OpenCloudOS-Kernel/drivers/counter/intel-qep.c

527 lines
13 KiB
C

// SPDX-License-Identifier: GPL-2.0
/*
* Intel Quadrature Encoder Peripheral driver
*
* Copyright (C) 2019-2021 Intel Corporation
*
* Author: Felipe Balbi (Intel)
* Author: Jarkko Nikula <jarkko.nikula@linux.intel.com>
* Author: Raymond Tan <raymond.tan@intel.com>
*/
#include <linux/counter.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/pci.h>
#include <linux/pm_runtime.h>
#define INTEL_QEPCON 0x00
#define INTEL_QEPFLT 0x04
#define INTEL_QEPCOUNT 0x08
#define INTEL_QEPMAX 0x0c
#define INTEL_QEPWDT 0x10
#define INTEL_QEPCAPDIV 0x14
#define INTEL_QEPCNTR 0x18
#define INTEL_QEPCAPBUF 0x1c
#define INTEL_QEPINT_STAT 0x20
#define INTEL_QEPINT_MASK 0x24
/* QEPCON */
#define INTEL_QEPCON_EN BIT(0)
#define INTEL_QEPCON_FLT_EN BIT(1)
#define INTEL_QEPCON_EDGE_A BIT(2)
#define INTEL_QEPCON_EDGE_B BIT(3)
#define INTEL_QEPCON_EDGE_INDX BIT(4)
#define INTEL_QEPCON_SWPAB BIT(5)
#define INTEL_QEPCON_OP_MODE BIT(6)
#define INTEL_QEPCON_PH_ERR BIT(7)
#define INTEL_QEPCON_COUNT_RST_MODE BIT(8)
#define INTEL_QEPCON_INDX_GATING_MASK GENMASK(10, 9)
#define INTEL_QEPCON_INDX_GATING(n) (((n) & 3) << 9)
#define INTEL_QEPCON_INDX_PAL_PBL INTEL_QEPCON_INDX_GATING(0)
#define INTEL_QEPCON_INDX_PAL_PBH INTEL_QEPCON_INDX_GATING(1)
#define INTEL_QEPCON_INDX_PAH_PBL INTEL_QEPCON_INDX_GATING(2)
#define INTEL_QEPCON_INDX_PAH_PBH INTEL_QEPCON_INDX_GATING(3)
#define INTEL_QEPCON_CAP_MODE BIT(11)
#define INTEL_QEPCON_FIFO_THRE_MASK GENMASK(14, 12)
#define INTEL_QEPCON_FIFO_THRE(n) ((((n) - 1) & 7) << 12)
#define INTEL_QEPCON_FIFO_EMPTY BIT(15)
/* QEPFLT */
#define INTEL_QEPFLT_MAX_COUNT(n) ((n) & 0x1fffff)
/* QEPINT */
#define INTEL_QEPINT_FIFOCRIT BIT(5)
#define INTEL_QEPINT_FIFOENTRY BIT(4)
#define INTEL_QEPINT_QEPDIR BIT(3)
#define INTEL_QEPINT_QEPRST_UP BIT(2)
#define INTEL_QEPINT_QEPRST_DOWN BIT(1)
#define INTEL_QEPINT_WDT BIT(0)
#define INTEL_QEPINT_MASK_ALL GENMASK(5, 0)
#define INTEL_QEP_CLK_PERIOD_NS 10
struct intel_qep {
struct mutex lock;
struct device *dev;
void __iomem *regs;
bool enabled;
/* Context save registers */
u32 qepcon;
u32 qepflt;
u32 qepmax;
};
static inline u32 intel_qep_readl(struct intel_qep *qep, u32 offset)
{
return readl(qep->regs + offset);
}
static inline void intel_qep_writel(struct intel_qep *qep,
u32 offset, u32 value)
{
writel(value, qep->regs + offset);
}
static void intel_qep_init(struct intel_qep *qep)
{
u32 reg;
reg = intel_qep_readl(qep, INTEL_QEPCON);
reg &= ~INTEL_QEPCON_EN;
intel_qep_writel(qep, INTEL_QEPCON, reg);
qep->enabled = false;
/*
* Make sure peripheral is disabled by flushing the write with
* a dummy read
*/
reg = intel_qep_readl(qep, INTEL_QEPCON);
reg &= ~(INTEL_QEPCON_OP_MODE | INTEL_QEPCON_FLT_EN);
reg |= INTEL_QEPCON_EDGE_A | INTEL_QEPCON_EDGE_B |
INTEL_QEPCON_EDGE_INDX | INTEL_QEPCON_COUNT_RST_MODE;
intel_qep_writel(qep, INTEL_QEPCON, reg);
intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
}
static int intel_qep_count_read(struct counter_device *counter,
struct counter_count *count, u64 *val)
{
struct intel_qep *const qep = counter_priv(counter);
pm_runtime_get_sync(qep->dev);
*val = intel_qep_readl(qep, INTEL_QEPCOUNT);
pm_runtime_put(qep->dev);
return 0;
}
static const enum counter_function intel_qep_count_functions[] = {
COUNTER_FUNCTION_QUADRATURE_X4,
};
static int intel_qep_function_read(struct counter_device *counter,
struct counter_count *count,
enum counter_function *function)
{
*function = COUNTER_FUNCTION_QUADRATURE_X4;
return 0;
}
static const enum counter_synapse_action intel_qep_synapse_actions[] = {
COUNTER_SYNAPSE_ACTION_BOTH_EDGES,
};
static int intel_qep_action_read(struct counter_device *counter,
struct counter_count *count,
struct counter_synapse *synapse,
enum counter_synapse_action *action)
{
*action = COUNTER_SYNAPSE_ACTION_BOTH_EDGES;
return 0;
}
static const struct counter_ops intel_qep_counter_ops = {
.count_read = intel_qep_count_read,
.function_read = intel_qep_function_read,
.action_read = intel_qep_action_read,
};
#define INTEL_QEP_SIGNAL(_id, _name) { \
.id = (_id), \
.name = (_name), \
}
static struct counter_signal intel_qep_signals[] = {
INTEL_QEP_SIGNAL(0, "Phase A"),
INTEL_QEP_SIGNAL(1, "Phase B"),
INTEL_QEP_SIGNAL(2, "Index"),
};
#define INTEL_QEP_SYNAPSE(_signal_id) { \
.actions_list = intel_qep_synapse_actions, \
.num_actions = ARRAY_SIZE(intel_qep_synapse_actions), \
.signal = &intel_qep_signals[(_signal_id)], \
}
static struct counter_synapse intel_qep_count_synapses[] = {
INTEL_QEP_SYNAPSE(0),
INTEL_QEP_SYNAPSE(1),
INTEL_QEP_SYNAPSE(2),
};
static int intel_qep_ceiling_read(struct counter_device *counter,
struct counter_count *count, u64 *ceiling)
{
struct intel_qep *qep = counter_priv(counter);
pm_runtime_get_sync(qep->dev);
*ceiling = intel_qep_readl(qep, INTEL_QEPMAX);
pm_runtime_put(qep->dev);
return 0;
}
static int intel_qep_ceiling_write(struct counter_device *counter,
struct counter_count *count, u64 max)
{
struct intel_qep *qep = counter_priv(counter);
int ret = 0;
/* Intel QEP ceiling configuration only supports 32-bit values */
if (max != (u32)max)
return -ERANGE;
mutex_lock(&qep->lock);
if (qep->enabled) {
ret = -EBUSY;
goto out;
}
pm_runtime_get_sync(qep->dev);
intel_qep_writel(qep, INTEL_QEPMAX, max);
pm_runtime_put(qep->dev);
out:
mutex_unlock(&qep->lock);
return ret;
}
static int intel_qep_enable_read(struct counter_device *counter,
struct counter_count *count, u8 *enable)
{
struct intel_qep *qep = counter_priv(counter);
*enable = qep->enabled;
return 0;
}
static int intel_qep_enable_write(struct counter_device *counter,
struct counter_count *count, u8 val)
{
struct intel_qep *qep = counter_priv(counter);
u32 reg;
bool changed;
mutex_lock(&qep->lock);
changed = val ^ qep->enabled;
if (!changed)
goto out;
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
if (val) {
/* Enable peripheral and keep runtime PM always on */
reg |= INTEL_QEPCON_EN;
pm_runtime_get_noresume(qep->dev);
} else {
/* Let runtime PM be idle and disable peripheral */
pm_runtime_put_noidle(qep->dev);
reg &= ~INTEL_QEPCON_EN;
}
intel_qep_writel(qep, INTEL_QEPCON, reg);
pm_runtime_put(qep->dev);
qep->enabled = val;
out:
mutex_unlock(&qep->lock);
return 0;
}
static int intel_qep_spike_filter_ns_read(struct counter_device *counter,
struct counter_count *count,
u64 *length)
{
struct intel_qep *qep = counter_priv(counter);
u32 reg;
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
if (!(reg & INTEL_QEPCON_FLT_EN)) {
pm_runtime_put(qep->dev);
return 0;
}
reg = INTEL_QEPFLT_MAX_COUNT(intel_qep_readl(qep, INTEL_QEPFLT));
pm_runtime_put(qep->dev);
*length = (reg + 2) * INTEL_QEP_CLK_PERIOD_NS;
return 0;
}
static int intel_qep_spike_filter_ns_write(struct counter_device *counter,
struct counter_count *count,
u64 length)
{
struct intel_qep *qep = counter_priv(counter);
u32 reg;
bool enable;
int ret = 0;
/*
* Spike filter length is (MAX_COUNT + 2) clock periods.
* Disable filter when userspace writes 0, enable for valid
* nanoseconds values and error out otherwise.
*/
do_div(length, INTEL_QEP_CLK_PERIOD_NS);
if (length == 0) {
enable = false;
length = 0;
} else if (length >= 2) {
enable = true;
length -= 2;
} else {
return -EINVAL;
}
if (length > INTEL_QEPFLT_MAX_COUNT(length))
return -ERANGE;
mutex_lock(&qep->lock);
if (qep->enabled) {
ret = -EBUSY;
goto out;
}
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
if (enable)
reg |= INTEL_QEPCON_FLT_EN;
else
reg &= ~INTEL_QEPCON_FLT_EN;
intel_qep_writel(qep, INTEL_QEPFLT, length);
intel_qep_writel(qep, INTEL_QEPCON, reg);
pm_runtime_put(qep->dev);
out:
mutex_unlock(&qep->lock);
return ret;
}
static int intel_qep_preset_enable_read(struct counter_device *counter,
struct counter_count *count,
u8 *preset_enable)
{
struct intel_qep *qep = counter_priv(counter);
u32 reg;
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
pm_runtime_put(qep->dev);
*preset_enable = !(reg & INTEL_QEPCON_COUNT_RST_MODE);
return 0;
}
static int intel_qep_preset_enable_write(struct counter_device *counter,
struct counter_count *count, u8 val)
{
struct intel_qep *qep = counter_priv(counter);
u32 reg;
int ret = 0;
mutex_lock(&qep->lock);
if (qep->enabled) {
ret = -EBUSY;
goto out;
}
pm_runtime_get_sync(qep->dev);
reg = intel_qep_readl(qep, INTEL_QEPCON);
if (val)
reg &= ~INTEL_QEPCON_COUNT_RST_MODE;
else
reg |= INTEL_QEPCON_COUNT_RST_MODE;
intel_qep_writel(qep, INTEL_QEPCON, reg);
pm_runtime_put(qep->dev);
out:
mutex_unlock(&qep->lock);
return ret;
}
static struct counter_comp intel_qep_count_ext[] = {
COUNTER_COMP_ENABLE(intel_qep_enable_read, intel_qep_enable_write),
COUNTER_COMP_CEILING(intel_qep_ceiling_read, intel_qep_ceiling_write),
COUNTER_COMP_PRESET_ENABLE(intel_qep_preset_enable_read,
intel_qep_preset_enable_write),
COUNTER_COMP_COUNT_U64("spike_filter_ns",
intel_qep_spike_filter_ns_read,
intel_qep_spike_filter_ns_write),
};
static struct counter_count intel_qep_counter_count[] = {
{
.id = 0,
.name = "Channel 1 Count",
.functions_list = intel_qep_count_functions,
.num_functions = ARRAY_SIZE(intel_qep_count_functions),
.synapses = intel_qep_count_synapses,
.num_synapses = ARRAY_SIZE(intel_qep_count_synapses),
.ext = intel_qep_count_ext,
.num_ext = ARRAY_SIZE(intel_qep_count_ext),
},
};
static int intel_qep_probe(struct pci_dev *pci, const struct pci_device_id *id)
{
struct counter_device *counter;
struct intel_qep *qep;
struct device *dev = &pci->dev;
void __iomem *regs;
int ret;
counter = devm_counter_alloc(dev, sizeof(*qep));
if (!counter)
return -ENOMEM;
qep = counter_priv(counter);
ret = pcim_enable_device(pci);
if (ret)
return ret;
pci_set_master(pci);
ret = pcim_iomap_regions(pci, BIT(0), pci_name(pci));
if (ret)
return ret;
regs = pcim_iomap_table(pci)[0];
if (!regs)
return -ENOMEM;
qep->dev = dev;
qep->regs = regs;
mutex_init(&qep->lock);
intel_qep_init(qep);
pci_set_drvdata(pci, qep);
counter->name = pci_name(pci);
counter->parent = dev;
counter->ops = &intel_qep_counter_ops;
counter->counts = intel_qep_counter_count;
counter->num_counts = ARRAY_SIZE(intel_qep_counter_count);
counter->signals = intel_qep_signals;
counter->num_signals = ARRAY_SIZE(intel_qep_signals);
qep->enabled = false;
pm_runtime_put(dev);
pm_runtime_allow(dev);
ret = devm_counter_add(&pci->dev, counter);
if (ret < 0)
return dev_err_probe(&pci->dev, ret, "Failed to add counter\n");
return 0;
}
static void intel_qep_remove(struct pci_dev *pci)
{
struct intel_qep *qep = pci_get_drvdata(pci);
struct device *dev = &pci->dev;
pm_runtime_forbid(dev);
if (!qep->enabled)
pm_runtime_get(dev);
intel_qep_writel(qep, INTEL_QEPCON, 0);
}
static int __maybe_unused intel_qep_suspend(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_qep *qep = pci_get_drvdata(pdev);
qep->qepcon = intel_qep_readl(qep, INTEL_QEPCON);
qep->qepflt = intel_qep_readl(qep, INTEL_QEPFLT);
qep->qepmax = intel_qep_readl(qep, INTEL_QEPMAX);
return 0;
}
static int __maybe_unused intel_qep_resume(struct device *dev)
{
struct pci_dev *pdev = to_pci_dev(dev);
struct intel_qep *qep = pci_get_drvdata(pdev);
/*
* Make sure peripheral is disabled when restoring registers and
* control register bits that are writable only when the peripheral
* is disabled
*/
intel_qep_writel(qep, INTEL_QEPCON, 0);
intel_qep_readl(qep, INTEL_QEPCON);
intel_qep_writel(qep, INTEL_QEPFLT, qep->qepflt);
intel_qep_writel(qep, INTEL_QEPMAX, qep->qepmax);
intel_qep_writel(qep, INTEL_QEPINT_MASK, INTEL_QEPINT_MASK_ALL);
/* Restore all other control register bits except enable status */
intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon & ~INTEL_QEPCON_EN);
intel_qep_readl(qep, INTEL_QEPCON);
/* Restore enable status */
intel_qep_writel(qep, INTEL_QEPCON, qep->qepcon);
return 0;
}
static UNIVERSAL_DEV_PM_OPS(intel_qep_pm_ops,
intel_qep_suspend, intel_qep_resume, NULL);
static const struct pci_device_id intel_qep_id_table[] = {
/* EHL */
{ PCI_VDEVICE(INTEL, 0x4bc3), },
{ PCI_VDEVICE(INTEL, 0x4b81), },
{ PCI_VDEVICE(INTEL, 0x4b82), },
{ PCI_VDEVICE(INTEL, 0x4b83), },
{ } /* Terminating Entry */
};
MODULE_DEVICE_TABLE(pci, intel_qep_id_table);
static struct pci_driver intel_qep_driver = {
.name = "intel-qep",
.id_table = intel_qep_id_table,
.probe = intel_qep_probe,
.remove = intel_qep_remove,
.driver = {
.pm = &intel_qep_pm_ops,
}
};
module_pci_driver(intel_qep_driver);
MODULE_AUTHOR("Felipe Balbi (Intel)");
MODULE_AUTHOR("Jarkko Nikula <jarkko.nikula@linux.intel.com>");
MODULE_AUTHOR("Raymond Tan <raymond.tan@intel.com>");
MODULE_LICENSE("GPL");
MODULE_DESCRIPTION("Intel Quadrature Encoder Peripheral driver");
MODULE_IMPORT_NS(COUNTER);