460 lines
12 KiB
C
460 lines
12 KiB
C
// SPDX-License-Identifier: GPL-2.0
|
|
/*
|
|
* Faraday Technology FTTMR010 timer driver
|
|
* Copyright (C) 2017 Linus Walleij <linus.walleij@linaro.org>
|
|
*
|
|
* Based on a rewrite of arch/arm/mach-gemini/timer.c:
|
|
* Copyright (C) 2001-2006 Storlink, Corp.
|
|
* Copyright (C) 2008-2009 Paulius Zaleckas <paulius.zaleckas@teltonika.lt>
|
|
*/
|
|
#include <linux/interrupt.h>
|
|
#include <linux/io.h>
|
|
#include <linux/of.h>
|
|
#include <linux/of_address.h>
|
|
#include <linux/of_irq.h>
|
|
#include <linux/clockchips.h>
|
|
#include <linux/clocksource.h>
|
|
#include <linux/sched_clock.h>
|
|
#include <linux/clk.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/delay.h>
|
|
|
|
/*
|
|
* Register definitions common for all the timer variants.
|
|
*/
|
|
#define TIMER1_COUNT (0x00)
|
|
#define TIMER1_LOAD (0x04)
|
|
#define TIMER1_MATCH1 (0x08)
|
|
#define TIMER1_MATCH2 (0x0c)
|
|
#define TIMER2_COUNT (0x10)
|
|
#define TIMER2_LOAD (0x14)
|
|
#define TIMER2_MATCH1 (0x18)
|
|
#define TIMER2_MATCH2 (0x1c)
|
|
#define TIMER3_COUNT (0x20)
|
|
#define TIMER3_LOAD (0x24)
|
|
#define TIMER3_MATCH1 (0x28)
|
|
#define TIMER3_MATCH2 (0x2c)
|
|
#define TIMER_CR (0x30)
|
|
|
|
/*
|
|
* Control register set to clear for ast2600 only.
|
|
*/
|
|
#define AST2600_TIMER_CR_CLR (0x3c)
|
|
|
|
/*
|
|
* Control register (TMC30) bit fields for fttmr010/gemini/moxart timers.
|
|
*/
|
|
#define TIMER_1_CR_ENABLE BIT(0)
|
|
#define TIMER_1_CR_CLOCK BIT(1)
|
|
#define TIMER_1_CR_INT BIT(2)
|
|
#define TIMER_2_CR_ENABLE BIT(3)
|
|
#define TIMER_2_CR_CLOCK BIT(4)
|
|
#define TIMER_2_CR_INT BIT(5)
|
|
#define TIMER_3_CR_ENABLE BIT(6)
|
|
#define TIMER_3_CR_CLOCK BIT(7)
|
|
#define TIMER_3_CR_INT BIT(8)
|
|
#define TIMER_1_CR_UPDOWN BIT(9)
|
|
#define TIMER_2_CR_UPDOWN BIT(10)
|
|
#define TIMER_3_CR_UPDOWN BIT(11)
|
|
|
|
/*
|
|
* Control register (TMC30) bit fields for aspeed ast2400/ast2500 timers.
|
|
* The aspeed timers move bits around in the control register and lacks
|
|
* bits for setting the timer to count upwards.
|
|
*/
|
|
#define TIMER_1_CR_ASPEED_ENABLE BIT(0)
|
|
#define TIMER_1_CR_ASPEED_CLOCK BIT(1)
|
|
#define TIMER_1_CR_ASPEED_INT BIT(2)
|
|
#define TIMER_2_CR_ASPEED_ENABLE BIT(4)
|
|
#define TIMER_2_CR_ASPEED_CLOCK BIT(5)
|
|
#define TIMER_2_CR_ASPEED_INT BIT(6)
|
|
#define TIMER_3_CR_ASPEED_ENABLE BIT(8)
|
|
#define TIMER_3_CR_ASPEED_CLOCK BIT(9)
|
|
#define TIMER_3_CR_ASPEED_INT BIT(10)
|
|
|
|
/*
|
|
* Interrupt status/mask register definitions for fttmr010/gemini/moxart
|
|
* timers.
|
|
* The registers don't exist and they are not needed on aspeed timers
|
|
* because:
|
|
* - aspeed timer overflow interrupt is controlled by bits in Control
|
|
* Register (TMC30).
|
|
* - aspeed timers always generate interrupt when either one of the
|
|
* Match registers equals to Status register.
|
|
*/
|
|
#define TIMER_INTR_STATE (0x34)
|
|
#define TIMER_INTR_MASK (0x38)
|
|
#define TIMER_1_INT_MATCH1 BIT(0)
|
|
#define TIMER_1_INT_MATCH2 BIT(1)
|
|
#define TIMER_1_INT_OVERFLOW BIT(2)
|
|
#define TIMER_2_INT_MATCH1 BIT(3)
|
|
#define TIMER_2_INT_MATCH2 BIT(4)
|
|
#define TIMER_2_INT_OVERFLOW BIT(5)
|
|
#define TIMER_3_INT_MATCH1 BIT(6)
|
|
#define TIMER_3_INT_MATCH2 BIT(7)
|
|
#define TIMER_3_INT_OVERFLOW BIT(8)
|
|
#define TIMER_INT_ALL_MASK 0x1ff
|
|
|
|
struct fttmr010 {
|
|
void __iomem *base;
|
|
unsigned int tick_rate;
|
|
bool is_aspeed;
|
|
u32 t1_enable_val;
|
|
struct clock_event_device clkevt;
|
|
int (*timer_shutdown)(struct clock_event_device *evt);
|
|
#ifdef CONFIG_ARM
|
|
struct delay_timer delay_timer;
|
|
#endif
|
|
};
|
|
|
|
/*
|
|
* A local singleton used by sched_clock and delay timer reads, which are
|
|
* fast and stateless
|
|
*/
|
|
static struct fttmr010 *local_fttmr;
|
|
|
|
static inline struct fttmr010 *to_fttmr010(struct clock_event_device *evt)
|
|
{
|
|
return container_of(evt, struct fttmr010, clkevt);
|
|
}
|
|
|
|
static unsigned long fttmr010_read_current_timer_up(void)
|
|
{
|
|
return readl(local_fttmr->base + TIMER2_COUNT);
|
|
}
|
|
|
|
static unsigned long fttmr010_read_current_timer_down(void)
|
|
{
|
|
return ~readl(local_fttmr->base + TIMER2_COUNT);
|
|
}
|
|
|
|
static u64 notrace fttmr010_read_sched_clock_up(void)
|
|
{
|
|
return fttmr010_read_current_timer_up();
|
|
}
|
|
|
|
static u64 notrace fttmr010_read_sched_clock_down(void)
|
|
{
|
|
return fttmr010_read_current_timer_down();
|
|
}
|
|
|
|
static int fttmr010_timer_set_next_event(unsigned long cycles,
|
|
struct clock_event_device *evt)
|
|
{
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
u32 cr;
|
|
|
|
/* Stop */
|
|
fttmr010->timer_shutdown(evt);
|
|
|
|
if (fttmr010->is_aspeed) {
|
|
/*
|
|
* ASPEED Timer Controller will load TIMER1_LOAD register
|
|
* into TIMER1_COUNT register when the timer is re-enabled.
|
|
*/
|
|
writel(cycles, fttmr010->base + TIMER1_LOAD);
|
|
} else {
|
|
/* Setup the match register forward in time */
|
|
cr = readl(fttmr010->base + TIMER1_COUNT);
|
|
writel(cr + cycles, fttmr010->base + TIMER1_MATCH1);
|
|
}
|
|
|
|
/* Start */
|
|
cr = readl(fttmr010->base + TIMER_CR);
|
|
cr |= fttmr010->t1_enable_val;
|
|
writel(cr, fttmr010->base + TIMER_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int ast2600_timer_shutdown(struct clock_event_device *evt)
|
|
{
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
|
|
/* Stop */
|
|
writel(fttmr010->t1_enable_val, fttmr010->base + AST2600_TIMER_CR_CLR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fttmr010_timer_shutdown(struct clock_event_device *evt)
|
|
{
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
u32 cr;
|
|
|
|
/* Stop */
|
|
cr = readl(fttmr010->base + TIMER_CR);
|
|
cr &= ~fttmr010->t1_enable_val;
|
|
writel(cr, fttmr010->base + TIMER_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fttmr010_timer_set_oneshot(struct clock_event_device *evt)
|
|
{
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
u32 cr;
|
|
|
|
/* Stop */
|
|
fttmr010->timer_shutdown(evt);
|
|
|
|
/* Setup counter start from 0 or ~0 */
|
|
writel(0, fttmr010->base + TIMER1_COUNT);
|
|
if (fttmr010->is_aspeed) {
|
|
writel(~0, fttmr010->base + TIMER1_LOAD);
|
|
} else {
|
|
writel(0, fttmr010->base + TIMER1_LOAD);
|
|
|
|
/* Enable interrupt */
|
|
cr = readl(fttmr010->base + TIMER_INTR_MASK);
|
|
cr &= ~(TIMER_1_INT_OVERFLOW | TIMER_1_INT_MATCH2);
|
|
cr |= TIMER_1_INT_MATCH1;
|
|
writel(cr, fttmr010->base + TIMER_INTR_MASK);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int fttmr010_timer_set_periodic(struct clock_event_device *evt)
|
|
{
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
u32 period = DIV_ROUND_CLOSEST(fttmr010->tick_rate, HZ);
|
|
u32 cr;
|
|
|
|
/* Stop */
|
|
fttmr010->timer_shutdown(evt);
|
|
|
|
/* Setup timer to fire at 1/HZ intervals. */
|
|
if (fttmr010->is_aspeed) {
|
|
writel(period, fttmr010->base + TIMER1_LOAD);
|
|
} else {
|
|
cr = 0xffffffff - (period - 1);
|
|
writel(cr, fttmr010->base + TIMER1_COUNT);
|
|
writel(cr, fttmr010->base + TIMER1_LOAD);
|
|
|
|
/* Enable interrupt on overflow */
|
|
cr = readl(fttmr010->base + TIMER_INTR_MASK);
|
|
cr &= ~(TIMER_1_INT_MATCH1 | TIMER_1_INT_MATCH2);
|
|
cr |= TIMER_1_INT_OVERFLOW;
|
|
writel(cr, fttmr010->base + TIMER_INTR_MASK);
|
|
}
|
|
|
|
/* Start the timer */
|
|
cr = readl(fttmr010->base + TIMER_CR);
|
|
cr |= fttmr010->t1_enable_val;
|
|
writel(cr, fttmr010->base + TIMER_CR);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* IRQ handler for the timer
|
|
*/
|
|
static irqreturn_t fttmr010_timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
|
|
evt->event_handler(evt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static irqreturn_t ast2600_timer_interrupt(int irq, void *dev_id)
|
|
{
|
|
struct clock_event_device *evt = dev_id;
|
|
struct fttmr010 *fttmr010 = to_fttmr010(evt);
|
|
|
|
writel(0x1, fttmr010->base + TIMER_INTR_STATE);
|
|
|
|
evt->event_handler(evt);
|
|
return IRQ_HANDLED;
|
|
}
|
|
|
|
static int __init fttmr010_common_init(struct device_node *np,
|
|
bool is_aspeed,
|
|
int (*timer_shutdown)(struct clock_event_device *),
|
|
irq_handler_t irq_handler)
|
|
{
|
|
struct fttmr010 *fttmr010;
|
|
int irq;
|
|
struct clk *clk;
|
|
int ret;
|
|
u32 val;
|
|
|
|
/*
|
|
* These implementations require a clock reference.
|
|
* FIXME: we currently only support clocking using PCLK
|
|
* and using EXTCLK is not supported in the driver.
|
|
*/
|
|
clk = of_clk_get_by_name(np, "PCLK");
|
|
if (IS_ERR(clk)) {
|
|
pr_err("could not get PCLK\n");
|
|
return PTR_ERR(clk);
|
|
}
|
|
ret = clk_prepare_enable(clk);
|
|
if (ret) {
|
|
pr_err("failed to enable PCLK\n");
|
|
return ret;
|
|
}
|
|
|
|
fttmr010 = kzalloc(sizeof(*fttmr010), GFP_KERNEL);
|
|
if (!fttmr010) {
|
|
ret = -ENOMEM;
|
|
goto out_disable_clock;
|
|
}
|
|
fttmr010->tick_rate = clk_get_rate(clk);
|
|
|
|
fttmr010->base = of_iomap(np, 0);
|
|
if (!fttmr010->base) {
|
|
pr_err("Can't remap registers\n");
|
|
ret = -ENXIO;
|
|
goto out_free;
|
|
}
|
|
/* IRQ for timer 1 */
|
|
irq = irq_of_parse_and_map(np, 0);
|
|
if (irq <= 0) {
|
|
pr_err("Can't parse IRQ\n");
|
|
ret = -EINVAL;
|
|
goto out_unmap;
|
|
}
|
|
|
|
/*
|
|
* The Aspeed timers move bits around in the control register.
|
|
*/
|
|
if (is_aspeed) {
|
|
fttmr010->t1_enable_val = TIMER_1_CR_ASPEED_ENABLE |
|
|
TIMER_1_CR_ASPEED_INT;
|
|
fttmr010->is_aspeed = true;
|
|
} else {
|
|
fttmr010->t1_enable_val = TIMER_1_CR_ENABLE | TIMER_1_CR_INT;
|
|
|
|
/*
|
|
* Reset the interrupt mask and status
|
|
*/
|
|
writel(TIMER_INT_ALL_MASK, fttmr010->base + TIMER_INTR_MASK);
|
|
writel(0, fttmr010->base + TIMER_INTR_STATE);
|
|
}
|
|
|
|
/*
|
|
* Enable timer 1 count up, timer 2 count up, except on Aspeed,
|
|
* where everything just counts down.
|
|
*/
|
|
if (is_aspeed)
|
|
val = TIMER_2_CR_ASPEED_ENABLE;
|
|
else {
|
|
val = TIMER_2_CR_ENABLE | TIMER_1_CR_UPDOWN |
|
|
TIMER_2_CR_UPDOWN;
|
|
}
|
|
writel(val, fttmr010->base + TIMER_CR);
|
|
|
|
/*
|
|
* Setup free-running clocksource timer (interrupts
|
|
* disabled.)
|
|
*/
|
|
local_fttmr = fttmr010;
|
|
writel(0, fttmr010->base + TIMER2_COUNT);
|
|
writel(0, fttmr010->base + TIMER2_MATCH1);
|
|
writel(0, fttmr010->base + TIMER2_MATCH2);
|
|
|
|
if (fttmr010->is_aspeed) {
|
|
writel(~0, fttmr010->base + TIMER2_LOAD);
|
|
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
|
|
"FTTMR010-TIMER2",
|
|
fttmr010->tick_rate,
|
|
300, 32, clocksource_mmio_readl_down);
|
|
sched_clock_register(fttmr010_read_sched_clock_down, 32,
|
|
fttmr010->tick_rate);
|
|
} else {
|
|
writel(0, fttmr010->base + TIMER2_LOAD);
|
|
clocksource_mmio_init(fttmr010->base + TIMER2_COUNT,
|
|
"FTTMR010-TIMER2",
|
|
fttmr010->tick_rate,
|
|
300, 32, clocksource_mmio_readl_up);
|
|
sched_clock_register(fttmr010_read_sched_clock_up, 32,
|
|
fttmr010->tick_rate);
|
|
}
|
|
|
|
fttmr010->timer_shutdown = timer_shutdown;
|
|
|
|
/*
|
|
* Setup clockevent timer (interrupt-driven) on timer 1.
|
|
*/
|
|
writel(0, fttmr010->base + TIMER1_COUNT);
|
|
writel(0, fttmr010->base + TIMER1_LOAD);
|
|
writel(0, fttmr010->base + TIMER1_MATCH1);
|
|
writel(0, fttmr010->base + TIMER1_MATCH2);
|
|
ret = request_irq(irq, irq_handler, IRQF_TIMER,
|
|
"FTTMR010-TIMER1", &fttmr010->clkevt);
|
|
if (ret) {
|
|
pr_err("FTTMR010-TIMER1 no IRQ\n");
|
|
goto out_unmap;
|
|
}
|
|
|
|
fttmr010->clkevt.name = "FTTMR010-TIMER1";
|
|
/* Reasonably fast and accurate clock event */
|
|
fttmr010->clkevt.rating = 300;
|
|
fttmr010->clkevt.features = CLOCK_EVT_FEAT_PERIODIC |
|
|
CLOCK_EVT_FEAT_ONESHOT;
|
|
fttmr010->clkevt.set_next_event = fttmr010_timer_set_next_event;
|
|
fttmr010->clkevt.set_state_shutdown = fttmr010->timer_shutdown;
|
|
fttmr010->clkevt.set_state_periodic = fttmr010_timer_set_periodic;
|
|
fttmr010->clkevt.set_state_oneshot = fttmr010_timer_set_oneshot;
|
|
fttmr010->clkevt.tick_resume = fttmr010->timer_shutdown;
|
|
fttmr010->clkevt.cpumask = cpumask_of(0);
|
|
fttmr010->clkevt.irq = irq;
|
|
clockevents_config_and_register(&fttmr010->clkevt,
|
|
fttmr010->tick_rate,
|
|
1, 0xffffffff);
|
|
|
|
#ifdef CONFIG_ARM
|
|
/* Also use this timer for delays */
|
|
if (fttmr010->is_aspeed)
|
|
fttmr010->delay_timer.read_current_timer =
|
|
fttmr010_read_current_timer_down;
|
|
else
|
|
fttmr010->delay_timer.read_current_timer =
|
|
fttmr010_read_current_timer_up;
|
|
fttmr010->delay_timer.freq = fttmr010->tick_rate;
|
|
register_current_timer_delay(&fttmr010->delay_timer);
|
|
#endif
|
|
|
|
return 0;
|
|
|
|
out_unmap:
|
|
iounmap(fttmr010->base);
|
|
out_free:
|
|
kfree(fttmr010);
|
|
out_disable_clock:
|
|
clk_disable_unprepare(clk);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static __init int ast2600_timer_init(struct device_node *np)
|
|
{
|
|
return fttmr010_common_init(np, true,
|
|
ast2600_timer_shutdown,
|
|
ast2600_timer_interrupt);
|
|
}
|
|
|
|
static __init int aspeed_timer_init(struct device_node *np)
|
|
{
|
|
return fttmr010_common_init(np, true,
|
|
fttmr010_timer_shutdown,
|
|
fttmr010_timer_interrupt);
|
|
}
|
|
|
|
static __init int fttmr010_timer_init(struct device_node *np)
|
|
{
|
|
return fttmr010_common_init(np, false,
|
|
fttmr010_timer_shutdown,
|
|
fttmr010_timer_interrupt);
|
|
}
|
|
|
|
TIMER_OF_DECLARE(fttmr010, "faraday,fttmr010", fttmr010_timer_init);
|
|
TIMER_OF_DECLARE(gemini, "cortina,gemini-timer", fttmr010_timer_init);
|
|
TIMER_OF_DECLARE(moxart, "moxa,moxart-timer", fttmr010_timer_init);
|
|
TIMER_OF_DECLARE(ast2400, "aspeed,ast2400-timer", aspeed_timer_init);
|
|
TIMER_OF_DECLARE(ast2500, "aspeed,ast2500-timer", aspeed_timer_init);
|
|
TIMER_OF_DECLARE(ast2600, "aspeed,ast2600-timer", ast2600_timer_init);
|