435 lines
12 KiB
C
435 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
|
|
/* Copyright (c) 2012-2018, The Linux Foundation. All rights reserved.
|
|
* Copyright (C) 2018-2022 Linaro Ltd.
|
|
*/
|
|
|
|
#include <linux/clk.h>
|
|
#include <linux/device.h>
|
|
#include <linux/interconnect.h>
|
|
#include <linux/pm.h>
|
|
#include <linux/pm_runtime.h>
|
|
#include <linux/bitops.h>
|
|
|
|
#include "linux/soc/qcom/qcom_aoss.h"
|
|
|
|
#include "ipa.h"
|
|
#include "ipa_power.h"
|
|
#include "ipa_endpoint.h"
|
|
#include "ipa_modem.h"
|
|
#include "ipa_data.h"
|
|
|
|
/**
|
|
* DOC: IPA Power Management
|
|
*
|
|
* The IPA hardware is enabled when the IPA core clock and all the
|
|
* interconnects (buses) it depends on are enabled. Runtime power
|
|
* management is used to determine whether the core clock and
|
|
* interconnects are enabled, and if not in use to be suspended
|
|
* automatically.
|
|
*
|
|
* The core clock currently runs at a fixed clock rate when enabled,
|
|
* an all interconnects use a fixed average and peak bandwidth.
|
|
*/
|
|
|
|
#define IPA_AUTOSUSPEND_DELAY 500 /* milliseconds */
|
|
|
|
/**
|
|
* enum ipa_power_flag - IPA power flags
|
|
* @IPA_POWER_FLAG_RESUMED: Whether resume from suspend has been signaled
|
|
* @IPA_POWER_FLAG_SYSTEM: Hardware is system (not runtime) suspended
|
|
* @IPA_POWER_FLAG_STOPPED: Modem TX is disabled by ipa_start_xmit()
|
|
* @IPA_POWER_FLAG_STARTED: Modem TX was enabled by ipa_runtime_resume()
|
|
* @IPA_POWER_FLAG_COUNT: Number of defined power flags
|
|
*/
|
|
enum ipa_power_flag {
|
|
IPA_POWER_FLAG_RESUMED,
|
|
IPA_POWER_FLAG_SYSTEM,
|
|
IPA_POWER_FLAG_STOPPED,
|
|
IPA_POWER_FLAG_STARTED,
|
|
IPA_POWER_FLAG_COUNT, /* Last; not a flag */
|
|
};
|
|
|
|
/**
|
|
* struct ipa_power - IPA power management information
|
|
* @dev: IPA device pointer
|
|
* @core: IPA core clock
|
|
* @qmp: QMP handle for AOSS communication
|
|
* @spinlock: Protects modem TX queue enable/disable
|
|
* @flags: Boolean state flags
|
|
* @interconnect_count: Number of elements in interconnect[]
|
|
* @interconnect: Interconnect array
|
|
*/
|
|
struct ipa_power {
|
|
struct device *dev;
|
|
struct clk *core;
|
|
struct qmp *qmp;
|
|
spinlock_t spinlock; /* used with STOPPED/STARTED power flags */
|
|
DECLARE_BITMAP(flags, IPA_POWER_FLAG_COUNT);
|
|
u32 interconnect_count;
|
|
struct icc_bulk_data interconnect[];
|
|
};
|
|
|
|
/* Initialize interconnects required for IPA operation */
|
|
static int ipa_interconnect_init(struct ipa_power *power,
|
|
const struct ipa_interconnect_data *data)
|
|
{
|
|
struct icc_bulk_data *interconnect;
|
|
int ret;
|
|
u32 i;
|
|
|
|
/* Initialize our interconnect data array for bulk operations */
|
|
interconnect = &power->interconnect[0];
|
|
for (i = 0; i < power->interconnect_count; i++) {
|
|
/* interconnect->path is filled in by of_icc_bulk_get() */
|
|
interconnect->name = data->name;
|
|
interconnect->avg_bw = data->average_bandwidth;
|
|
interconnect->peak_bw = data->peak_bandwidth;
|
|
data++;
|
|
interconnect++;
|
|
}
|
|
|
|
ret = of_icc_bulk_get(power->dev, power->interconnect_count,
|
|
power->interconnect);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* All interconnects are initially disabled */
|
|
icc_bulk_disable(power->interconnect_count, power->interconnect);
|
|
|
|
/* Set the bandwidth values to be used when enabled */
|
|
ret = icc_bulk_set_bw(power->interconnect_count, power->interconnect);
|
|
if (ret)
|
|
icc_bulk_put(power->interconnect_count, power->interconnect);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of ipa_interconnect_init() */
|
|
static void ipa_interconnect_exit(struct ipa_power *power)
|
|
{
|
|
icc_bulk_put(power->interconnect_count, power->interconnect);
|
|
}
|
|
|
|
/* Enable IPA power, enabling interconnects and the core clock */
|
|
static int ipa_power_enable(struct ipa *ipa)
|
|
{
|
|
struct ipa_power *power = ipa->power;
|
|
int ret;
|
|
|
|
ret = icc_bulk_enable(power->interconnect_count, power->interconnect);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = clk_prepare_enable(power->core);
|
|
if (ret) {
|
|
dev_err(power->dev, "error %d enabling core clock\n", ret);
|
|
icc_bulk_disable(power->interconnect_count,
|
|
power->interconnect);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Inverse of ipa_power_enable() */
|
|
static void ipa_power_disable(struct ipa *ipa)
|
|
{
|
|
struct ipa_power *power = ipa->power;
|
|
|
|
clk_disable_unprepare(power->core);
|
|
|
|
icc_bulk_disable(power->interconnect_count, power->interconnect);
|
|
}
|
|
|
|
static int ipa_runtime_suspend(struct device *dev)
|
|
{
|
|
struct ipa *ipa = dev_get_drvdata(dev);
|
|
|
|
/* Endpoints aren't usable until setup is complete */
|
|
if (ipa->setup_complete) {
|
|
__clear_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags);
|
|
ipa_endpoint_suspend(ipa);
|
|
gsi_suspend(&ipa->gsi);
|
|
}
|
|
|
|
ipa_power_disable(ipa);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ipa_runtime_resume(struct device *dev)
|
|
{
|
|
struct ipa *ipa = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = ipa_power_enable(ipa);
|
|
if (WARN_ON(ret < 0))
|
|
return ret;
|
|
|
|
/* Endpoints aren't usable until setup is complete */
|
|
if (ipa->setup_complete) {
|
|
gsi_resume(&ipa->gsi);
|
|
ipa_endpoint_resume(ipa);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ipa_suspend(struct device *dev)
|
|
{
|
|
struct ipa *ipa = dev_get_drvdata(dev);
|
|
|
|
__set_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
|
|
|
|
/* Increment the disable depth to ensure that the IRQ won't
|
|
* be re-enabled until the matching _enable call in
|
|
* ipa_resume(). We do this to ensure that the interrupt
|
|
* handler won't run whilst PM runtime is disabled.
|
|
*
|
|
* Note that disabling the IRQ is NOT the same as disabling
|
|
* irq wake. If wakeup is enabled for the IPA then the IRQ
|
|
* will still cause the system to wake up, see irq_set_irq_wake().
|
|
*/
|
|
ipa_interrupt_irq_disable(ipa);
|
|
|
|
return pm_runtime_force_suspend(dev);
|
|
}
|
|
|
|
static int ipa_resume(struct device *dev)
|
|
{
|
|
struct ipa *ipa = dev_get_drvdata(dev);
|
|
int ret;
|
|
|
|
ret = pm_runtime_force_resume(dev);
|
|
|
|
__clear_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags);
|
|
|
|
/* Now that PM runtime is enabled again it's safe
|
|
* to turn the IRQ back on and process any data
|
|
* that was received during suspend.
|
|
*/
|
|
ipa_interrupt_irq_enable(ipa);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/* Return the current IPA core clock rate */
|
|
u32 ipa_core_clock_rate(struct ipa *ipa)
|
|
{
|
|
return ipa->power ? (u32)clk_get_rate(ipa->power->core) : 0;
|
|
}
|
|
|
|
void ipa_power_suspend_handler(struct ipa *ipa, enum ipa_irq_id irq_id)
|
|
{
|
|
/* To handle an IPA interrupt we will have resumed the hardware
|
|
* just to handle the interrupt, so we're done. If we are in a
|
|
* system suspend, trigger a system resume.
|
|
*/
|
|
if (!__test_and_set_bit(IPA_POWER_FLAG_RESUMED, ipa->power->flags))
|
|
if (test_bit(IPA_POWER_FLAG_SYSTEM, ipa->power->flags))
|
|
pm_wakeup_dev_event(&ipa->pdev->dev, 0, true);
|
|
|
|
/* Acknowledge/clear the suspend interrupt on all endpoints */
|
|
ipa_interrupt_suspend_clear_all(ipa->interrupt);
|
|
}
|
|
|
|
/* The next few functions coordinate stopping and starting the modem
|
|
* network device transmit queue.
|
|
*
|
|
* Transmit can be running concurrent with power resume, and there's a
|
|
* chance the resume completes before the transmit path stops the queue,
|
|
* leaving the queue in a stopped state. The next two functions are used
|
|
* to avoid this: ipa_power_modem_queue_stop() is used by ipa_start_xmit()
|
|
* to conditionally stop the TX queue; and ipa_power_modem_queue_start()
|
|
* is used by ipa_runtime_resume() to conditionally restart it.
|
|
*
|
|
* Two flags and a spinlock are used. If the queue is stopped, the STOPPED
|
|
* power flag is set. And if the queue is started, the STARTED flag is set.
|
|
* The queue is only started on resume if the STOPPED flag is set. And the
|
|
* queue is only started in ipa_start_xmit() if the STARTED flag is *not*
|
|
* set. As a result, the queue remains operational if the two activites
|
|
* happen concurrently regardless of the order they complete. The spinlock
|
|
* ensures the flag and TX queue operations are done atomically.
|
|
*
|
|
* The first function stops the modem netdev transmit queue, but only if
|
|
* the STARTED flag is *not* set. That flag is cleared if it was set.
|
|
* If the queue is stopped, the STOPPED flag is set. This is called only
|
|
* from the power ->runtime_resume operation.
|
|
*/
|
|
void ipa_power_modem_queue_stop(struct ipa *ipa)
|
|
{
|
|
struct ipa_power *power = ipa->power;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&power->spinlock, flags);
|
|
|
|
if (!__test_and_clear_bit(IPA_POWER_FLAG_STARTED, power->flags)) {
|
|
netif_stop_queue(ipa->modem_netdev);
|
|
__set_bit(IPA_POWER_FLAG_STOPPED, power->flags);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&power->spinlock, flags);
|
|
}
|
|
|
|
/* This function starts the modem netdev transmit queue, but only if the
|
|
* STOPPED flag is set. That flag is cleared if it was set. If the queue
|
|
* was restarted, the STARTED flag is set; this allows ipa_start_xmit()
|
|
* to skip stopping the queue in the event of a race.
|
|
*/
|
|
void ipa_power_modem_queue_wake(struct ipa *ipa)
|
|
{
|
|
struct ipa_power *power = ipa->power;
|
|
unsigned long flags;
|
|
|
|
spin_lock_irqsave(&power->spinlock, flags);
|
|
|
|
if (__test_and_clear_bit(IPA_POWER_FLAG_STOPPED, power->flags)) {
|
|
__set_bit(IPA_POWER_FLAG_STARTED, power->flags);
|
|
netif_wake_queue(ipa->modem_netdev);
|
|
}
|
|
|
|
spin_unlock_irqrestore(&power->spinlock, flags);
|
|
}
|
|
|
|
/* This function clears the STARTED flag once the TX queue is operating */
|
|
void ipa_power_modem_queue_active(struct ipa *ipa)
|
|
{
|
|
clear_bit(IPA_POWER_FLAG_STARTED, ipa->power->flags);
|
|
}
|
|
|
|
static int ipa_power_retention_init(struct ipa_power *power)
|
|
{
|
|
struct qmp *qmp = qmp_get(power->dev);
|
|
|
|
if (IS_ERR(qmp)) {
|
|
if (PTR_ERR(qmp) == -EPROBE_DEFER)
|
|
return -EPROBE_DEFER;
|
|
|
|
/* We assume any other error means it's not defined/needed */
|
|
qmp = NULL;
|
|
}
|
|
power->qmp = qmp;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void ipa_power_retention_exit(struct ipa_power *power)
|
|
{
|
|
qmp_put(power->qmp);
|
|
power->qmp = NULL;
|
|
}
|
|
|
|
/* Control register retention on power collapse */
|
|
void ipa_power_retention(struct ipa *ipa, bool enable)
|
|
{
|
|
static const char fmt[] = "{ class: bcm, res: ipa_pc, val: %c }";
|
|
struct ipa_power *power = ipa->power;
|
|
int ret;
|
|
|
|
if (!power->qmp)
|
|
return; /* Not needed on this platform */
|
|
|
|
ret = qmp_send(power->qmp, fmt, enable ? '1' : '0');
|
|
if (ret)
|
|
dev_err(power->dev, "error %d sending QMP %sable request\n",
|
|
ret, enable ? "en" : "dis");
|
|
}
|
|
|
|
int ipa_power_setup(struct ipa *ipa)
|
|
{
|
|
int ret;
|
|
|
|
ipa_interrupt_enable(ipa, IPA_IRQ_TX_SUSPEND);
|
|
|
|
ret = device_init_wakeup(&ipa->pdev->dev, true);
|
|
if (ret)
|
|
ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
|
|
|
|
return ret;
|
|
}
|
|
|
|
void ipa_power_teardown(struct ipa *ipa)
|
|
{
|
|
(void)device_init_wakeup(&ipa->pdev->dev, false);
|
|
ipa_interrupt_disable(ipa, IPA_IRQ_TX_SUSPEND);
|
|
}
|
|
|
|
/* Initialize IPA power management */
|
|
struct ipa_power *
|
|
ipa_power_init(struct device *dev, const struct ipa_power_data *data)
|
|
{
|
|
struct ipa_power *power;
|
|
struct clk *clk;
|
|
size_t size;
|
|
int ret;
|
|
|
|
clk = clk_get(dev, "core");
|
|
if (IS_ERR(clk)) {
|
|
dev_err_probe(dev, PTR_ERR(clk), "error getting core clock\n");
|
|
|
|
return ERR_CAST(clk);
|
|
}
|
|
|
|
ret = clk_set_rate(clk, data->core_clock_rate);
|
|
if (ret) {
|
|
dev_err(dev, "error %d setting core clock rate to %u\n",
|
|
ret, data->core_clock_rate);
|
|
goto err_clk_put;
|
|
}
|
|
|
|
size = struct_size(power, interconnect, data->interconnect_count);
|
|
power = kzalloc(size, GFP_KERNEL);
|
|
if (!power) {
|
|
ret = -ENOMEM;
|
|
goto err_clk_put;
|
|
}
|
|
power->dev = dev;
|
|
power->core = clk;
|
|
spin_lock_init(&power->spinlock);
|
|
power->interconnect_count = data->interconnect_count;
|
|
|
|
ret = ipa_interconnect_init(power, data->interconnect_data);
|
|
if (ret)
|
|
goto err_kfree;
|
|
|
|
ret = ipa_power_retention_init(power);
|
|
if (ret)
|
|
goto err_interconnect_exit;
|
|
|
|
pm_runtime_set_autosuspend_delay(dev, IPA_AUTOSUSPEND_DELAY);
|
|
pm_runtime_use_autosuspend(dev);
|
|
pm_runtime_enable(dev);
|
|
|
|
return power;
|
|
|
|
err_interconnect_exit:
|
|
ipa_interconnect_exit(power);
|
|
err_kfree:
|
|
kfree(power);
|
|
err_clk_put:
|
|
clk_put(clk);
|
|
|
|
return ERR_PTR(ret);
|
|
}
|
|
|
|
/* Inverse of ipa_power_init() */
|
|
void ipa_power_exit(struct ipa_power *power)
|
|
{
|
|
struct device *dev = power->dev;
|
|
struct clk *clk = power->core;
|
|
|
|
pm_runtime_disable(dev);
|
|
pm_runtime_dont_use_autosuspend(dev);
|
|
ipa_power_retention_exit(power);
|
|
ipa_interconnect_exit(power);
|
|
kfree(power);
|
|
clk_put(clk);
|
|
}
|
|
|
|
const struct dev_pm_ops ipa_pm_ops = {
|
|
.suspend = ipa_suspend,
|
|
.resume = ipa_resume,
|
|
.runtime_suspend = ipa_runtime_suspend,
|
|
.runtime_resume = ipa_runtime_resume,
|
|
};
|