961 lines
24 KiB
C
961 lines
24 KiB
C
/*
|
|
* The file intends to implement PE based on the information from
|
|
* platforms. Basically, there have 3 types of PEs: PHB/Bus/Device.
|
|
* All the PEs should be organized as hierarchy tree. The first level
|
|
* of the tree will be associated to existing PHBs since the particular
|
|
* PE is only meaningful in one PHB domain.
|
|
*
|
|
* Copyright Benjamin Herrenschmidt & Gavin Shan, IBM Corporation 2012.
|
|
*
|
|
* This program is free software; you can redistribute it and/or modify
|
|
* it under the terms of the GNU General Public License as published by
|
|
* the Free Software Foundation; either version 2 of the License, or
|
|
* (at your option) any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
|
|
*/
|
|
|
|
#include <linux/delay.h>
|
|
#include <linux/export.h>
|
|
#include <linux/gfp.h>
|
|
#include <linux/kernel.h>
|
|
#include <linux/pci.h>
|
|
#include <linux/string.h>
|
|
|
|
#include <asm/pci-bridge.h>
|
|
#include <asm/ppc-pci.h>
|
|
|
|
static int eeh_pe_aux_size = 0;
|
|
static LIST_HEAD(eeh_phb_pe);
|
|
|
|
/**
|
|
* eeh_set_pe_aux_size - Set PE auxillary data size
|
|
* @size: PE auxillary data size
|
|
*
|
|
* Set PE auxillary data size
|
|
*/
|
|
void eeh_set_pe_aux_size(int size)
|
|
{
|
|
if (size < 0)
|
|
return;
|
|
|
|
eeh_pe_aux_size = size;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_alloc - Allocate PE
|
|
* @phb: PCI controller
|
|
* @type: PE type
|
|
*
|
|
* Allocate PE instance dynamically.
|
|
*/
|
|
static struct eeh_pe *eeh_pe_alloc(struct pci_controller *phb, int type)
|
|
{
|
|
struct eeh_pe *pe;
|
|
size_t alloc_size;
|
|
|
|
alloc_size = sizeof(struct eeh_pe);
|
|
if (eeh_pe_aux_size) {
|
|
alloc_size = ALIGN(alloc_size, cache_line_size());
|
|
alloc_size += eeh_pe_aux_size;
|
|
}
|
|
|
|
/* Allocate PHB PE */
|
|
pe = kzalloc(alloc_size, GFP_KERNEL);
|
|
if (!pe) return NULL;
|
|
|
|
/* Initialize PHB PE */
|
|
pe->type = type;
|
|
pe->phb = phb;
|
|
INIT_LIST_HEAD(&pe->child_list);
|
|
INIT_LIST_HEAD(&pe->child);
|
|
INIT_LIST_HEAD(&pe->edevs);
|
|
|
|
pe->data = (void *)pe + ALIGN(sizeof(struct eeh_pe),
|
|
cache_line_size());
|
|
return pe;
|
|
}
|
|
|
|
/**
|
|
* eeh_phb_pe_create - Create PHB PE
|
|
* @phb: PCI controller
|
|
*
|
|
* The function should be called while the PHB is detected during
|
|
* system boot or PCI hotplug in order to create PHB PE.
|
|
*/
|
|
int eeh_phb_pe_create(struct pci_controller *phb)
|
|
{
|
|
struct eeh_pe *pe;
|
|
|
|
/* Allocate PHB PE */
|
|
pe = eeh_pe_alloc(phb, EEH_PE_PHB);
|
|
if (!pe) {
|
|
pr_err("%s: out of memory!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
|
|
/* Put it into the list */
|
|
list_add_tail(&pe->child, &eeh_phb_pe);
|
|
|
|
pr_debug("EEH: Add PE for PHB#%x\n", phb->global_number);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_phb_pe_get - Retrieve PHB PE based on the given PHB
|
|
* @phb: PCI controller
|
|
*
|
|
* The overall PEs form hierarchy tree. The first layer of the
|
|
* hierarchy tree is composed of PHB PEs. The function is used
|
|
* to retrieve the corresponding PHB PE according to the given PHB.
|
|
*/
|
|
struct eeh_pe *eeh_phb_pe_get(struct pci_controller *phb)
|
|
{
|
|
struct eeh_pe *pe;
|
|
|
|
list_for_each_entry(pe, &eeh_phb_pe, child) {
|
|
/*
|
|
* Actually, we needn't check the type since
|
|
* the PE for PHB has been determined when that
|
|
* was created.
|
|
*/
|
|
if ((pe->type & EEH_PE_PHB) && pe->phb == phb)
|
|
return pe;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_next - Retrieve the next PE in the tree
|
|
* @pe: current PE
|
|
* @root: root PE
|
|
*
|
|
* The function is used to retrieve the next PE in the
|
|
* hierarchy PE tree.
|
|
*/
|
|
static struct eeh_pe *eeh_pe_next(struct eeh_pe *pe,
|
|
struct eeh_pe *root)
|
|
{
|
|
struct list_head *next = pe->child_list.next;
|
|
|
|
if (next == &pe->child_list) {
|
|
while (1) {
|
|
if (pe == root)
|
|
return NULL;
|
|
next = pe->child.next;
|
|
if (next != &pe->parent->child_list)
|
|
break;
|
|
pe = pe->parent;
|
|
}
|
|
}
|
|
|
|
return list_entry(next, struct eeh_pe, child);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_traverse - Traverse PEs in the specified PHB
|
|
* @root: root PE
|
|
* @fn: callback
|
|
* @flag: extra parameter to callback
|
|
*
|
|
* The function is used to traverse the specified PE and its
|
|
* child PEs. The traversing is to be terminated once the
|
|
* callback returns something other than NULL, or no more PEs
|
|
* to be traversed.
|
|
*/
|
|
void *eeh_pe_traverse(struct eeh_pe *root,
|
|
eeh_traverse_func fn, void *flag)
|
|
{
|
|
struct eeh_pe *pe;
|
|
void *ret;
|
|
|
|
for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
|
|
ret = fn(pe, flag);
|
|
if (ret) return ret;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_dev_traverse - Traverse the devices from the PE
|
|
* @root: EEH PE
|
|
* @fn: function callback
|
|
* @flag: extra parameter to callback
|
|
*
|
|
* The function is used to traverse the devices of the specified
|
|
* PE and its child PEs.
|
|
*/
|
|
void *eeh_pe_dev_traverse(struct eeh_pe *root,
|
|
eeh_traverse_func fn, void *flag)
|
|
{
|
|
struct eeh_pe *pe;
|
|
struct eeh_dev *edev, *tmp;
|
|
void *ret;
|
|
|
|
if (!root) {
|
|
pr_warn("%s: Invalid PE %p\n",
|
|
__func__, root);
|
|
return NULL;
|
|
}
|
|
|
|
/* Traverse root PE */
|
|
for (pe = root; pe; pe = eeh_pe_next(pe, root)) {
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
ret = fn(edev, flag);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* __eeh_pe_get - Check the PE address
|
|
* @data: EEH PE
|
|
* @flag: EEH device
|
|
*
|
|
* For one particular PE, it can be identified by PE address
|
|
* or tranditional BDF address. BDF address is composed of
|
|
* Bus/Device/Function number. The extra data referred by flag
|
|
* indicates which type of address should be used.
|
|
*/
|
|
struct eeh_pe_get_flag {
|
|
int pe_no;
|
|
int config_addr;
|
|
};
|
|
|
|
static void *__eeh_pe_get(void *data, void *flag)
|
|
{
|
|
struct eeh_pe *pe = (struct eeh_pe *)data;
|
|
struct eeh_pe_get_flag *tmp = (struct eeh_pe_get_flag *) flag;
|
|
|
|
/* Unexpected PHB PE */
|
|
if (pe->type & EEH_PE_PHB)
|
|
return NULL;
|
|
|
|
/*
|
|
* We prefer PE address. For most cases, we should
|
|
* have non-zero PE address
|
|
*/
|
|
if (eeh_has_flag(EEH_VALID_PE_ZERO)) {
|
|
if (tmp->pe_no == pe->addr)
|
|
return pe;
|
|
} else {
|
|
if (tmp->pe_no &&
|
|
(tmp->pe_no == pe->addr))
|
|
return pe;
|
|
}
|
|
|
|
/* Try BDF address */
|
|
if (tmp->config_addr &&
|
|
(tmp->config_addr == pe->config_addr))
|
|
return pe;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_get - Search PE based on the given address
|
|
* @phb: PCI controller
|
|
* @pe_no: PE number
|
|
* @config_addr: Config address
|
|
*
|
|
* Search the corresponding PE based on the specified address which
|
|
* is included in the eeh device. The function is used to check if
|
|
* the associated PE has been created against the PE address. It's
|
|
* notable that the PE address has 2 format: traditional PE address
|
|
* which is composed of PCI bus/device/function number, or unified
|
|
* PE address.
|
|
*/
|
|
struct eeh_pe *eeh_pe_get(struct pci_controller *phb,
|
|
int pe_no, int config_addr)
|
|
{
|
|
struct eeh_pe *root = eeh_phb_pe_get(phb);
|
|
struct eeh_pe_get_flag tmp = { pe_no, config_addr };
|
|
struct eeh_pe *pe;
|
|
|
|
pe = eeh_pe_traverse(root, __eeh_pe_get, &tmp);
|
|
|
|
return pe;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_get_parent - Retrieve the parent PE
|
|
* @edev: EEH device
|
|
*
|
|
* The whole PEs existing in the system are organized as hierarchy
|
|
* tree. The function is used to retrieve the parent PE according
|
|
* to the parent EEH device.
|
|
*/
|
|
static struct eeh_pe *eeh_pe_get_parent(struct eeh_dev *edev)
|
|
{
|
|
struct eeh_dev *parent;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
/*
|
|
* It might have the case for the indirect parent
|
|
* EEH device already having associated PE, but
|
|
* the direct parent EEH device doesn't have yet.
|
|
*/
|
|
if (edev->physfn)
|
|
pdn = pci_get_pdn(edev->physfn);
|
|
else
|
|
pdn = pdn ? pdn->parent : NULL;
|
|
while (pdn) {
|
|
/* We're poking out of PCI territory */
|
|
parent = pdn_to_eeh_dev(pdn);
|
|
if (!parent)
|
|
return NULL;
|
|
|
|
if (parent->pe)
|
|
return parent->pe;
|
|
|
|
pdn = pdn->parent;
|
|
}
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_add_to_parent_pe - Add EEH device to parent PE
|
|
* @edev: EEH device
|
|
*
|
|
* Add EEH device to the parent PE. If the parent PE already
|
|
* exists, the PE type will be changed to EEH_PE_BUS. Otherwise,
|
|
* we have to create new PE to hold the EEH device and the new
|
|
* PE will be linked to its parent PE as well.
|
|
*/
|
|
int eeh_add_to_parent_pe(struct eeh_dev *edev)
|
|
{
|
|
struct eeh_pe *pe, *parent;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
int config_addr = (pdn->busno << 8) | (pdn->devfn);
|
|
|
|
/* Check if the PE number is valid */
|
|
if (!eeh_has_flag(EEH_VALID_PE_ZERO) && !edev->pe_config_addr) {
|
|
pr_err("%s: Invalid PE#0 for edev 0x%x on PHB#%x\n",
|
|
__func__, config_addr, pdn->phb->global_number);
|
|
return -EINVAL;
|
|
}
|
|
|
|
/*
|
|
* Search the PE has been existing or not according
|
|
* to the PE address. If that has been existing, the
|
|
* PE should be composed of PCI bus and its subordinate
|
|
* components.
|
|
*/
|
|
pe = eeh_pe_get(pdn->phb, edev->pe_config_addr, config_addr);
|
|
if (pe && !(pe->type & EEH_PE_INVALID)) {
|
|
/* Mark the PE as type of PCI bus */
|
|
pe->type = EEH_PE_BUS;
|
|
edev->pe = pe;
|
|
|
|
/* Put the edev to PE */
|
|
list_add_tail(&edev->list, &pe->edevs);
|
|
pr_debug("EEH: Add %04x:%02x:%02x.%01x to Bus PE#%x\n",
|
|
pdn->phb->global_number,
|
|
pdn->busno,
|
|
PCI_SLOT(pdn->devfn),
|
|
PCI_FUNC(pdn->devfn),
|
|
pe->addr);
|
|
return 0;
|
|
} else if (pe && (pe->type & EEH_PE_INVALID)) {
|
|
list_add_tail(&edev->list, &pe->edevs);
|
|
edev->pe = pe;
|
|
/*
|
|
* We're running to here because of PCI hotplug caused by
|
|
* EEH recovery. We need clear EEH_PE_INVALID until the top.
|
|
*/
|
|
parent = pe;
|
|
while (parent) {
|
|
if (!(parent->type & EEH_PE_INVALID))
|
|
break;
|
|
parent->type &= ~(EEH_PE_INVALID | EEH_PE_KEEP);
|
|
parent = parent->parent;
|
|
}
|
|
|
|
pr_debug("EEH: Add %04x:%02x:%02x.%01x to Device "
|
|
"PE#%x, Parent PE#%x\n",
|
|
pdn->phb->global_number,
|
|
pdn->busno,
|
|
PCI_SLOT(pdn->devfn),
|
|
PCI_FUNC(pdn->devfn),
|
|
pe->addr, pe->parent->addr);
|
|
return 0;
|
|
}
|
|
|
|
/* Create a new EEH PE */
|
|
if (edev->physfn)
|
|
pe = eeh_pe_alloc(pdn->phb, EEH_PE_VF);
|
|
else
|
|
pe = eeh_pe_alloc(pdn->phb, EEH_PE_DEVICE);
|
|
if (!pe) {
|
|
pr_err("%s: out of memory!\n", __func__);
|
|
return -ENOMEM;
|
|
}
|
|
pe->addr = edev->pe_config_addr;
|
|
pe->config_addr = config_addr;
|
|
|
|
/*
|
|
* Put the new EEH PE into hierarchy tree. If the parent
|
|
* can't be found, the newly created PE will be attached
|
|
* to PHB directly. Otherwise, we have to associate the
|
|
* PE with its parent.
|
|
*/
|
|
parent = eeh_pe_get_parent(edev);
|
|
if (!parent) {
|
|
parent = eeh_phb_pe_get(pdn->phb);
|
|
if (!parent) {
|
|
pr_err("%s: No PHB PE is found (PHB Domain=%d)\n",
|
|
__func__, pdn->phb->global_number);
|
|
edev->pe = NULL;
|
|
kfree(pe);
|
|
return -EEXIST;
|
|
}
|
|
}
|
|
pe->parent = parent;
|
|
|
|
/*
|
|
* Put the newly created PE into the child list and
|
|
* link the EEH device accordingly.
|
|
*/
|
|
list_add_tail(&pe->child, &parent->child_list);
|
|
list_add_tail(&edev->list, &pe->edevs);
|
|
edev->pe = pe;
|
|
pr_debug("EEH: Add %04x:%02x:%02x.%01x to "
|
|
"Device PE#%x, Parent PE#%x\n",
|
|
pdn->phb->global_number,
|
|
pdn->busno,
|
|
PCI_SLOT(pdn->devfn),
|
|
PCI_FUNC(pdn->devfn),
|
|
pe->addr, pe->parent->addr);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_rmv_from_parent_pe - Remove one EEH device from the associated PE
|
|
* @edev: EEH device
|
|
*
|
|
* The PE hierarchy tree might be changed when doing PCI hotplug.
|
|
* Also, the PCI devices or buses could be removed from the system
|
|
* during EEH recovery. So we have to call the function remove the
|
|
* corresponding PE accordingly if necessary.
|
|
*/
|
|
int eeh_rmv_from_parent_pe(struct eeh_dev *edev)
|
|
{
|
|
struct eeh_pe *pe, *parent, *child;
|
|
int cnt;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
if (!edev->pe) {
|
|
pr_debug("%s: No PE found for device %04x:%02x:%02x.%01x\n",
|
|
__func__, pdn->phb->global_number,
|
|
pdn->busno,
|
|
PCI_SLOT(pdn->devfn),
|
|
PCI_FUNC(pdn->devfn));
|
|
return -EEXIST;
|
|
}
|
|
|
|
/* Remove the EEH device */
|
|
pe = eeh_dev_to_pe(edev);
|
|
edev->pe = NULL;
|
|
list_del(&edev->list);
|
|
|
|
/*
|
|
* Check if the parent PE includes any EEH devices.
|
|
* If not, we should delete that. Also, we should
|
|
* delete the parent PE if it doesn't have associated
|
|
* child PEs and EEH devices.
|
|
*/
|
|
while (1) {
|
|
parent = pe->parent;
|
|
if (pe->type & EEH_PE_PHB)
|
|
break;
|
|
|
|
if (!(pe->state & EEH_PE_KEEP)) {
|
|
if (list_empty(&pe->edevs) &&
|
|
list_empty(&pe->child_list)) {
|
|
list_del(&pe->child);
|
|
kfree(pe);
|
|
} else {
|
|
break;
|
|
}
|
|
} else {
|
|
if (list_empty(&pe->edevs)) {
|
|
cnt = 0;
|
|
list_for_each_entry(child, &pe->child_list, child) {
|
|
if (!(child->type & EEH_PE_INVALID)) {
|
|
cnt++;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!cnt)
|
|
pe->type |= EEH_PE_INVALID;
|
|
else
|
|
break;
|
|
}
|
|
}
|
|
|
|
pe = parent;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_update_time_stamp - Update PE's frozen time stamp
|
|
* @pe: EEH PE
|
|
*
|
|
* We have time stamp for each PE to trace its time of getting
|
|
* frozen in last hour. The function should be called to update
|
|
* the time stamp on first error of the specific PE. On the other
|
|
* handle, we needn't account for errors happened in last hour.
|
|
*/
|
|
void eeh_pe_update_time_stamp(struct eeh_pe *pe)
|
|
{
|
|
time64_t tstamp;
|
|
|
|
if (!pe) return;
|
|
|
|
if (pe->freeze_count <= 0) {
|
|
pe->freeze_count = 0;
|
|
pe->tstamp = ktime_get_seconds();
|
|
} else {
|
|
tstamp = ktime_get_seconds();
|
|
if (tstamp - pe->tstamp > 3600) {
|
|
pe->tstamp = tstamp;
|
|
pe->freeze_count = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
/**
|
|
* __eeh_pe_state_mark - Mark the state for the PE
|
|
* @data: EEH PE
|
|
* @flag: state
|
|
*
|
|
* The function is used to mark the indicated state for the given
|
|
* PE. Also, the associated PCI devices will be put into IO frozen
|
|
* state as well.
|
|
*/
|
|
static void *__eeh_pe_state_mark(void *data, void *flag)
|
|
{
|
|
struct eeh_pe *pe = (struct eeh_pe *)data;
|
|
int state = *((int *)flag);
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
|
|
/* Keep the state of permanently removed PE intact */
|
|
if (pe->state & EEH_PE_REMOVED)
|
|
return NULL;
|
|
|
|
pe->state |= state;
|
|
|
|
/* Offline PCI devices if applicable */
|
|
if (!(state & EEH_PE_ISOLATED))
|
|
return NULL;
|
|
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (pdev)
|
|
pdev->error_state = pci_channel_io_frozen;
|
|
}
|
|
|
|
/* Block PCI config access if required */
|
|
if (pe->state & EEH_PE_CFG_RESTRICTED)
|
|
pe->state |= EEH_PE_CFG_BLOCKED;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_state_mark - Mark specified state for PE and its associated device
|
|
* @pe: EEH PE
|
|
*
|
|
* EEH error affects the current PE and its child PEs. The function
|
|
* is used to mark appropriate state for the affected PEs and the
|
|
* associated devices.
|
|
*/
|
|
void eeh_pe_state_mark(struct eeh_pe *pe, int state)
|
|
{
|
|
eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
|
|
}
|
|
EXPORT_SYMBOL_GPL(eeh_pe_state_mark);
|
|
|
|
static void *__eeh_pe_dev_mode_mark(void *data, void *flag)
|
|
{
|
|
struct eeh_dev *edev = data;
|
|
int mode = *((int *)flag);
|
|
|
|
edev->mode |= mode;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_dev_state_mark - Mark state for all device under the PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Mark specific state for all child devices of the PE.
|
|
*/
|
|
void eeh_pe_dev_mode_mark(struct eeh_pe *pe, int mode)
|
|
{
|
|
eeh_pe_dev_traverse(pe, __eeh_pe_dev_mode_mark, &mode);
|
|
}
|
|
|
|
/**
|
|
* __eeh_pe_state_clear - Clear state for the PE
|
|
* @data: EEH PE
|
|
* @flag: state
|
|
*
|
|
* The function is used to clear the indicated state from the
|
|
* given PE. Besides, we also clear the check count of the PE
|
|
* as well.
|
|
*/
|
|
static void *__eeh_pe_state_clear(void *data, void *flag)
|
|
{
|
|
struct eeh_pe *pe = (struct eeh_pe *)data;
|
|
int state = *((int *)flag);
|
|
struct eeh_dev *edev, *tmp;
|
|
struct pci_dev *pdev;
|
|
|
|
/* Keep the state of permanently removed PE intact */
|
|
if (pe->state & EEH_PE_REMOVED)
|
|
return NULL;
|
|
|
|
pe->state &= ~state;
|
|
|
|
/*
|
|
* Special treatment on clearing isolated state. Clear
|
|
* check count since last isolation and put all affected
|
|
* devices to normal state.
|
|
*/
|
|
if (!(state & EEH_PE_ISOLATED))
|
|
return NULL;
|
|
|
|
pe->check_count = 0;
|
|
eeh_pe_for_each_dev(pe, edev, tmp) {
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (!pdev)
|
|
continue;
|
|
|
|
pdev->error_state = pci_channel_io_normal;
|
|
}
|
|
|
|
/* Unblock PCI config access if required */
|
|
if (pe->state & EEH_PE_CFG_RESTRICTED)
|
|
pe->state &= ~EEH_PE_CFG_BLOCKED;
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_state_clear - Clear state for the PE and its children
|
|
* @pe: PE
|
|
* @state: state to be cleared
|
|
*
|
|
* When the PE and its children has been recovered from error,
|
|
* we need clear the error state for that. The function is used
|
|
* for the purpose.
|
|
*/
|
|
void eeh_pe_state_clear(struct eeh_pe *pe, int state)
|
|
{
|
|
eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_state_mark_with_cfg - Mark PE state with unblocked config space
|
|
* @pe: PE
|
|
* @state: PE state to be set
|
|
*
|
|
* Set specified flag to PE and its child PEs. The PCI config space
|
|
* of some PEs is blocked automatically when EEH_PE_ISOLATED is set,
|
|
* which isn't needed in some situations. The function allows to set
|
|
* the specified flag to indicated PEs without blocking their PCI
|
|
* config space.
|
|
*/
|
|
void eeh_pe_state_mark_with_cfg(struct eeh_pe *pe, int state)
|
|
{
|
|
eeh_pe_traverse(pe, __eeh_pe_state_mark, &state);
|
|
if (!(state & EEH_PE_ISOLATED))
|
|
return;
|
|
|
|
/* Clear EEH_PE_CFG_BLOCKED, which might be set just now */
|
|
state = EEH_PE_CFG_BLOCKED;
|
|
eeh_pe_traverse(pe, __eeh_pe_state_clear, &state);
|
|
}
|
|
|
|
/*
|
|
* Some PCI bridges (e.g. PLX bridges) have primary/secondary
|
|
* buses assigned explicitly by firmware, and we probably have
|
|
* lost that after reset. So we have to delay the check until
|
|
* the PCI-CFG registers have been restored for the parent
|
|
* bridge.
|
|
*
|
|
* Don't use normal PCI-CFG accessors, which probably has been
|
|
* blocked on normal path during the stage. So we need utilize
|
|
* eeh operations, which is always permitted.
|
|
*/
|
|
static void eeh_bridge_check_link(struct eeh_dev *edev)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
int cap;
|
|
uint32_t val;
|
|
int timeout = 0;
|
|
|
|
/*
|
|
* We only check root port and downstream ports of
|
|
* PCIe switches
|
|
*/
|
|
if (!(edev->mode & (EEH_DEV_ROOT_PORT | EEH_DEV_DS_PORT)))
|
|
return;
|
|
|
|
pr_debug("%s: Check PCIe link for %04x:%02x:%02x.%01x ...\n",
|
|
__func__, pdn->phb->global_number,
|
|
pdn->busno,
|
|
PCI_SLOT(pdn->devfn),
|
|
PCI_FUNC(pdn->devfn));
|
|
|
|
/* Check slot status */
|
|
cap = edev->pcie_cap;
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_SLTSTA, 2, &val);
|
|
if (!(val & PCI_EXP_SLTSTA_PDS)) {
|
|
pr_debug(" No card in the slot (0x%04x) !\n", val);
|
|
return;
|
|
}
|
|
|
|
/* Check power status if we have the capability */
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCAP, 2, &val);
|
|
if (val & PCI_EXP_SLTCAP_PCP) {
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_SLTCTL, 2, &val);
|
|
if (val & PCI_EXP_SLTCTL_PCC) {
|
|
pr_debug(" In power-off state, power it on ...\n");
|
|
val &= ~(PCI_EXP_SLTCTL_PCC | PCI_EXP_SLTCTL_PIC);
|
|
val |= (0x0100 & PCI_EXP_SLTCTL_PIC);
|
|
eeh_ops->write_config(pdn, cap + PCI_EXP_SLTCTL, 2, val);
|
|
msleep(2 * 1000);
|
|
}
|
|
}
|
|
|
|
/* Enable link */
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCTL, 2, &val);
|
|
val &= ~PCI_EXP_LNKCTL_LD;
|
|
eeh_ops->write_config(pdn, cap + PCI_EXP_LNKCTL, 2, val);
|
|
|
|
/* Check link */
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_LNKCAP, 4, &val);
|
|
if (!(val & PCI_EXP_LNKCAP_DLLLARC)) {
|
|
pr_debug(" No link reporting capability (0x%08x) \n", val);
|
|
msleep(1000);
|
|
return;
|
|
}
|
|
|
|
/* Wait the link is up until timeout (5s) */
|
|
timeout = 0;
|
|
while (timeout < 5000) {
|
|
msleep(20);
|
|
timeout += 20;
|
|
|
|
eeh_ops->read_config(pdn, cap + PCI_EXP_LNKSTA, 2, &val);
|
|
if (val & PCI_EXP_LNKSTA_DLLLA)
|
|
break;
|
|
}
|
|
|
|
if (val & PCI_EXP_LNKSTA_DLLLA)
|
|
pr_debug(" Link up (%s)\n",
|
|
(val & PCI_EXP_LNKSTA_CLS_2_5GB) ? "2.5GB" : "5GB");
|
|
else
|
|
pr_debug(" Link not ready (0x%04x)\n", val);
|
|
}
|
|
|
|
#define BYTE_SWAP(OFF) (8*((OFF)/4)+3-(OFF))
|
|
#define SAVED_BYTE(OFF) (((u8 *)(edev->config_space))[BYTE_SWAP(OFF)])
|
|
|
|
static void eeh_restore_bridge_bars(struct eeh_dev *edev)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
int i;
|
|
|
|
/*
|
|
* Device BARs: 0x10 - 0x18
|
|
* Bus numbers and windows: 0x18 - 0x30
|
|
*/
|
|
for (i = 4; i < 13; i++)
|
|
eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
|
|
/* Rom: 0x38 */
|
|
eeh_ops->write_config(pdn, 14*4, 4, edev->config_space[14]);
|
|
|
|
/* Cache line & Latency timer: 0xC 0xD */
|
|
eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
|
|
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
|
|
eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
|
|
SAVED_BYTE(PCI_LATENCY_TIMER));
|
|
/* Max latency, min grant, interrupt ping and line: 0x3C */
|
|
eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
|
|
|
|
/* PCI Command: 0x4 */
|
|
eeh_ops->write_config(pdn, PCI_COMMAND, 4, edev->config_space[1] |
|
|
PCI_COMMAND_MEMORY | PCI_COMMAND_MASTER);
|
|
|
|
/* Check the PCIe link is ready */
|
|
eeh_bridge_check_link(edev);
|
|
}
|
|
|
|
static void eeh_restore_device_bars(struct eeh_dev *edev)
|
|
{
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
int i;
|
|
u32 cmd;
|
|
|
|
for (i = 4; i < 10; i++)
|
|
eeh_ops->write_config(pdn, i*4, 4, edev->config_space[i]);
|
|
/* 12 == Expansion ROM Address */
|
|
eeh_ops->write_config(pdn, 12*4, 4, edev->config_space[12]);
|
|
|
|
eeh_ops->write_config(pdn, PCI_CACHE_LINE_SIZE, 1,
|
|
SAVED_BYTE(PCI_CACHE_LINE_SIZE));
|
|
eeh_ops->write_config(pdn, PCI_LATENCY_TIMER, 1,
|
|
SAVED_BYTE(PCI_LATENCY_TIMER));
|
|
|
|
/* max latency, min grant, interrupt pin and line */
|
|
eeh_ops->write_config(pdn, 15*4, 4, edev->config_space[15]);
|
|
|
|
/*
|
|
* Restore PERR & SERR bits, some devices require it,
|
|
* don't touch the other command bits
|
|
*/
|
|
eeh_ops->read_config(pdn, PCI_COMMAND, 4, &cmd);
|
|
if (edev->config_space[1] & PCI_COMMAND_PARITY)
|
|
cmd |= PCI_COMMAND_PARITY;
|
|
else
|
|
cmd &= ~PCI_COMMAND_PARITY;
|
|
if (edev->config_space[1] & PCI_COMMAND_SERR)
|
|
cmd |= PCI_COMMAND_SERR;
|
|
else
|
|
cmd &= ~PCI_COMMAND_SERR;
|
|
eeh_ops->write_config(pdn, PCI_COMMAND, 4, cmd);
|
|
}
|
|
|
|
/**
|
|
* eeh_restore_one_device_bars - Restore the Base Address Registers for one device
|
|
* @data: EEH device
|
|
* @flag: Unused
|
|
*
|
|
* Loads the PCI configuration space base address registers,
|
|
* the expansion ROM base address, the latency timer, and etc.
|
|
* from the saved values in the device node.
|
|
*/
|
|
static void *eeh_restore_one_device_bars(void *data, void *flag)
|
|
{
|
|
struct eeh_dev *edev = (struct eeh_dev *)data;
|
|
struct pci_dn *pdn = eeh_dev_to_pdn(edev);
|
|
|
|
/* Do special restore for bridges */
|
|
if (edev->mode & EEH_DEV_BRIDGE)
|
|
eeh_restore_bridge_bars(edev);
|
|
else
|
|
eeh_restore_device_bars(edev);
|
|
|
|
if (eeh_ops->restore_config && pdn)
|
|
eeh_ops->restore_config(pdn);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_restore_bars - Restore the PCI config space info
|
|
* @pe: EEH PE
|
|
*
|
|
* This routine performs a recursive walk to the children
|
|
* of this device as well.
|
|
*/
|
|
void eeh_pe_restore_bars(struct eeh_pe *pe)
|
|
{
|
|
/*
|
|
* We needn't take the EEH lock since eeh_pe_dev_traverse()
|
|
* will take that.
|
|
*/
|
|
eeh_pe_dev_traverse(pe, eeh_restore_one_device_bars, NULL);
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_loc_get - Retrieve location code binding to the given PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the location code of the given PE. If the primary PE bus
|
|
* is root bus, we will grab location code from PHB device tree node
|
|
* or root port. Otherwise, the upstream bridge's device tree node
|
|
* of the primary PE bus will be checked for the location code.
|
|
*/
|
|
const char *eeh_pe_loc_get(struct eeh_pe *pe)
|
|
{
|
|
struct pci_bus *bus = eeh_pe_bus_get(pe);
|
|
struct device_node *dn;
|
|
const char *loc = NULL;
|
|
|
|
while (bus) {
|
|
dn = pci_bus_to_OF_node(bus);
|
|
if (!dn) {
|
|
bus = bus->parent;
|
|
continue;
|
|
}
|
|
|
|
if (pci_is_root_bus(bus))
|
|
loc = of_get_property(dn, "ibm,io-base-loc-code", NULL);
|
|
else
|
|
loc = of_get_property(dn, "ibm,slot-location-code",
|
|
NULL);
|
|
|
|
if (loc)
|
|
return loc;
|
|
|
|
bus = bus->parent;
|
|
}
|
|
|
|
return "N/A";
|
|
}
|
|
|
|
/**
|
|
* eeh_pe_bus_get - Retrieve PCI bus according to the given PE
|
|
* @pe: EEH PE
|
|
*
|
|
* Retrieve the PCI bus according to the given PE. Basically,
|
|
* there're 3 types of PEs: PHB/Bus/Device. For PHB PE, the
|
|
* primary PCI bus will be retrieved. The parent bus will be
|
|
* returned for BUS PE. However, we don't have associated PCI
|
|
* bus for DEVICE PE.
|
|
*/
|
|
struct pci_bus *eeh_pe_bus_get(struct eeh_pe *pe)
|
|
{
|
|
struct eeh_dev *edev;
|
|
struct pci_dev *pdev;
|
|
|
|
if (pe->type & EEH_PE_PHB)
|
|
return pe->phb->bus;
|
|
|
|
/* The primary bus might be cached during probe time */
|
|
if (pe->state & EEH_PE_PRI_BUS)
|
|
return pe->bus;
|
|
|
|
/* Retrieve the parent PCI bus of first (top) PCI device */
|
|
edev = list_first_entry_or_null(&pe->edevs, struct eeh_dev, list);
|
|
pdev = eeh_dev_to_pci_dev(edev);
|
|
if (pdev)
|
|
return pdev->bus;
|
|
|
|
return NULL;
|
|
}
|