OpenCloudOS-Kernel/fs/udf/super.c

2550 lines
67 KiB
C

/*
* super.c
*
* PURPOSE
* Super block routines for the OSTA-UDF(tm) filesystem.
*
* DESCRIPTION
* OSTA-UDF(tm) = Optical Storage Technology Association
* Universal Disk Format.
*
* This code is based on version 2.00 of the UDF specification,
* and revision 3 of the ECMA 167 standard [equivalent to ISO 13346].
* http://www.osta.org/
* https://www.ecma.ch/
* https://www.iso.org/
*
* COPYRIGHT
* This file is distributed under the terms of the GNU General Public
* License (GPL). Copies of the GPL can be obtained from:
* ftp://prep.ai.mit.edu/pub/gnu/GPL
* Each contributing author retains all rights to their own work.
*
* (C) 1998 Dave Boynton
* (C) 1998-2004 Ben Fennema
* (C) 2000 Stelias Computing Inc
*
* HISTORY
*
* 09/24/98 dgb changed to allow compiling outside of kernel, and
* added some debugging.
* 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34
* 10/16/98 attempting some multi-session support
* 10/17/98 added freespace count for "df"
* 11/11/98 gr added novrs option
* 11/26/98 dgb added fileset,anchor mount options
* 12/06/98 blf really hosed things royally. vat/sparing support. sequenced
* vol descs. rewrote option handling based on isofs
* 12/20/98 find the free space bitmap (if it exists)
*/
#include "udfdecl.h"
#include <linux/blkdev.h>
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/parser.h>
#include <linux/stat.h>
#include <linux/cdrom.h>
#include <linux/nls.h>
#include <linux/vfs.h>
#include <linux/vmalloc.h>
#include <linux/errno.h>
#include <linux/mount.h>
#include <linux/seq_file.h>
#include <linux/bitmap.h>
#include <linux/crc-itu-t.h>
#include <linux/log2.h>
#include <asm/byteorder.h>
#include "udf_sb.h"
#include "udf_i.h"
#include <linux/init.h>
#include <linux/uaccess.h>
enum {
VDS_POS_PRIMARY_VOL_DESC,
VDS_POS_UNALLOC_SPACE_DESC,
VDS_POS_LOGICAL_VOL_DESC,
VDS_POS_IMP_USE_VOL_DESC,
VDS_POS_LENGTH
};
#define VSD_FIRST_SECTOR_OFFSET 32768
#define VSD_MAX_SECTOR_OFFSET 0x800000
/*
* Maximum number of Terminating Descriptor / Logical Volume Integrity
* Descriptor redirections. The chosen numbers are arbitrary - just that we
* hopefully don't limit any real use of rewritten inode on write-once media
* but avoid looping for too long on corrupted media.
*/
#define UDF_MAX_TD_NESTING 64
#define UDF_MAX_LVID_NESTING 1000
enum { UDF_MAX_LINKS = 0xffff };
/* These are the "meat" - everything else is stuffing */
static int udf_fill_super(struct super_block *, void *, int);
static void udf_put_super(struct super_block *);
static int udf_sync_fs(struct super_block *, int);
static int udf_remount_fs(struct super_block *, int *, char *);
static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad);
static void udf_open_lvid(struct super_block *);
static void udf_close_lvid(struct super_block *);
static unsigned int udf_count_free(struct super_block *);
static int udf_statfs(struct dentry *, struct kstatfs *);
static int udf_show_options(struct seq_file *, struct dentry *);
struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb)
{
struct logicalVolIntegrityDesc *lvid;
unsigned int partnum;
unsigned int offset;
if (!UDF_SB(sb)->s_lvid_bh)
return NULL;
lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data;
partnum = le32_to_cpu(lvid->numOfPartitions);
if ((sb->s_blocksize - sizeof(struct logicalVolIntegrityDescImpUse) -
offsetof(struct logicalVolIntegrityDesc, impUse)) /
(2 * sizeof(uint32_t)) < partnum) {
udf_err(sb, "Logical volume integrity descriptor corrupted "
"(numOfPartitions = %u)!\n", partnum);
return NULL;
}
/* The offset is to skip freeSpaceTable and sizeTable arrays */
offset = partnum * 2 * sizeof(uint32_t);
return (struct logicalVolIntegrityDescImpUse *)&(lvid->impUse[offset]);
}
/* UDF filesystem type */
static struct dentry *udf_mount(struct file_system_type *fs_type,
int flags, const char *dev_name, void *data)
{
return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super);
}
static struct file_system_type udf_fstype = {
.owner = THIS_MODULE,
.name = "udf",
.mount = udf_mount,
.kill_sb = kill_block_super,
.fs_flags = FS_REQUIRES_DEV,
};
MODULE_ALIAS_FS("udf");
static struct kmem_cache *udf_inode_cachep;
static struct inode *udf_alloc_inode(struct super_block *sb)
{
struct udf_inode_info *ei;
ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL);
if (!ei)
return NULL;
ei->i_unique = 0;
ei->i_lenExtents = 0;
ei->i_lenStreams = 0;
ei->i_next_alloc_block = 0;
ei->i_next_alloc_goal = 0;
ei->i_strat4096 = 0;
ei->i_streamdir = 0;
init_rwsem(&ei->i_data_sem);
ei->cached_extent.lstart = -1;
spin_lock_init(&ei->i_extent_cache_lock);
return &ei->vfs_inode;
}
static void udf_free_in_core_inode(struct inode *inode)
{
kmem_cache_free(udf_inode_cachep, UDF_I(inode));
}
static void init_once(void *foo)
{
struct udf_inode_info *ei = (struct udf_inode_info *)foo;
ei->i_ext.i_data = NULL;
inode_init_once(&ei->vfs_inode);
}
static int __init init_inodecache(void)
{
udf_inode_cachep = kmem_cache_create("udf_inode_cache",
sizeof(struct udf_inode_info),
0, (SLAB_RECLAIM_ACCOUNT |
SLAB_MEM_SPREAD |
SLAB_ACCOUNT),
init_once);
if (!udf_inode_cachep)
return -ENOMEM;
return 0;
}
static void destroy_inodecache(void)
{
/*
* Make sure all delayed rcu free inodes are flushed before we
* destroy cache.
*/
rcu_barrier();
kmem_cache_destroy(udf_inode_cachep);
}
/* Superblock operations */
static const struct super_operations udf_sb_ops = {
.alloc_inode = udf_alloc_inode,
.free_inode = udf_free_in_core_inode,
.write_inode = udf_write_inode,
.evict_inode = udf_evict_inode,
.put_super = udf_put_super,
.sync_fs = udf_sync_fs,
.statfs = udf_statfs,
.remount_fs = udf_remount_fs,
.show_options = udf_show_options,
};
struct udf_options {
unsigned char novrs;
unsigned int blocksize;
unsigned int session;
unsigned int lastblock;
unsigned int anchor;
unsigned int flags;
umode_t umask;
kgid_t gid;
kuid_t uid;
umode_t fmode;
umode_t dmode;
struct nls_table *nls_map;
};
static int __init init_udf_fs(void)
{
int err;
err = init_inodecache();
if (err)
goto out1;
err = register_filesystem(&udf_fstype);
if (err)
goto out;
return 0;
out:
destroy_inodecache();
out1:
return err;
}
static void __exit exit_udf_fs(void)
{
unregister_filesystem(&udf_fstype);
destroy_inodecache();
}
static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count)
{
struct udf_sb_info *sbi = UDF_SB(sb);
sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL);
if (!sbi->s_partmaps) {
sbi->s_partitions = 0;
return -ENOMEM;
}
sbi->s_partitions = count;
return 0;
}
static void udf_sb_free_bitmap(struct udf_bitmap *bitmap)
{
int i;
int nr_groups = bitmap->s_nr_groups;
for (i = 0; i < nr_groups; i++)
brelse(bitmap->s_block_bitmap[i]);
kvfree(bitmap);
}
static void udf_free_partition(struct udf_part_map *map)
{
int i;
struct udf_meta_data *mdata;
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
iput(map->s_uspace.s_table);
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
udf_sb_free_bitmap(map->s_uspace.s_bitmap);
if (map->s_partition_type == UDF_SPARABLE_MAP15)
for (i = 0; i < 4; i++)
brelse(map->s_type_specific.s_sparing.s_spar_map[i]);
else if (map->s_partition_type == UDF_METADATA_MAP25) {
mdata = &map->s_type_specific.s_metadata;
iput(mdata->s_metadata_fe);
mdata->s_metadata_fe = NULL;
iput(mdata->s_mirror_fe);
mdata->s_mirror_fe = NULL;
iput(mdata->s_bitmap_fe);
mdata->s_bitmap_fe = NULL;
}
}
static void udf_sb_free_partitions(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
int i;
if (!sbi->s_partmaps)
return;
for (i = 0; i < sbi->s_partitions; i++)
udf_free_partition(&sbi->s_partmaps[i]);
kfree(sbi->s_partmaps);
sbi->s_partmaps = NULL;
}
static int udf_show_options(struct seq_file *seq, struct dentry *root)
{
struct super_block *sb = root->d_sb;
struct udf_sb_info *sbi = UDF_SB(sb);
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT))
seq_puts(seq, ",nostrict");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET))
seq_printf(seq, ",bs=%lu", sb->s_blocksize);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE))
seq_puts(seq, ",unhide");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE))
seq_puts(seq, ",undelete");
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB))
seq_puts(seq, ",noadinicb");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD))
seq_puts(seq, ",shortad");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET))
seq_puts(seq, ",uid=forget");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET))
seq_puts(seq, ",gid=forget");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET))
seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid));
if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET))
seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid));
if (sbi->s_umask != 0)
seq_printf(seq, ",umask=%ho", sbi->s_umask);
if (sbi->s_fmode != UDF_INVALID_MODE)
seq_printf(seq, ",mode=%ho", sbi->s_fmode);
if (sbi->s_dmode != UDF_INVALID_MODE)
seq_printf(seq, ",dmode=%ho", sbi->s_dmode);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET))
seq_printf(seq, ",session=%d", sbi->s_session);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET))
seq_printf(seq, ",lastblock=%u", sbi->s_last_block);
if (sbi->s_anchor != 0)
seq_printf(seq, ",anchor=%u", sbi->s_anchor);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_UTF8))
seq_puts(seq, ",utf8");
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP) && sbi->s_nls_map)
seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset);
return 0;
}
/*
* udf_parse_options
*
* PURPOSE
* Parse mount options.
*
* DESCRIPTION
* The following mount options are supported:
*
* gid= Set the default group.
* umask= Set the default umask.
* mode= Set the default file permissions.
* dmode= Set the default directory permissions.
* uid= Set the default user.
* bs= Set the block size.
* unhide Show otherwise hidden files.
* undelete Show deleted files in lists.
* adinicb Embed data in the inode (default)
* noadinicb Don't embed data in the inode
* shortad Use short ad's
* longad Use long ad's (default)
* nostrict Unset strict conformance
* iocharset= Set the NLS character set
*
* The remaining are for debugging and disaster recovery:
*
* novrs Skip volume sequence recognition
*
* The following expect a offset from 0.
*
* session= Set the CDROM session (default= last session)
* anchor= Override standard anchor location. (default= 256)
* volume= Override the VolumeDesc location. (unused)
* partition= Override the PartitionDesc location. (unused)
* lastblock= Set the last block of the filesystem/
*
* The following expect a offset from the partition root.
*
* fileset= Override the fileset block location. (unused)
* rootdir= Override the root directory location. (unused)
* WARNING: overriding the rootdir to a non-directory may
* yield highly unpredictable results.
*
* PRE-CONDITIONS
* options Pointer to mount options string.
* uopts Pointer to mount options variable.
*
* POST-CONDITIONS
* <return> 1 Mount options parsed okay.
* <return> 0 Error parsing mount options.
*
* HISTORY
* July 1, 1997 - Andrew E. Mileski
* Written, tested, and released.
*/
enum {
Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete,
Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad,
Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock,
Opt_anchor, Opt_volume, Opt_partition, Opt_fileset,
Opt_rootdir, Opt_utf8, Opt_iocharset,
Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore,
Opt_fmode, Opt_dmode
};
static const match_table_t tokens = {
{Opt_novrs, "novrs"},
{Opt_nostrict, "nostrict"},
{Opt_bs, "bs=%u"},
{Opt_unhide, "unhide"},
{Opt_undelete, "undelete"},
{Opt_noadinicb, "noadinicb"},
{Opt_adinicb, "adinicb"},
{Opt_shortad, "shortad"},
{Opt_longad, "longad"},
{Opt_uforget, "uid=forget"},
{Opt_uignore, "uid=ignore"},
{Opt_gforget, "gid=forget"},
{Opt_gignore, "gid=ignore"},
{Opt_gid, "gid=%u"},
{Opt_uid, "uid=%u"},
{Opt_umask, "umask=%o"},
{Opt_session, "session=%u"},
{Opt_lastblock, "lastblock=%u"},
{Opt_anchor, "anchor=%u"},
{Opt_volume, "volume=%u"},
{Opt_partition, "partition=%u"},
{Opt_fileset, "fileset=%u"},
{Opt_rootdir, "rootdir=%u"},
{Opt_utf8, "utf8"},
{Opt_iocharset, "iocharset=%s"},
{Opt_fmode, "mode=%o"},
{Opt_dmode, "dmode=%o"},
{Opt_err, NULL}
};
static int udf_parse_options(char *options, struct udf_options *uopt,
bool remount)
{
char *p;
int option;
uopt->novrs = 0;
uopt->session = 0xFFFFFFFF;
uopt->lastblock = 0;
uopt->anchor = 0;
if (!options)
return 1;
while ((p = strsep(&options, ",")) != NULL) {
substring_t args[MAX_OPT_ARGS];
int token;
unsigned n;
if (!*p)
continue;
token = match_token(p, tokens, args);
switch (token) {
case Opt_novrs:
uopt->novrs = 1;
break;
case Opt_bs:
if (match_int(&args[0], &option))
return 0;
n = option;
if (n != 512 && n != 1024 && n != 2048 && n != 4096)
return 0;
uopt->blocksize = n;
uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET);
break;
case Opt_unhide:
uopt->flags |= (1 << UDF_FLAG_UNHIDE);
break;
case Opt_undelete:
uopt->flags |= (1 << UDF_FLAG_UNDELETE);
break;
case Opt_noadinicb:
uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_adinicb:
uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB);
break;
case Opt_shortad:
uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_longad:
uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD);
break;
case Opt_gid:
if (match_int(args, &option))
return 0;
uopt->gid = make_kgid(current_user_ns(), option);
if (!gid_valid(uopt->gid))
return 0;
uopt->flags |= (1 << UDF_FLAG_GID_SET);
break;
case Opt_uid:
if (match_int(args, &option))
return 0;
uopt->uid = make_kuid(current_user_ns(), option);
if (!uid_valid(uopt->uid))
return 0;
uopt->flags |= (1 << UDF_FLAG_UID_SET);
break;
case Opt_umask:
if (match_octal(args, &option))
return 0;
uopt->umask = option;
break;
case Opt_nostrict:
uopt->flags &= ~(1 << UDF_FLAG_STRICT);
break;
case Opt_session:
if (match_int(args, &option))
return 0;
uopt->session = option;
if (!remount)
uopt->flags |= (1 << UDF_FLAG_SESSION_SET);
break;
case Opt_lastblock:
if (match_int(args, &option))
return 0;
uopt->lastblock = option;
if (!remount)
uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET);
break;
case Opt_anchor:
if (match_int(args, &option))
return 0;
uopt->anchor = option;
break;
case Opt_volume:
case Opt_partition:
case Opt_fileset:
case Opt_rootdir:
/* Ignored (never implemented properly) */
break;
case Opt_utf8:
uopt->flags |= (1 << UDF_FLAG_UTF8);
break;
case Opt_iocharset:
if (!remount) {
if (uopt->nls_map)
unload_nls(uopt->nls_map);
/*
* load_nls() failure is handled later in
* udf_fill_super() after all options are
* parsed.
*/
uopt->nls_map = load_nls(args[0].from);
uopt->flags |= (1 << UDF_FLAG_NLS_MAP);
}
break;
case Opt_uforget:
uopt->flags |= (1 << UDF_FLAG_UID_FORGET);
break;
case Opt_uignore:
case Opt_gignore:
/* These options are superseeded by uid=<number> */
break;
case Opt_gforget:
uopt->flags |= (1 << UDF_FLAG_GID_FORGET);
break;
case Opt_fmode:
if (match_octal(args, &option))
return 0;
uopt->fmode = option & 0777;
break;
case Opt_dmode:
if (match_octal(args, &option))
return 0;
uopt->dmode = option & 0777;
break;
default:
pr_err("bad mount option \"%s\" or missing value\n", p);
return 0;
}
}
return 1;
}
static int udf_remount_fs(struct super_block *sb, int *flags, char *options)
{
struct udf_options uopt;
struct udf_sb_info *sbi = UDF_SB(sb);
int error = 0;
if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
return -EACCES;
sync_filesystem(sb);
uopt.flags = sbi->s_flags;
uopt.uid = sbi->s_uid;
uopt.gid = sbi->s_gid;
uopt.umask = sbi->s_umask;
uopt.fmode = sbi->s_fmode;
uopt.dmode = sbi->s_dmode;
uopt.nls_map = NULL;
if (!udf_parse_options(options, &uopt, true))
return -EINVAL;
write_lock(&sbi->s_cred_lock);
sbi->s_flags = uopt.flags;
sbi->s_uid = uopt.uid;
sbi->s_gid = uopt.gid;
sbi->s_umask = uopt.umask;
sbi->s_fmode = uopt.fmode;
sbi->s_dmode = uopt.dmode;
write_unlock(&sbi->s_cred_lock);
if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
goto out_unlock;
if (*flags & SB_RDONLY)
udf_close_lvid(sb);
else
udf_open_lvid(sb);
out_unlock:
return error;
}
/*
* Check VSD descriptor. Returns -1 in case we are at the end of volume
* recognition area, 0 if the descriptor is valid but non-interesting, 1 if
* we found one of NSR descriptors we are looking for.
*/
static int identify_vsd(const struct volStructDesc *vsd)
{
int ret = 0;
if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) {
switch (vsd->structType) {
case 0:
udf_debug("ISO9660 Boot Record found\n");
break;
case 1:
udf_debug("ISO9660 Primary Volume Descriptor found\n");
break;
case 2:
udf_debug("ISO9660 Supplementary Volume Descriptor found\n");
break;
case 3:
udf_debug("ISO9660 Volume Partition Descriptor found\n");
break;
case 255:
udf_debug("ISO9660 Volume Descriptor Set Terminator found\n");
break;
default:
udf_debug("ISO9660 VRS (%u) found\n", vsd->structType);
break;
}
} else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN))
; /* ret = 0 */
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN))
ret = 1;
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN))
ret = 1;
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN))
; /* ret = 0 */
else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN))
; /* ret = 0 */
else {
/* TEA01 or invalid id : end of volume recognition area */
ret = -1;
}
return ret;
}
/*
* Check Volume Structure Descriptors (ECMA 167 2/9.1)
* We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1)
* @return 1 if NSR02 or NSR03 found,
* -1 if first sector read error, 0 otherwise
*/
static int udf_check_vsd(struct super_block *sb)
{
struct volStructDesc *vsd = NULL;
loff_t sector = VSD_FIRST_SECTOR_OFFSET;
int sectorsize;
struct buffer_head *bh = NULL;
int nsr = 0;
struct udf_sb_info *sbi;
sbi = UDF_SB(sb);
if (sb->s_blocksize < sizeof(struct volStructDesc))
sectorsize = sizeof(struct volStructDesc);
else
sectorsize = sb->s_blocksize;
sector += (((loff_t)sbi->s_session) << sb->s_blocksize_bits);
udf_debug("Starting at sector %u (%lu byte sectors)\n",
(unsigned int)(sector >> sb->s_blocksize_bits),
sb->s_blocksize);
/* Process the sequence (if applicable). The hard limit on the sector
* offset is arbitrary, hopefully large enough so that all valid UDF
* filesystems will be recognised. There is no mention of an upper
* bound to the size of the volume recognition area in the standard.
* The limit will prevent the code to read all the sectors of a
* specially crafted image (like a bluray disc full of CD001 sectors),
* potentially causing minutes or even hours of uninterruptible I/O
* activity. This actually happened with uninitialised SSD partitions
* (all 0xFF) before the check for the limit and all valid IDs were
* added */
for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) {
/* Read a block */
bh = udf_tread(sb, sector >> sb->s_blocksize_bits);
if (!bh)
break;
vsd = (struct volStructDesc *)(bh->b_data +
(sector & (sb->s_blocksize - 1)));
nsr = identify_vsd(vsd);
/* Found NSR or end? */
if (nsr) {
brelse(bh);
break;
}
/*
* Special handling for improperly formatted VRS (e.g., Win10)
* where components are separated by 2048 bytes even though
* sectors are 4K
*/
if (sb->s_blocksize == 4096) {
nsr = identify_vsd(vsd + 1);
/* Ignore unknown IDs... */
if (nsr < 0)
nsr = 0;
}
brelse(bh);
}
if (nsr > 0)
return 1;
else if (!bh && sector - (sbi->s_session << sb->s_blocksize_bits) ==
VSD_FIRST_SECTOR_OFFSET)
return -1;
else
return 0;
}
static int udf_verify_domain_identifier(struct super_block *sb,
struct regid *ident, char *dname)
{
struct domainIdentSuffix *suffix;
if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) {
udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname);
goto force_ro;
}
if (ident->flags & ENTITYID_FLAGS_DIRTY) {
udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n",
dname);
goto force_ro;
}
suffix = (struct domainIdentSuffix *)ident->identSuffix;
if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) ||
(suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) {
if (!sb_rdonly(sb)) {
udf_warn(sb, "Descriptor for %s marked write protected."
" Forcing read only mount.\n", dname);
}
goto force_ro;
}
return 0;
force_ro:
if (!sb_rdonly(sb))
return -EACCES;
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
return 0;
}
static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset,
struct kernel_lb_addr *root)
{
int ret;
ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set");
if (ret < 0)
return ret;
*root = lelb_to_cpu(fset->rootDirectoryICB.extLocation);
UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum);
udf_debug("Rootdir at block=%u, partition=%u\n",
root->logicalBlockNum, root->partitionReferenceNum);
return 0;
}
static int udf_find_fileset(struct super_block *sb,
struct kernel_lb_addr *fileset,
struct kernel_lb_addr *root)
{
struct buffer_head *bh = NULL;
uint16_t ident;
int ret;
if (fileset->logicalBlockNum == 0xFFFFFFFF &&
fileset->partitionReferenceNum == 0xFFFF)
return -EINVAL;
bh = udf_read_ptagged(sb, fileset, 0, &ident);
if (!bh)
return -EIO;
if (ident != TAG_IDENT_FSD) {
brelse(bh);
return -EINVAL;
}
udf_debug("Fileset at block=%u, partition=%u\n",
fileset->logicalBlockNum, fileset->partitionReferenceNum);
UDF_SB(sb)->s_partition = fileset->partitionReferenceNum;
ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root);
brelse(bh);
return ret;
}
/*
* Load primary Volume Descriptor Sequence
*
* Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence
* should be tried.
*/
static int udf_load_pvoldesc(struct super_block *sb, sector_t block)
{
struct primaryVolDesc *pvoldesc;
uint8_t *outstr;
struct buffer_head *bh;
uint16_t ident;
int ret = -ENOMEM;
struct timestamp *ts;
outstr = kmalloc(128, GFP_NOFS);
if (!outstr)
return -ENOMEM;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh) {
ret = -EAGAIN;
goto out2;
}
if (ident != TAG_IDENT_PVD) {
ret = -EIO;
goto out_bh;
}
pvoldesc = (struct primaryVolDesc *)bh->b_data;
udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time,
pvoldesc->recordingDateAndTime);
ts = &pvoldesc->recordingDateAndTime;
udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n",
le16_to_cpu(ts->year), ts->month, ts->day, ts->hour,
ts->minute, le16_to_cpu(ts->typeAndTimezone));
ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32);
if (ret < 0) {
strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName");
pr_warn("incorrect volume identification, setting to "
"'InvalidName'\n");
} else {
strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret);
}
udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident);
ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128);
if (ret < 0) {
ret = 0;
goto out_bh;
}
outstr[ret] = 0;
udf_debug("volSetIdent[] = '%s'\n", outstr);
ret = 0;
out_bh:
brelse(bh);
out2:
kfree(outstr);
return ret;
}
struct inode *udf_find_metadata_inode_efe(struct super_block *sb,
u32 meta_file_loc, u32 partition_ref)
{
struct kernel_lb_addr addr;
struct inode *metadata_fe;
addr.logicalBlockNum = meta_file_loc;
addr.partitionReferenceNum = partition_ref;
metadata_fe = udf_iget_special(sb, &addr);
if (IS_ERR(metadata_fe)) {
udf_warn(sb, "metadata inode efe not found\n");
return metadata_fe;
}
if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) {
udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n");
iput(metadata_fe);
return ERR_PTR(-EIO);
}
return metadata_fe;
}
static int udf_load_metadata_files(struct super_block *sb, int partition,
int type1_index)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map;
struct udf_meta_data *mdata;
struct kernel_lb_addr addr;
struct inode *fe;
map = &sbi->s_partmaps[partition];
mdata = &map->s_type_specific.s_metadata;
mdata->s_phys_partition_ref = type1_index;
/* metadata address */
udf_debug("Metadata file location: block = %u part = %u\n",
mdata->s_meta_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc,
mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
/* mirror file entry */
udf_debug("Mirror metadata file location: block = %u part = %u\n",
mdata->s_mirror_file_loc, mdata->s_phys_partition_ref);
fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc,
mdata->s_phys_partition_ref);
if (IS_ERR(fe)) {
udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n");
return PTR_ERR(fe);
}
mdata->s_mirror_fe = fe;
} else
mdata->s_metadata_fe = fe;
/*
* bitmap file entry
* Note:
* Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102)
*/
if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) {
addr.logicalBlockNum = mdata->s_bitmap_file_loc;
addr.partitionReferenceNum = mdata->s_phys_partition_ref;
udf_debug("Bitmap file location: block = %u part = %u\n",
addr.logicalBlockNum, addr.partitionReferenceNum);
fe = udf_iget_special(sb, &addr);
if (IS_ERR(fe)) {
if (sb_rdonly(sb))
udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n");
else {
udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n");
return PTR_ERR(fe);
}
} else
mdata->s_bitmap_fe = fe;
}
udf_debug("udf_load_metadata_files Ok\n");
return 0;
}
int udf_compute_nr_groups(struct super_block *sb, u32 partition)
{
struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
return DIV_ROUND_UP(map->s_partition_len +
(sizeof(struct spaceBitmapDesc) << 3),
sb->s_blocksize * 8);
}
static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index)
{
struct udf_bitmap *bitmap;
int nr_groups;
int size;
nr_groups = udf_compute_nr_groups(sb, index);
size = sizeof(struct udf_bitmap) +
(sizeof(struct buffer_head *) * nr_groups);
if (size <= PAGE_SIZE)
bitmap = kzalloc(size, GFP_KERNEL);
else
bitmap = vzalloc(size); /* TODO: get rid of vzalloc */
if (!bitmap)
return NULL;
bitmap->s_nr_groups = nr_groups;
return bitmap;
}
static int check_partition_desc(struct super_block *sb,
struct partitionDesc *p,
struct udf_part_map *map)
{
bool umap, utable, fmap, ftable;
struct partitionHeaderDesc *phd;
switch (le32_to_cpu(p->accessType)) {
case PD_ACCESS_TYPE_READ_ONLY:
case PD_ACCESS_TYPE_WRITE_ONCE:
case PD_ACCESS_TYPE_NONE:
goto force_ro;
}
/* No Partition Header Descriptor? */
if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) &&
strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03))
goto force_ro;
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
utable = phd->unallocSpaceTable.extLength;
umap = phd->unallocSpaceBitmap.extLength;
ftable = phd->freedSpaceTable.extLength;
fmap = phd->freedSpaceBitmap.extLength;
/* No allocation info? */
if (!utable && !umap && !ftable && !fmap)
goto force_ro;
/* We don't support blocks that require erasing before overwrite */
if (ftable || fmap)
goto force_ro;
/* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */
if (utable && umap)
goto force_ro;
if (map->s_partition_type == UDF_VIRTUAL_MAP15 ||
map->s_partition_type == UDF_VIRTUAL_MAP20 ||
map->s_partition_type == UDF_METADATA_MAP25)
goto force_ro;
return 0;
force_ro:
if (!sb_rdonly(sb))
return -EACCES;
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
return 0;
}
static int udf_fill_partdesc_info(struct super_block *sb,
struct partitionDesc *p, int p_index)
{
struct udf_part_map *map;
struct udf_sb_info *sbi = UDF_SB(sb);
struct partitionHeaderDesc *phd;
int err;
map = &sbi->s_partmaps[p_index];
map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */
map->s_partition_root = le32_to_cpu(p->partitionStartingLocation);
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY))
map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE))
map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE))
map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE;
if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE))
map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE;
udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n",
p_index, map->s_partition_type,
map->s_partition_root, map->s_partition_len);
err = check_partition_desc(sb, p, map);
if (err)
return err;
/*
* Skip loading allocation info it we cannot ever write to the fs.
* This is a correctness thing as we may have decided to force ro mount
* to avoid allocation info we don't support.
*/
if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT))
return 0;
phd = (struct partitionHeaderDesc *)p->partitionContentsUse;
if (phd->unallocSpaceTable.extLength) {
struct kernel_lb_addr loc = {
.logicalBlockNum = le32_to_cpu(
phd->unallocSpaceTable.extPosition),
.partitionReferenceNum = p_index,
};
struct inode *inode;
inode = udf_iget_special(sb, &loc);
if (IS_ERR(inode)) {
udf_debug("cannot load unallocSpaceTable (part %d)\n",
p_index);
return PTR_ERR(inode);
}
map->s_uspace.s_table = inode;
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE;
udf_debug("unallocSpaceTable (part %d) @ %lu\n",
p_index, map->s_uspace.s_table->i_ino);
}
if (phd->unallocSpaceBitmap.extLength) {
struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index);
if (!bitmap)
return -ENOMEM;
map->s_uspace.s_bitmap = bitmap;
bitmap->s_extPosition = le32_to_cpu(
phd->unallocSpaceBitmap.extPosition);
map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP;
udf_debug("unallocSpaceBitmap (part %d) @ %u\n",
p_index, bitmap->s_extPosition);
}
return 0;
}
static void udf_find_vat_block(struct super_block *sb, int p_index,
int type1_index, sector_t start_block)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map = &sbi->s_partmaps[p_index];
sector_t vat_block;
struct kernel_lb_addr ino;
struct inode *inode;
/*
* VAT file entry is in the last recorded block. Some broken disks have
* it a few blocks before so try a bit harder...
*/
ino.partitionReferenceNum = type1_index;
for (vat_block = start_block;
vat_block >= map->s_partition_root &&
vat_block >= start_block - 3; vat_block--) {
ino.logicalBlockNum = vat_block - map->s_partition_root;
inode = udf_iget_special(sb, &ino);
if (!IS_ERR(inode)) {
sbi->s_vat_inode = inode;
break;
}
}
}
static int udf_load_vat(struct super_block *sb, int p_index, int type1_index)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map = &sbi->s_partmaps[p_index];
struct buffer_head *bh = NULL;
struct udf_inode_info *vati;
uint32_t pos;
struct virtualAllocationTable20 *vat20;
sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits;
udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block);
if (!sbi->s_vat_inode &&
sbi->s_last_block != blocks - 1) {
pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n",
(unsigned long)sbi->s_last_block,
(unsigned long)blocks - 1);
udf_find_vat_block(sb, p_index, type1_index, blocks - 1);
}
if (!sbi->s_vat_inode)
return -EIO;
if (map->s_partition_type == UDF_VIRTUAL_MAP15) {
map->s_type_specific.s_virtual.s_start_offset = 0;
map->s_type_specific.s_virtual.s_num_entries =
(sbi->s_vat_inode->i_size - 36) >> 2;
} else if (map->s_partition_type == UDF_VIRTUAL_MAP20) {
vati = UDF_I(sbi->s_vat_inode);
if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
pos = udf_block_map(sbi->s_vat_inode, 0);
bh = sb_bread(sb, pos);
if (!bh)
return -EIO;
vat20 = (struct virtualAllocationTable20 *)bh->b_data;
} else {
vat20 = (struct virtualAllocationTable20 *)
vati->i_ext.i_data;
}
map->s_type_specific.s_virtual.s_start_offset =
le16_to_cpu(vat20->lengthHeader);
map->s_type_specific.s_virtual.s_num_entries =
(sbi->s_vat_inode->i_size -
map->s_type_specific.s_virtual.
s_start_offset) >> 2;
brelse(bh);
}
return 0;
}
/*
* Load partition descriptor block
*
* Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor
* sequence.
*/
static int udf_load_partdesc(struct super_block *sb, sector_t block)
{
struct buffer_head *bh;
struct partitionDesc *p;
struct udf_part_map *map;
struct udf_sb_info *sbi = UDF_SB(sb);
int i, type1_idx;
uint16_t partitionNumber;
uint16_t ident;
int ret;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
if (ident != TAG_IDENT_PD) {
ret = 0;
goto out_bh;
}
p = (struct partitionDesc *)bh->b_data;
partitionNumber = le16_to_cpu(p->partitionNumber);
/* First scan for TYPE1 and SPARABLE partitions */
for (i = 0; i < sbi->s_partitions; i++) {
map = &sbi->s_partmaps[i];
udf_debug("Searching map: (%u == %u)\n",
map->s_partition_num, partitionNumber);
if (map->s_partition_num == partitionNumber &&
(map->s_partition_type == UDF_TYPE1_MAP15 ||
map->s_partition_type == UDF_SPARABLE_MAP15))
break;
}
if (i >= sbi->s_partitions) {
udf_debug("Partition (%u) not found in partition map\n",
partitionNumber);
ret = 0;
goto out_bh;
}
ret = udf_fill_partdesc_info(sb, p, i);
if (ret < 0)
goto out_bh;
/*
* Now rescan for VIRTUAL or METADATA partitions when SPARABLE and
* PHYSICAL partitions are already set up
*/
type1_idx = i;
map = NULL; /* supress 'maybe used uninitialized' warning */
for (i = 0; i < sbi->s_partitions; i++) {
map = &sbi->s_partmaps[i];
if (map->s_partition_num == partitionNumber &&
(map->s_partition_type == UDF_VIRTUAL_MAP15 ||
map->s_partition_type == UDF_VIRTUAL_MAP20 ||
map->s_partition_type == UDF_METADATA_MAP25))
break;
}
if (i >= sbi->s_partitions) {
ret = 0;
goto out_bh;
}
ret = udf_fill_partdesc_info(sb, p, i);
if (ret < 0)
goto out_bh;
if (map->s_partition_type == UDF_METADATA_MAP25) {
ret = udf_load_metadata_files(sb, i, type1_idx);
if (ret < 0) {
udf_err(sb, "error loading MetaData partition map %d\n",
i);
goto out_bh;
}
} else {
/*
* If we have a partition with virtual map, we don't handle
* writing to it (we overwrite blocks instead of relocating
* them).
*/
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto out_bh;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
ret = udf_load_vat(sb, i, type1_idx);
if (ret < 0)
goto out_bh;
}
ret = 0;
out_bh:
/* In case loading failed, we handle cleanup in udf_fill_super */
brelse(bh);
return ret;
}
static int udf_load_sparable_map(struct super_block *sb,
struct udf_part_map *map,
struct sparablePartitionMap *spm)
{
uint32_t loc;
uint16_t ident;
struct sparingTable *st;
struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing;
int i;
struct buffer_head *bh;
map->s_partition_type = UDF_SPARABLE_MAP15;
sdata->s_packet_len = le16_to_cpu(spm->packetLength);
if (!is_power_of_2(sdata->s_packet_len)) {
udf_err(sb, "error loading logical volume descriptor: "
"Invalid packet length %u\n",
(unsigned)sdata->s_packet_len);
return -EIO;
}
if (spm->numSparingTables > 4) {
udf_err(sb, "error loading logical volume descriptor: "
"Too many sparing tables (%d)\n",
(int)spm->numSparingTables);
return -EIO;
}
for (i = 0; i < spm->numSparingTables; i++) {
loc = le32_to_cpu(spm->locSparingTable[i]);
bh = udf_read_tagged(sb, loc, loc, &ident);
if (!bh)
continue;
st = (struct sparingTable *)bh->b_data;
if (ident != 0 ||
strncmp(st->sparingIdent.ident, UDF_ID_SPARING,
strlen(UDF_ID_SPARING)) ||
sizeof(*st) + le16_to_cpu(st->reallocationTableLen) >
sb->s_blocksize) {
brelse(bh);
continue;
}
sdata->s_spar_map[i] = bh;
}
map->s_partition_func = udf_get_pblock_spar15;
return 0;
}
static int udf_load_logicalvol(struct super_block *sb, sector_t block,
struct kernel_lb_addr *fileset)
{
struct logicalVolDesc *lvd;
int i, offset;
uint8_t type;
struct udf_sb_info *sbi = UDF_SB(sb);
struct genericPartitionMap *gpm;
uint16_t ident;
struct buffer_head *bh;
unsigned int table_len;
int ret;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
BUG_ON(ident != TAG_IDENT_LVD);
lvd = (struct logicalVolDesc *)bh->b_data;
table_len = le32_to_cpu(lvd->mapTableLength);
if (table_len > sb->s_blocksize - sizeof(*lvd)) {
udf_err(sb, "error loading logical volume descriptor: "
"Partition table too long (%u > %lu)\n", table_len,
sb->s_blocksize - sizeof(*lvd));
ret = -EIO;
goto out_bh;
}
ret = udf_verify_domain_identifier(sb, &lvd->domainIdent,
"logical volume");
if (ret)
goto out_bh;
ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps));
if (ret)
goto out_bh;
for (i = 0, offset = 0;
i < sbi->s_partitions && offset < table_len;
i++, offset += gpm->partitionMapLength) {
struct udf_part_map *map = &sbi->s_partmaps[i];
gpm = (struct genericPartitionMap *)
&(lvd->partitionMaps[offset]);
type = gpm->partitionMapType;
if (type == 1) {
struct genericPartitionMap1 *gpm1 =
(struct genericPartitionMap1 *)gpm;
map->s_partition_type = UDF_TYPE1_MAP15;
map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum);
map->s_partition_num = le16_to_cpu(gpm1->partitionNum);
map->s_partition_func = NULL;
} else if (type == 2) {
struct udfPartitionMap2 *upm2 =
(struct udfPartitionMap2 *)gpm;
if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL,
strlen(UDF_ID_VIRTUAL))) {
u16 suf =
le16_to_cpu(((__le16 *)upm2->partIdent.
identSuffix)[0]);
if (suf < 0x0200) {
map->s_partition_type =
UDF_VIRTUAL_MAP15;
map->s_partition_func =
udf_get_pblock_virt15;
} else {
map->s_partition_type =
UDF_VIRTUAL_MAP20;
map->s_partition_func =
udf_get_pblock_virt20;
}
} else if (!strncmp(upm2->partIdent.ident,
UDF_ID_SPARABLE,
strlen(UDF_ID_SPARABLE))) {
ret = udf_load_sparable_map(sb, map,
(struct sparablePartitionMap *)gpm);
if (ret < 0)
goto out_bh;
} else if (!strncmp(upm2->partIdent.ident,
UDF_ID_METADATA,
strlen(UDF_ID_METADATA))) {
struct udf_meta_data *mdata =
&map->s_type_specific.s_metadata;
struct metadataPartitionMap *mdm =
(struct metadataPartitionMap *)
&(lvd->partitionMaps[offset]);
udf_debug("Parsing Logical vol part %d type %u id=%s\n",
i, type, UDF_ID_METADATA);
map->s_partition_type = UDF_METADATA_MAP25;
map->s_partition_func = udf_get_pblock_meta25;
mdata->s_meta_file_loc =
le32_to_cpu(mdm->metadataFileLoc);
mdata->s_mirror_file_loc =
le32_to_cpu(mdm->metadataMirrorFileLoc);
mdata->s_bitmap_file_loc =
le32_to_cpu(mdm->metadataBitmapFileLoc);
mdata->s_alloc_unit_size =
le32_to_cpu(mdm->allocUnitSize);
mdata->s_align_unit_size =
le16_to_cpu(mdm->alignUnitSize);
if (mdm->flags & 0x01)
mdata->s_flags |= MF_DUPLICATE_MD;
udf_debug("Metadata Ident suffix=0x%x\n",
le16_to_cpu(*(__le16 *)
mdm->partIdent.identSuffix));
udf_debug("Metadata part num=%u\n",
le16_to_cpu(mdm->partitionNum));
udf_debug("Metadata part alloc unit size=%u\n",
le32_to_cpu(mdm->allocUnitSize));
udf_debug("Metadata file loc=%u\n",
le32_to_cpu(mdm->metadataFileLoc));
udf_debug("Mirror file loc=%u\n",
le32_to_cpu(mdm->metadataMirrorFileLoc));
udf_debug("Bitmap file loc=%u\n",
le32_to_cpu(mdm->metadataBitmapFileLoc));
udf_debug("Flags: %d %u\n",
mdata->s_flags, mdm->flags);
} else {
udf_debug("Unknown ident: %s\n",
upm2->partIdent.ident);
continue;
}
map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum);
map->s_partition_num = le16_to_cpu(upm2->partitionNum);
}
udf_debug("Partition (%d:%u) type %u on volume %u\n",
i, map->s_partition_num, type, map->s_volumeseqnum);
}
if (fileset) {
struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]);
*fileset = lelb_to_cpu(la->extLocation);
udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n",
fileset->logicalBlockNum,
fileset->partitionReferenceNum);
}
if (lvd->integritySeqExt.extLength)
udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt));
ret = 0;
if (!sbi->s_lvid_bh) {
/* We can't generate unique IDs without a valid LVID */
if (sb_rdonly(sb)) {
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
} else {
udf_warn(sb, "Damaged or missing LVID, forcing "
"readonly mount\n");
ret = -EACCES;
}
}
out_bh:
brelse(bh);
return ret;
}
/*
* Find the prevailing Logical Volume Integrity Descriptor.
*/
static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc)
{
struct buffer_head *bh, *final_bh;
uint16_t ident;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDesc *lvid;
int indirections = 0;
while (++indirections <= UDF_MAX_LVID_NESTING) {
final_bh = NULL;
while (loc.extLength > 0 &&
(bh = udf_read_tagged(sb, loc.extLocation,
loc.extLocation, &ident))) {
if (ident != TAG_IDENT_LVID) {
brelse(bh);
break;
}
brelse(final_bh);
final_bh = bh;
loc.extLength -= sb->s_blocksize;
loc.extLocation++;
}
if (!final_bh)
return;
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = final_bh;
lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data;
if (lvid->nextIntegrityExt.extLength == 0)
return;
loc = leea_to_cpu(lvid->nextIntegrityExt);
}
udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n",
UDF_MAX_LVID_NESTING);
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = NULL;
}
/*
* Step for reallocation of table of partition descriptor sequence numbers.
* Must be power of 2.
*/
#define PART_DESC_ALLOC_STEP 32
struct part_desc_seq_scan_data {
struct udf_vds_record rec;
u32 partnum;
};
struct desc_seq_scan_data {
struct udf_vds_record vds[VDS_POS_LENGTH];
unsigned int size_part_descs;
unsigned int num_part_descs;
struct part_desc_seq_scan_data *part_descs_loc;
};
static struct udf_vds_record *handle_partition_descriptor(
struct buffer_head *bh,
struct desc_seq_scan_data *data)
{
struct partitionDesc *desc = (struct partitionDesc *)bh->b_data;
int partnum;
int i;
partnum = le16_to_cpu(desc->partitionNumber);
for (i = 0; i < data->num_part_descs; i++)
if (partnum == data->part_descs_loc[i].partnum)
return &(data->part_descs_loc[i].rec);
if (data->num_part_descs >= data->size_part_descs) {
struct part_desc_seq_scan_data *new_loc;
unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP);
new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL);
if (!new_loc)
return ERR_PTR(-ENOMEM);
memcpy(new_loc, data->part_descs_loc,
data->size_part_descs * sizeof(*new_loc));
kfree(data->part_descs_loc);
data->part_descs_loc = new_loc;
data->size_part_descs = new_size;
}
return &(data->part_descs_loc[data->num_part_descs++].rec);
}
static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident,
struct buffer_head *bh, struct desc_seq_scan_data *data)
{
switch (ident) {
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]);
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]);
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]);
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]);
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
return handle_partition_descriptor(bh, data);
}
return NULL;
}
/*
* Process a main/reserve volume descriptor sequence.
* @block First block of first extent of the sequence.
* @lastblock Lastblock of first extent of the sequence.
* @fileset There we store extent containing root fileset
*
* Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor
* sequence
*/
static noinline int udf_process_sequence(
struct super_block *sb,
sector_t block, sector_t lastblock,
struct kernel_lb_addr *fileset)
{
struct buffer_head *bh = NULL;
struct udf_vds_record *curr;
struct generic_desc *gd;
struct volDescPtr *vdp;
bool done = false;
uint32_t vdsn;
uint16_t ident;
int ret;
unsigned int indirections = 0;
struct desc_seq_scan_data data;
unsigned int i;
memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH);
data.size_part_descs = PART_DESC_ALLOC_STEP;
data.num_part_descs = 0;
data.part_descs_loc = kcalloc(data.size_part_descs,
sizeof(*data.part_descs_loc),
GFP_KERNEL);
if (!data.part_descs_loc)
return -ENOMEM;
/*
* Read the main descriptor sequence and find which descriptors
* are in it.
*/
for (; (!done && block <= lastblock); block++) {
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
break;
/* Process each descriptor (ISO 13346 3/8.3-8.4) */
gd = (struct generic_desc *)bh->b_data;
vdsn = le32_to_cpu(gd->volDescSeqNum);
switch (ident) {
case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */
if (++indirections > UDF_MAX_TD_NESTING) {
udf_err(sb, "too many Volume Descriptor "
"Pointers (max %u supported)\n",
UDF_MAX_TD_NESTING);
brelse(bh);
return -EIO;
}
vdp = (struct volDescPtr *)bh->b_data;
block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation);
lastblock = le32_to_cpu(
vdp->nextVolDescSeqExt.extLength) >>
sb->s_blocksize_bits;
lastblock += block - 1;
/* For loop is going to increment 'block' again */
block--;
break;
case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */
case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */
case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */
case TAG_IDENT_USD: /* ISO 13346 3/10.8 */
case TAG_IDENT_PD: /* ISO 13346 3/10.5 */
curr = get_volume_descriptor_record(ident, bh, &data);
if (IS_ERR(curr)) {
brelse(bh);
return PTR_ERR(curr);
}
/* Descriptor we don't care about? */
if (!curr)
break;
if (vdsn >= curr->volDescSeqNum) {
curr->volDescSeqNum = vdsn;
curr->block = block;
}
break;
case TAG_IDENT_TD: /* ISO 13346 3/10.9 */
done = true;
break;
}
brelse(bh);
}
/*
* Now read interesting descriptors again and process them
* in a suitable order
*/
if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) {
udf_err(sb, "Primary Volume Descriptor not found!\n");
return -EAGAIN;
}
ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block);
if (ret < 0)
return ret;
if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) {
ret = udf_load_logicalvol(sb,
data.vds[VDS_POS_LOGICAL_VOL_DESC].block,
fileset);
if (ret < 0)
return ret;
}
/* Now handle prevailing Partition Descriptors */
for (i = 0; i < data.num_part_descs; i++) {
ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block);
if (ret < 0)
return ret;
}
return 0;
}
/*
* Load Volume Descriptor Sequence described by anchor in bh
*
* Returns <0 on error, 0 on success
*/
static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh,
struct kernel_lb_addr *fileset)
{
struct anchorVolDescPtr *anchor;
sector_t main_s, main_e, reserve_s, reserve_e;
int ret;
anchor = (struct anchorVolDescPtr *)bh->b_data;
/* Locate the main sequence */
main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation);
main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength);
main_e = main_e >> sb->s_blocksize_bits;
main_e += main_s - 1;
/* Locate the reserve sequence */
reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation);
reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength);
reserve_e = reserve_e >> sb->s_blocksize_bits;
reserve_e += reserve_s - 1;
/* Process the main & reserve sequences */
/* responsible for finding the PartitionDesc(s) */
ret = udf_process_sequence(sb, main_s, main_e, fileset);
if (ret != -EAGAIN)
return ret;
udf_sb_free_partitions(sb);
ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset);
if (ret < 0) {
udf_sb_free_partitions(sb);
/* No sequence was OK, return -EIO */
if (ret == -EAGAIN)
ret = -EIO;
}
return ret;
}
/*
* Check whether there is an anchor block in the given block and
* load Volume Descriptor Sequence if so.
*
* Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor
* block
*/
static int udf_check_anchor_block(struct super_block *sb, sector_t block,
struct kernel_lb_addr *fileset)
{
struct buffer_head *bh;
uint16_t ident;
int ret;
if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) &&
udf_fixed_to_variable(block) >=
i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits)
return -EAGAIN;
bh = udf_read_tagged(sb, block, block, &ident);
if (!bh)
return -EAGAIN;
if (ident != TAG_IDENT_AVDP) {
brelse(bh);
return -EAGAIN;
}
ret = udf_load_sequence(sb, bh, fileset);
brelse(bh);
return ret;
}
/*
* Search for an anchor volume descriptor pointer.
*
* Returns < 0 on error, 0 on success. -EAGAIN is special - try next set
* of anchors.
*/
static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock,
struct kernel_lb_addr *fileset)
{
sector_t last[6];
int i;
struct udf_sb_info *sbi = UDF_SB(sb);
int last_count = 0;
int ret;
/* First try user provided anchor */
if (sbi->s_anchor) {
ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset);
if (ret != -EAGAIN)
return ret;
}
/*
* according to spec, anchor is in either:
* block 256
* lastblock-256
* lastblock
* however, if the disc isn't closed, it could be 512.
*/
ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset);
if (ret != -EAGAIN)
return ret;
/*
* The trouble is which block is the last one. Drives often misreport
* this so we try various possibilities.
*/
last[last_count++] = *lastblock;
if (*lastblock >= 1)
last[last_count++] = *lastblock - 1;
last[last_count++] = *lastblock + 1;
if (*lastblock >= 2)
last[last_count++] = *lastblock - 2;
if (*lastblock >= 150)
last[last_count++] = *lastblock - 150;
if (*lastblock >= 152)
last[last_count++] = *lastblock - 152;
for (i = 0; i < last_count; i++) {
if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >>
sb->s_blocksize_bits)
continue;
ret = udf_check_anchor_block(sb, last[i], fileset);
if (ret != -EAGAIN) {
if (!ret)
*lastblock = last[i];
return ret;
}
if (last[i] < 256)
continue;
ret = udf_check_anchor_block(sb, last[i] - 256, fileset);
if (ret != -EAGAIN) {
if (!ret)
*lastblock = last[i];
return ret;
}
}
/* Finally try block 512 in case media is open */
return udf_check_anchor_block(sb, sbi->s_session + 512, fileset);
}
/*
* Find an anchor volume descriptor and load Volume Descriptor Sequence from
* area specified by it. The function expects sbi->s_lastblock to be the last
* block on the media.
*
* Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor
* was not found.
*/
static int udf_find_anchor(struct super_block *sb,
struct kernel_lb_addr *fileset)
{
struct udf_sb_info *sbi = UDF_SB(sb);
sector_t lastblock = sbi->s_last_block;
int ret;
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret != -EAGAIN)
goto out;
/* No anchor found? Try VARCONV conversion of block numbers */
UDF_SET_FLAG(sb, UDF_FLAG_VARCONV);
lastblock = udf_variable_to_fixed(sbi->s_last_block);
/* Firstly, we try to not convert number of the last block */
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret != -EAGAIN)
goto out;
lastblock = sbi->s_last_block;
/* Secondly, we try with converted number of the last block */
ret = udf_scan_anchors(sb, &lastblock, fileset);
if (ret < 0) {
/* VARCONV didn't help. Clear it. */
UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV);
}
out:
if (ret == 0)
sbi->s_last_block = lastblock;
return ret;
}
/*
* Check Volume Structure Descriptor, find Anchor block and load Volume
* Descriptor Sequence.
*
* Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor
* block was not found.
*/
static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt,
int silent, struct kernel_lb_addr *fileset)
{
struct udf_sb_info *sbi = UDF_SB(sb);
int nsr = 0;
int ret;
if (!sb_set_blocksize(sb, uopt->blocksize)) {
if (!silent)
udf_warn(sb, "Bad block size\n");
return -EINVAL;
}
sbi->s_last_block = uopt->lastblock;
if (!uopt->novrs) {
/* Check that it is NSR02 compliant */
nsr = udf_check_vsd(sb);
if (!nsr) {
if (!silent)
udf_warn(sb, "No VRS found\n");
return -EINVAL;
}
if (nsr == -1)
udf_debug("Failed to read sector at offset %d. "
"Assuming open disc. Skipping validity "
"check\n", VSD_FIRST_SECTOR_OFFSET);
if (!sbi->s_last_block)
sbi->s_last_block = udf_get_last_block(sb);
} else {
udf_debug("Validity check skipped because of novrs option\n");
}
/* Look for anchor block and load Volume Descriptor Sequence */
sbi->s_anchor = uopt->anchor;
ret = udf_find_anchor(sb, fileset);
if (ret < 0) {
if (!silent && ret == -EAGAIN)
udf_warn(sb, "No anchor found\n");
return ret;
}
return 0;
}
static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid)
{
struct timespec64 ts;
ktime_get_real_ts64(&ts);
udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts);
lvid->descTag.descCRC = cpu_to_le16(
crc_itu_t(0, (char *)lvid + sizeof(struct tag),
le16_to_cpu(lvid->descTag.descCRCLength)));
lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag);
}
static void udf_open_lvid(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
struct logicalVolIntegrityDescImpUse *lvidiu;
if (!bh)
return;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvidiu = udf_sb_lvidiu(sb);
if (!lvidiu)
return;
mutex_lock(&sbi->s_alloc_mutex);
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE)
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN);
else
UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT);
udf_finalize_lvid(lvid);
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
mutex_unlock(&sbi->s_alloc_mutex);
/* Make opening of filesystem visible on the media immediately */
sync_dirty_buffer(bh);
}
static void udf_close_lvid(struct super_block *sb)
{
struct udf_sb_info *sbi = UDF_SB(sb);
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
struct logicalVolIntegrityDescImpUse *lvidiu;
if (!bh)
return;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvidiu = udf_sb_lvidiu(sb);
if (!lvidiu)
return;
mutex_lock(&sbi->s_alloc_mutex);
lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev))
lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION);
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev))
lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev);
if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev))
lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev);
if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT))
lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE);
/*
* We set buffer uptodate unconditionally here to avoid spurious
* warnings from mark_buffer_dirty() when previous EIO has marked
* the buffer as !uptodate
*/
set_buffer_uptodate(bh);
udf_finalize_lvid(lvid);
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
mutex_unlock(&sbi->s_alloc_mutex);
/* Make closing of filesystem visible on the media immediately */
sync_dirty_buffer(bh);
}
u64 lvid_get_unique_id(struct super_block *sb)
{
struct buffer_head *bh;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDesc *lvid;
struct logicalVolHeaderDesc *lvhd;
u64 uniqueID;
u64 ret;
bh = sbi->s_lvid_bh;
if (!bh)
return 0;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse;
mutex_lock(&sbi->s_alloc_mutex);
ret = uniqueID = le64_to_cpu(lvhd->uniqueID);
if (!(++uniqueID & 0xFFFFFFFF))
uniqueID += 16;
lvhd->uniqueID = cpu_to_le64(uniqueID);
udf_updated_lvid(sb);
mutex_unlock(&sbi->s_alloc_mutex);
return ret;
}
static int udf_fill_super(struct super_block *sb, void *options, int silent)
{
int ret = -EINVAL;
struct inode *inode = NULL;
struct udf_options uopt;
struct kernel_lb_addr rootdir, fileset;
struct udf_sb_info *sbi;
bool lvid_open = false;
uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT);
/* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */
uopt.uid = make_kuid(current_user_ns(), overflowuid);
uopt.gid = make_kgid(current_user_ns(), overflowgid);
uopt.umask = 0;
uopt.fmode = UDF_INVALID_MODE;
uopt.dmode = UDF_INVALID_MODE;
uopt.nls_map = NULL;
sbi = kzalloc(sizeof(*sbi), GFP_KERNEL);
if (!sbi)
return -ENOMEM;
sb->s_fs_info = sbi;
mutex_init(&sbi->s_alloc_mutex);
if (!udf_parse_options((char *)options, &uopt, false))
goto parse_options_failure;
if (uopt.flags & (1 << UDF_FLAG_UTF8) &&
uopt.flags & (1 << UDF_FLAG_NLS_MAP)) {
udf_err(sb, "utf8 cannot be combined with iocharset\n");
goto parse_options_failure;
}
if ((uopt.flags & (1 << UDF_FLAG_NLS_MAP)) && !uopt.nls_map) {
uopt.nls_map = load_nls_default();
if (!uopt.nls_map)
uopt.flags &= ~(1 << UDF_FLAG_NLS_MAP);
else
udf_debug("Using default NLS map\n");
}
if (!(uopt.flags & (1 << UDF_FLAG_NLS_MAP)))
uopt.flags |= (1 << UDF_FLAG_UTF8);
fileset.logicalBlockNum = 0xFFFFFFFF;
fileset.partitionReferenceNum = 0xFFFF;
sbi->s_flags = uopt.flags;
sbi->s_uid = uopt.uid;
sbi->s_gid = uopt.gid;
sbi->s_umask = uopt.umask;
sbi->s_fmode = uopt.fmode;
sbi->s_dmode = uopt.dmode;
sbi->s_nls_map = uopt.nls_map;
rwlock_init(&sbi->s_cred_lock);
if (uopt.session == 0xFFFFFFFF)
sbi->s_session = udf_get_last_session(sb);
else
sbi->s_session = uopt.session;
udf_debug("Multi-session=%d\n", sbi->s_session);
/* Fill in the rest of the superblock */
sb->s_op = &udf_sb_ops;
sb->s_export_op = &udf_export_ops;
sb->s_magic = UDF_SUPER_MAGIC;
sb->s_time_gran = 1000;
if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) {
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
} else {
uopt.blocksize = bdev_logical_block_size(sb->s_bdev);
while (uopt.blocksize <= 4096) {
ret = udf_load_vrs(sb, &uopt, silent, &fileset);
if (ret < 0) {
if (!silent && ret != -EACCES) {
pr_notice("Scanning with blocksize %u failed\n",
uopt.blocksize);
}
brelse(sbi->s_lvid_bh);
sbi->s_lvid_bh = NULL;
/*
* EACCES is special - we want to propagate to
* upper layers that we cannot handle RW mount.
*/
if (ret == -EACCES)
break;
} else
break;
uopt.blocksize <<= 1;
}
}
if (ret < 0) {
if (ret == -EAGAIN) {
udf_warn(sb, "No partition found (1)\n");
ret = -EINVAL;
}
goto error_out;
}
udf_debug("Lastblock=%u\n", sbi->s_last_block);
if (sbi->s_lvid_bh) {
struct logicalVolIntegrityDescImpUse *lvidiu =
udf_sb_lvidiu(sb);
uint16_t minUDFReadRev;
uint16_t minUDFWriteRev;
if (!lvidiu) {
ret = -EINVAL;
goto error_out;
}
minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev);
minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev);
if (minUDFReadRev > UDF_MAX_READ_VERSION) {
udf_err(sb, "minUDFReadRev=%x (max is %x)\n",
minUDFReadRev,
UDF_MAX_READ_VERSION);
ret = -EINVAL;
goto error_out;
} else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) {
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto error_out;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
}
sbi->s_udfrev = minUDFWriteRev;
if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE)
UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE);
if (minUDFReadRev >= UDF_VERS_USE_STREAMS)
UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS);
}
if (!sbi->s_partitions) {
udf_warn(sb, "No partition found (2)\n");
ret = -EINVAL;
goto error_out;
}
if (sbi->s_partmaps[sbi->s_partition].s_partition_flags &
UDF_PART_FLAG_READ_ONLY) {
if (!sb_rdonly(sb)) {
ret = -EACCES;
goto error_out;
}
UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT);
}
ret = udf_find_fileset(sb, &fileset, &rootdir);
if (ret < 0) {
udf_warn(sb, "No fileset found\n");
goto error_out;
}
if (!silent) {
struct timestamp ts;
udf_time_to_disk_stamp(&ts, sbi->s_record_time);
udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n",
sbi->s_volume_ident,
le16_to_cpu(ts.year), ts.month, ts.day,
ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone));
}
if (!sb_rdonly(sb)) {
udf_open_lvid(sb);
lvid_open = true;
}
/* Assign the root inode */
/* assign inodes by physical block number */
/* perhaps it's not extensible enough, but for now ... */
inode = udf_iget(sb, &rootdir);
if (IS_ERR(inode)) {
udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n",
rootdir.logicalBlockNum, rootdir.partitionReferenceNum);
ret = PTR_ERR(inode);
goto error_out;
}
/* Allocate a dentry for the root inode */
sb->s_root = d_make_root(inode);
if (!sb->s_root) {
udf_err(sb, "Couldn't allocate root dentry\n");
ret = -ENOMEM;
goto error_out;
}
sb->s_maxbytes = MAX_LFS_FILESIZE;
sb->s_max_links = UDF_MAX_LINKS;
return 0;
error_out:
iput(sbi->s_vat_inode);
parse_options_failure:
if (uopt.nls_map)
unload_nls(uopt.nls_map);
if (lvid_open)
udf_close_lvid(sb);
brelse(sbi->s_lvid_bh);
udf_sb_free_partitions(sb);
kfree(sbi);
sb->s_fs_info = NULL;
return ret;
}
void _udf_err(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf);
va_end(args);
}
void _udf_warn(struct super_block *sb, const char *function,
const char *fmt, ...)
{
struct va_format vaf;
va_list args;
va_start(args, fmt);
vaf.fmt = fmt;
vaf.va = &args;
pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf);
va_end(args);
}
static void udf_put_super(struct super_block *sb)
{
struct udf_sb_info *sbi;
sbi = UDF_SB(sb);
iput(sbi->s_vat_inode);
if (UDF_QUERY_FLAG(sb, UDF_FLAG_NLS_MAP))
unload_nls(sbi->s_nls_map);
if (!sb_rdonly(sb))
udf_close_lvid(sb);
brelse(sbi->s_lvid_bh);
udf_sb_free_partitions(sb);
mutex_destroy(&sbi->s_alloc_mutex);
kfree(sb->s_fs_info);
sb->s_fs_info = NULL;
}
static int udf_sync_fs(struct super_block *sb, int wait)
{
struct udf_sb_info *sbi = UDF_SB(sb);
mutex_lock(&sbi->s_alloc_mutex);
if (sbi->s_lvid_dirty) {
struct buffer_head *bh = sbi->s_lvid_bh;
struct logicalVolIntegrityDesc *lvid;
lvid = (struct logicalVolIntegrityDesc *)bh->b_data;
udf_finalize_lvid(lvid);
/*
* Blockdevice will be synced later so we don't have to submit
* the buffer for IO
*/
mark_buffer_dirty(bh);
sbi->s_lvid_dirty = 0;
}
mutex_unlock(&sbi->s_alloc_mutex);
return 0;
}
static int udf_statfs(struct dentry *dentry, struct kstatfs *buf)
{
struct super_block *sb = dentry->d_sb;
struct udf_sb_info *sbi = UDF_SB(sb);
struct logicalVolIntegrityDescImpUse *lvidiu;
u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
lvidiu = udf_sb_lvidiu(sb);
buf->f_type = UDF_SUPER_MAGIC;
buf->f_bsize = sb->s_blocksize;
buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len;
buf->f_bfree = udf_count_free(sb);
buf->f_bavail = buf->f_bfree;
/*
* Let's pretend each free block is also a free 'inode' since UDF does
* not have separate preallocated table of inodes.
*/
buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) +
le32_to_cpu(lvidiu->numDirs)) : 0)
+ buf->f_bfree;
buf->f_ffree = buf->f_bfree;
buf->f_namelen = UDF_NAME_LEN;
buf->f_fsid.val[0] = (u32)id;
buf->f_fsid.val[1] = (u32)(id >> 32);
return 0;
}
static unsigned int udf_count_free_bitmap(struct super_block *sb,
struct udf_bitmap *bitmap)
{
struct buffer_head *bh = NULL;
unsigned int accum = 0;
int index;
udf_pblk_t block = 0, newblock;
struct kernel_lb_addr loc;
uint32_t bytes;
uint8_t *ptr;
uint16_t ident;
struct spaceBitmapDesc *bm;
loc.logicalBlockNum = bitmap->s_extPosition;
loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
bh = udf_read_ptagged(sb, &loc, 0, &ident);
if (!bh) {
udf_err(sb, "udf_count_free failed\n");
goto out;
} else if (ident != TAG_IDENT_SBD) {
brelse(bh);
udf_err(sb, "udf_count_free failed\n");
goto out;
}
bm = (struct spaceBitmapDesc *)bh->b_data;
bytes = le32_to_cpu(bm->numOfBytes);
index = sizeof(struct spaceBitmapDesc); /* offset in first block only */
ptr = (uint8_t *)bh->b_data;
while (bytes > 0) {
u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index);
accum += bitmap_weight((const unsigned long *)(ptr + index),
cur_bytes * 8);
bytes -= cur_bytes;
if (bytes) {
brelse(bh);
newblock = udf_get_lb_pblock(sb, &loc, ++block);
bh = udf_tread(sb, newblock);
if (!bh) {
udf_debug("read failed\n");
goto out;
}
index = 0;
ptr = (uint8_t *)bh->b_data;
}
}
brelse(bh);
out:
return accum;
}
static unsigned int udf_count_free_table(struct super_block *sb,
struct inode *table)
{
unsigned int accum = 0;
uint32_t elen;
struct kernel_lb_addr eloc;
int8_t etype;
struct extent_position epos;
mutex_lock(&UDF_SB(sb)->s_alloc_mutex);
epos.block = UDF_I(table)->i_location;
epos.offset = sizeof(struct unallocSpaceEntry);
epos.bh = NULL;
while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1)
accum += (elen >> table->i_sb->s_blocksize_bits);
brelse(epos.bh);
mutex_unlock(&UDF_SB(sb)->s_alloc_mutex);
return accum;
}
static unsigned int udf_count_free(struct super_block *sb)
{
unsigned int accum = 0;
struct udf_sb_info *sbi = UDF_SB(sb);
struct udf_part_map *map;
unsigned int part = sbi->s_partition;
int ptype = sbi->s_partmaps[part].s_partition_type;
if (ptype == UDF_METADATA_MAP25) {
part = sbi->s_partmaps[part].s_type_specific.s_metadata.
s_phys_partition_ref;
} else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) {
/*
* Filesystems with VAT are append-only and we cannot write to
* them. Let's just report 0 here.
*/
return 0;
}
if (sbi->s_lvid_bh) {
struct logicalVolIntegrityDesc *lvid =
(struct logicalVolIntegrityDesc *)
sbi->s_lvid_bh->b_data;
if (le32_to_cpu(lvid->numOfPartitions) > part) {
accum = le32_to_cpu(
lvid->freeSpaceTable[part]);
if (accum == 0xFFFFFFFF)
accum = 0;
}
}
if (accum)
return accum;
map = &sbi->s_partmaps[part];
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
accum += udf_count_free_bitmap(sb,
map->s_uspace.s_bitmap);
}
if (accum)
return accum;
if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
accum += udf_count_free_table(sb,
map->s_uspace.s_table);
}
return accum;
}
MODULE_AUTHOR("Ben Fennema");
MODULE_DESCRIPTION("Universal Disk Format Filesystem");
MODULE_LICENSE("GPL");
module_init(init_udf_fs)
module_exit(exit_udf_fs)