!(host->quirks &
SDHCI_QUIRK_DATA_TIMEOUT_USES_SDCLK)) {
printk(KERN_ERR
"%s: Hardware doesn't specify timeout clock "
"frequency.\n", mmc_hostname(mmc));
return -ENODEV;
}
}
if (caps & SDHCI_TIMEOUT_CLK_UNIT)
host->timeout_clk *= 1000;
/*
* Set host parameters.
*/
mmc->ops = &sdhci_ops;
if (host->ops->get_min_clock)
mmc->f_min = host->ops->get_min_clock(host);
else if (host->version >= SDHCI_SPEC_300)
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_300;
else
mmc->f_min = host->max_clk / SDHCI_MAX_DIV_SPEC_200;
mmc->f_max = host->max_clk;
mmc->caps |= MMC_CAP_SDIO_IRQ;
/*
* A controller may support 8-bit width, but the board itself
* might not have the pins brought out. Boards that support
* 8-bit width must set "mmc->caps |= MMC_CAP_8_BIT_DATA;" in
* their platform code before calling sdhci_add_host(), and we
* won't assume 8-bit width for hosts without that CAP.
*/
if (!(host->quirks & SDHCI_QUIRK_FORCE_1_BIT_DATA))
mmc->caps |= MMC_CAP_4_BIT_DATA;
if (caps & SDHCI_CAN_DO_HISPD)
mmc->caps |= MMC_CAP_SD_HIGHSPEED | MMC_CAP_MMC_HIGHSPEED;
if ((host->quirks & SDHCI_QUIRK_BROKEN_CARD_DETECTION) &&
mmc_card_is_removable(mmc))
mmc->caps |= MMC_CAP_NEEDS_POLL;
ocr_avail = 0;
if (caps & SDHCI_CAN_VDD_330)
ocr_avail |= MMC_VDD_32_33 | MMC_VDD_33_34;
if (caps & SDHCI_CAN_VDD_300)
ocr_avail |= MMC_VDD_29_30 | MMC_VDD_30_31;
if (caps & SDHCI_CAN_VDD_180)
ocr_avail |= MMC_VDD_165_195;
mmc->ocr_avail = ocr_avail;
mmc->ocr_avail_sdio = ocr_avail;
if (host->ocr_avail_sdio)
mmc->ocr_avail_sdio &= host->ocr_avail_sdio;
mmc->ocr_avail_sd = ocr_avail;
if (host->ocr_avail_sd)
mmc->ocr_avail_sd &= host->ocr_avail_sd;
else /* normal SD controllers don't support 1.8V */
mmc->ocr_avail_sd &= ~MMC_VDD_165_195;
mmc->ocr_avail_mmc = ocr_avail;
if (host->ocr_avail_mmc)
mmc->ocr_avail_mmc &= host->ocr_avail_mmc;
if (mmc->ocr_avail == 0) {
printk(KERN_ERR "%s: Hardware doesn't report any "
"support voltages.\n", mmc_hostname(mmc));
return -ENODEV;
}
spin_lock_init(&host->lock);
/*
* Maximum number of segments. Depends on if the hardware
* can do scatter/gather or not.
*/
if (host->flags & SDHCI_USE_ADMA)
mmc->max_segs = 128;
else if (host->flags & SDHCI_USE_SDMA)
mmc->max_segs = 1;
else /* PIO */
mmc->max_segs = 128;
/*
* Maximum number of sectors in one transfer. Limited by DMA boundary
* size (512KiB).
*/
mmc->max_req_size = 524288;
/*
* Maximum segment size. Could be one segment with the maximum number
* of bytes. When doing hardware scatter/gather, each entry cannot
* be larger than 64 KiB though.
*/
if (host->flags & SDHCI_USE_ADMA) {
if (host->quirks & SDHCI_QUIRK_BROKEN_ADMA_ZEROLEN_DESC)
mmc->max_seg_size = 65535;
else
mmc->max_seg_size = 65536;
} else {
mmc->max_seg_size = mmc->max_req_size;
}
/*
* Maximum block size. This varies from controller to controller and
* is specified in the capabilities register.
*/
if (host->quirks & SDHCI_QUIRK_FORCE_BLK_SZ_2048) {
mmc->max_blk_size = 2;
} else {
mmc->max_blk_size = (caps & SDHCI_MAX_BLOCK_MASK) >>
SDHCI_MAX_BLOCK_SHIFT;
if (mmc->max_blk_size >= 3) {
printk(KERN_WARNING "%s: Invalid maximum block size, "
"assuming 512 bytes\n", mmc_hostname(mmc));
mmc->max_blk_size = 0;
}
}
mmc->max_blk_size = 512 << mmc->max_blk_size;
/*
* Maximum block count.
*/
mmc->max_blk_count = (host->quirks & SDHCI_QUIRK_NO_MULTIBLOCK) ? 1 : 65535;
/*
* Init tasklets.
*/
tasklet_init(&host->card_tasklet,
sdhci_tasklet_card, (unsigned long)host);
tasklet_init(&host->finish_tasklet,
sdhci_tasklet_finish, (unsigned long)host);
setup_timer(&host->timer, sdhci_timeout_timer, (unsigned long)host);
ret = request_irq(host->irq, sdhci_irq, IRQF_SHARED,
mmc_hostname(mmc), host);
if (ret)
goto untasklet;
host->vmmc = regulator_get(mmc_dev(mmc), "vmmc");
if (IS_ERR(host->vmmc)) {
printk(KERN_INFO "%s: no vmmc regulator found\n", mmc_hostname(mmc));
host->vmmc = NULL;
} else {
regulator_enable(host->vmmc);
}
sdhci_init(host, 0);
#ifdef CONFIG_MMC_DEBUG
sdhci_dumpregs(host);
#endif
#ifdef SDHCI_USE_LEDS_CLASS
snprintf(host->led_name, sizeof(host->led_name),
"%s::", mmc_hostname(mmc));
host->led.name = host->led_name;
host->led.brightness = LED_OFF;
host->led.default_trigger = mmc_hostname(mmc);
host->led.brightness_set = sdhci_led_control;
ret = led_classdev_register(mmc_dev(mmc), &host->led);
if (ret)
goto reset;
#endif
mmiowb();
mmc_add_host(mmc);
printk(KERN_INFO "%s: SDHCI controller on %s [%s] using %s\n",
mmc_hostname(mmc), host->hw_name, dev_name(mmc_dev(mmc)),
(host->flags & SDHCI_USE_ADMA) ? "ADMA" :
(host->flags & SDHCI_USE_SDMA) ? "DMA" : "PIO");
sdhci_enable_card_detection(host);
return 0;
#ifdef SDHCI_USE_LEDS_CLASS
reset:
sdhci_reset(host, SDHCI_RESET_ALL);
free_irq(host->irq, host);
#endif
untasklet:
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->finish_tasklet);
return ret;
}
EXPORT_SYMBOL_GPL(sdhci_add_host);
void sdhci_remove_host(struct sdhci_host *host, int dead)
{
unsigned long flags;
if (dead) {
spin_lock_irqsave(&host->lock, flags);
host->flags |= SDHCI_DEVICE_DEAD;
if (host->mrq) {
printk(KERN_ERR "%s: Controller removed during "
" transfer!\n", mmc_hostname(host->mmc));
host->mrq->cmd->error = -ENOMEDIUM;
tasklet_schedule(&host->finish_tasklet);
}
spin_unlock_irqrestore(&host->lock, flags);
}
sdhci_disable_card_detection(host);
mmc_remove_host(host->mmc);
#ifdef SDHCI_USE_LEDS_CLASS
led_classdev_unregister(&host->led);
#endif
if (!dead)
sdhci_reset(host, SDHCI_RESET_ALL);
free_irq(host->irq, host);
del_timer_sync(&host->timer);
tasklet_kill(&host->card_tasklet);
tasklet_kill(&host->finish_tasklet);
if (host->vmmc) {
regulator_disable(host->vmmc);
regulator_put(host->vmmc);
}
kfree(host->adma_desc);
kfree(host->align_buffer);
host->adma_desc = NULL;
host->align_buffer = NULL;
}
EXPORT_SYMBOL_GPL(sdhci_remove_host);
void sdhci_free_host(struct sdhci_host *host)
{
mmc_free_host(host->mmc);
}
EXPORT_SYMBOL_GPL(sdhci_free_host);
/*****************************************************************************\
* *
* Driver init/exit *
* *
\*****************************************************************************/
static int __init sdhci_drv_init(void)
{
printk(KERN_INFO DRIVER_NAME
": Secure Digital Host Controller Interface driver\n");
printk(KERN_INFO DRIVER_NAME ": Copyright(c) Pierre Ossman\n");
return 0;
}
static void __exit sdhci_drv_exit(void)
{
}
module_init(sdhci_drv_init);
module_exit(sdhci_drv_exit);
module_param(debug_quirks, uint, 0444);
MODULE_AUTHOR("Pierre Ossman <pierre@ossman.eu>");
MODULE_DESCRIPTION("Secure Digital Host Controller Interface core driver");
MODULE_LICENSE("GPL");
MODULE_PARM_DESC(debug_quirks, "Force certain quirks.");