2495 lines
62 KiB
C
2495 lines
62 KiB
C
// SPDX-License-Identifier: GPL-2.0-or-later
|
||
/* -*- mode: c; c-basic-offset: 8; -*-
|
||
* vim: noexpandtab sw=8 ts=8 sts=0:
|
||
*
|
||
* Copyright (C) 2002, 2004 Oracle. All rights reserved.
|
||
*/
|
||
|
||
#include <linux/fs.h>
|
||
#include <linux/slab.h>
|
||
#include <linux/highmem.h>
|
||
#include <linux/pagemap.h>
|
||
#include <asm/byteorder.h>
|
||
#include <linux/swap.h>
|
||
#include <linux/pipe_fs_i.h>
|
||
#include <linux/mpage.h>
|
||
#include <linux/quotaops.h>
|
||
#include <linux/blkdev.h>
|
||
#include <linux/uio.h>
|
||
#include <linux/mm.h>
|
||
|
||
#include <cluster/masklog.h>
|
||
|
||
#include "ocfs2.h"
|
||
|
||
#include "alloc.h"
|
||
#include "aops.h"
|
||
#include "dlmglue.h"
|
||
#include "extent_map.h"
|
||
#include "file.h"
|
||
#include "inode.h"
|
||
#include "journal.h"
|
||
#include "suballoc.h"
|
||
#include "super.h"
|
||
#include "symlink.h"
|
||
#include "refcounttree.h"
|
||
#include "ocfs2_trace.h"
|
||
|
||
#include "buffer_head_io.h"
|
||
#include "dir.h"
|
||
#include "namei.h"
|
||
#include "sysfile.h"
|
||
|
||
static int ocfs2_symlink_get_block(struct inode *inode, sector_t iblock,
|
||
struct buffer_head *bh_result, int create)
|
||
{
|
||
int err = -EIO;
|
||
int status;
|
||
struct ocfs2_dinode *fe = NULL;
|
||
struct buffer_head *bh = NULL;
|
||
struct buffer_head *buffer_cache_bh = NULL;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
void *kaddr;
|
||
|
||
trace_ocfs2_symlink_get_block(
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)iblock, bh_result, create);
|
||
|
||
BUG_ON(ocfs2_inode_is_fast_symlink(inode));
|
||
|
||
if ((iblock << inode->i_sb->s_blocksize_bits) > PATH_MAX + 1) {
|
||
mlog(ML_ERROR, "block offset > PATH_MAX: %llu",
|
||
(unsigned long long)iblock);
|
||
goto bail;
|
||
}
|
||
|
||
status = ocfs2_read_inode_block(inode, &bh);
|
||
if (status < 0) {
|
||
mlog_errno(status);
|
||
goto bail;
|
||
}
|
||
fe = (struct ocfs2_dinode *) bh->b_data;
|
||
|
||
if ((u64)iblock >= ocfs2_clusters_to_blocks(inode->i_sb,
|
||
le32_to_cpu(fe->i_clusters))) {
|
||
err = -ENOMEM;
|
||
mlog(ML_ERROR, "block offset is outside the allocated size: "
|
||
"%llu\n", (unsigned long long)iblock);
|
||
goto bail;
|
||
}
|
||
|
||
/* We don't use the page cache to create symlink data, so if
|
||
* need be, copy it over from the buffer cache. */
|
||
if (!buffer_uptodate(bh_result) && ocfs2_inode_is_new(inode)) {
|
||
u64 blkno = le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) +
|
||
iblock;
|
||
buffer_cache_bh = sb_getblk(osb->sb, blkno);
|
||
if (!buffer_cache_bh) {
|
||
err = -ENOMEM;
|
||
mlog(ML_ERROR, "couldn't getblock for symlink!\n");
|
||
goto bail;
|
||
}
|
||
|
||
/* we haven't locked out transactions, so a commit
|
||
* could've happened. Since we've got a reference on
|
||
* the bh, even if it commits while we're doing the
|
||
* copy, the data is still good. */
|
||
if (buffer_jbd(buffer_cache_bh)
|
||
&& ocfs2_inode_is_new(inode)) {
|
||
kaddr = kmap_atomic(bh_result->b_page);
|
||
if (!kaddr) {
|
||
mlog(ML_ERROR, "couldn't kmap!\n");
|
||
goto bail;
|
||
}
|
||
memcpy(kaddr + (bh_result->b_size * iblock),
|
||
buffer_cache_bh->b_data,
|
||
bh_result->b_size);
|
||
kunmap_atomic(kaddr);
|
||
set_buffer_uptodate(bh_result);
|
||
}
|
||
brelse(buffer_cache_bh);
|
||
}
|
||
|
||
map_bh(bh_result, inode->i_sb,
|
||
le64_to_cpu(fe->id2.i_list.l_recs[0].e_blkno) + iblock);
|
||
|
||
err = 0;
|
||
|
||
bail:
|
||
brelse(bh);
|
||
|
||
return err;
|
||
}
|
||
|
||
static int ocfs2_lock_get_block(struct inode *inode, sector_t iblock,
|
||
struct buffer_head *bh_result, int create)
|
||
{
|
||
int ret = 0;
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
|
||
down_read(&oi->ip_alloc_sem);
|
||
ret = ocfs2_get_block(inode, iblock, bh_result, create);
|
||
up_read(&oi->ip_alloc_sem);
|
||
|
||
return ret;
|
||
}
|
||
|
||
int ocfs2_get_block(struct inode *inode, sector_t iblock,
|
||
struct buffer_head *bh_result, int create)
|
||
{
|
||
int err = 0;
|
||
unsigned int ext_flags;
|
||
u64 max_blocks = bh_result->b_size >> inode->i_blkbits;
|
||
u64 p_blkno, count, past_eof;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
|
||
trace_ocfs2_get_block((unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)iblock, bh_result, create);
|
||
|
||
if (OCFS2_I(inode)->ip_flags & OCFS2_INODE_SYSTEM_FILE)
|
||
mlog(ML_NOTICE, "get_block on system inode 0x%p (%lu)\n",
|
||
inode, inode->i_ino);
|
||
|
||
if (S_ISLNK(inode->i_mode)) {
|
||
/* this always does I/O for some reason. */
|
||
err = ocfs2_symlink_get_block(inode, iblock, bh_result, create);
|
||
goto bail;
|
||
}
|
||
|
||
err = ocfs2_extent_map_get_blocks(inode, iblock, &p_blkno, &count,
|
||
&ext_flags);
|
||
if (err) {
|
||
mlog(ML_ERROR, "Error %d from get_blocks(0x%p, %llu, 1, "
|
||
"%llu, NULL)\n", err, inode, (unsigned long long)iblock,
|
||
(unsigned long long)p_blkno);
|
||
goto bail;
|
||
}
|
||
|
||
if (max_blocks < count)
|
||
count = max_blocks;
|
||
|
||
/*
|
||
* ocfs2 never allocates in this function - the only time we
|
||
* need to use BH_New is when we're extending i_size on a file
|
||
* system which doesn't support holes, in which case BH_New
|
||
* allows __block_write_begin() to zero.
|
||
*
|
||
* If we see this on a sparse file system, then a truncate has
|
||
* raced us and removed the cluster. In this case, we clear
|
||
* the buffers dirty and uptodate bits and let the buffer code
|
||
* ignore it as a hole.
|
||
*/
|
||
if (create && p_blkno == 0 && ocfs2_sparse_alloc(osb)) {
|
||
clear_buffer_dirty(bh_result);
|
||
clear_buffer_uptodate(bh_result);
|
||
goto bail;
|
||
}
|
||
|
||
/* Treat the unwritten extent as a hole for zeroing purposes. */
|
||
if (p_blkno && !(ext_flags & OCFS2_EXT_UNWRITTEN))
|
||
map_bh(bh_result, inode->i_sb, p_blkno);
|
||
|
||
bh_result->b_size = count << inode->i_blkbits;
|
||
|
||
if (!ocfs2_sparse_alloc(osb)) {
|
||
if (p_blkno == 0) {
|
||
err = -EIO;
|
||
mlog(ML_ERROR,
|
||
"iblock = %llu p_blkno = %llu blkno=(%llu)\n",
|
||
(unsigned long long)iblock,
|
||
(unsigned long long)p_blkno,
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno);
|
||
mlog(ML_ERROR, "Size %llu, clusters %u\n", (unsigned long long)i_size_read(inode), OCFS2_I(inode)->ip_clusters);
|
||
dump_stack();
|
||
goto bail;
|
||
}
|
||
}
|
||
|
||
past_eof = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
|
||
|
||
trace_ocfs2_get_block_end((unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)past_eof);
|
||
if (create && (iblock >= past_eof))
|
||
set_buffer_new(bh_result);
|
||
|
||
bail:
|
||
if (err < 0)
|
||
err = -EIO;
|
||
|
||
return err;
|
||
}
|
||
|
||
int ocfs2_read_inline_data(struct inode *inode, struct page *page,
|
||
struct buffer_head *di_bh)
|
||
{
|
||
void *kaddr;
|
||
loff_t size;
|
||
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
|
||
|
||
if (!(le16_to_cpu(di->i_dyn_features) & OCFS2_INLINE_DATA_FL)) {
|
||
ocfs2_error(inode->i_sb, "Inode %llu lost inline data flag\n",
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno);
|
||
return -EROFS;
|
||
}
|
||
|
||
size = i_size_read(inode);
|
||
|
||
if (size > PAGE_SIZE ||
|
||
size > ocfs2_max_inline_data_with_xattr(inode->i_sb, di)) {
|
||
ocfs2_error(inode->i_sb,
|
||
"Inode %llu has with inline data has bad size: %Lu\n",
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)size);
|
||
return -EROFS;
|
||
}
|
||
|
||
kaddr = kmap_atomic(page);
|
||
if (size)
|
||
memcpy(kaddr, di->id2.i_data.id_data, size);
|
||
/* Clear the remaining part of the page */
|
||
memset(kaddr + size, 0, PAGE_SIZE - size);
|
||
flush_dcache_page(page);
|
||
kunmap_atomic(kaddr);
|
||
|
||
SetPageUptodate(page);
|
||
|
||
return 0;
|
||
}
|
||
|
||
static int ocfs2_readpage_inline(struct inode *inode, struct page *page)
|
||
{
|
||
int ret;
|
||
struct buffer_head *di_bh = NULL;
|
||
|
||
BUG_ON(!PageLocked(page));
|
||
BUG_ON(!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL));
|
||
|
||
ret = ocfs2_read_inode_block(inode, &di_bh);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
ret = ocfs2_read_inline_data(inode, page, di_bh);
|
||
out:
|
||
unlock_page(page);
|
||
|
||
brelse(di_bh);
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_readpage(struct file *file, struct page *page)
|
||
{
|
||
struct inode *inode = page->mapping->host;
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
loff_t start = (loff_t)page->index << PAGE_SHIFT;
|
||
int ret, unlock = 1;
|
||
|
||
trace_ocfs2_readpage((unsigned long long)oi->ip_blkno,
|
||
(page ? page->index : 0));
|
||
|
||
ret = ocfs2_inode_lock_with_page(inode, NULL, 0, page);
|
||
if (ret != 0) {
|
||
if (ret == AOP_TRUNCATED_PAGE)
|
||
unlock = 0;
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
|
||
/*
|
||
* Unlock the page and cycle ip_alloc_sem so that we don't
|
||
* busyloop waiting for ip_alloc_sem to unlock
|
||
*/
|
||
ret = AOP_TRUNCATED_PAGE;
|
||
unlock_page(page);
|
||
unlock = 0;
|
||
down_read(&oi->ip_alloc_sem);
|
||
up_read(&oi->ip_alloc_sem);
|
||
goto out_inode_unlock;
|
||
}
|
||
|
||
/*
|
||
* i_size might have just been updated as we grabed the meta lock. We
|
||
* might now be discovering a truncate that hit on another node.
|
||
* block_read_full_page->get_block freaks out if it is asked to read
|
||
* beyond the end of a file, so we check here. Callers
|
||
* (generic_file_read, vm_ops->fault) are clever enough to check i_size
|
||
* and notice that the page they just read isn't needed.
|
||
*
|
||
* XXX sys_readahead() seems to get that wrong?
|
||
*/
|
||
if (start >= i_size_read(inode)) {
|
||
zero_user(page, 0, PAGE_SIZE);
|
||
SetPageUptodate(page);
|
||
ret = 0;
|
||
goto out_alloc;
|
||
}
|
||
|
||
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
|
||
ret = ocfs2_readpage_inline(inode, page);
|
||
else
|
||
ret = block_read_full_page(page, ocfs2_get_block);
|
||
unlock = 0;
|
||
|
||
out_alloc:
|
||
up_read(&oi->ip_alloc_sem);
|
||
out_inode_unlock:
|
||
ocfs2_inode_unlock(inode, 0);
|
||
out:
|
||
if (unlock)
|
||
unlock_page(page);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* This is used only for read-ahead. Failures or difficult to handle
|
||
* situations are safe to ignore.
|
||
*
|
||
* Right now, we don't bother with BH_Boundary - in-inode extent lists
|
||
* are quite large (243 extents on 4k blocks), so most inodes don't
|
||
* grow out to a tree. If need be, detecting boundary extents could
|
||
* trivially be added in a future version of ocfs2_get_block().
|
||
*/
|
||
static int ocfs2_readpages(struct file *filp, struct address_space *mapping,
|
||
struct list_head *pages, unsigned nr_pages)
|
||
{
|
||
int ret, err = -EIO;
|
||
struct inode *inode = mapping->host;
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
loff_t start;
|
||
struct page *last;
|
||
|
||
/*
|
||
* Use the nonblocking flag for the dlm code to avoid page
|
||
* lock inversion, but don't bother with retrying.
|
||
*/
|
||
ret = ocfs2_inode_lock_full(inode, NULL, 0, OCFS2_LOCK_NONBLOCK);
|
||
if (ret)
|
||
return err;
|
||
|
||
if (down_read_trylock(&oi->ip_alloc_sem) == 0) {
|
||
ocfs2_inode_unlock(inode, 0);
|
||
return err;
|
||
}
|
||
|
||
/*
|
||
* Don't bother with inline-data. There isn't anything
|
||
* to read-ahead in that case anyway...
|
||
*/
|
||
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL)
|
||
goto out_unlock;
|
||
|
||
/*
|
||
* Check whether a remote node truncated this file - we just
|
||
* drop out in that case as it's not worth handling here.
|
||
*/
|
||
last = lru_to_page(pages);
|
||
start = (loff_t)last->index << PAGE_SHIFT;
|
||
if (start >= i_size_read(inode))
|
||
goto out_unlock;
|
||
|
||
err = mpage_readpages(mapping, pages, nr_pages, ocfs2_get_block);
|
||
|
||
out_unlock:
|
||
up_read(&oi->ip_alloc_sem);
|
||
ocfs2_inode_unlock(inode, 0);
|
||
|
||
return err;
|
||
}
|
||
|
||
/* Note: Because we don't support holes, our allocation has
|
||
* already happened (allocation writes zeros to the file data)
|
||
* so we don't have to worry about ordered writes in
|
||
* ocfs2_writepage.
|
||
*
|
||
* ->writepage is called during the process of invalidating the page cache
|
||
* during blocked lock processing. It can't block on any cluster locks
|
||
* to during block mapping. It's relying on the fact that the block
|
||
* mapping can't have disappeared under the dirty pages that it is
|
||
* being asked to write back.
|
||
*/
|
||
static int ocfs2_writepage(struct page *page, struct writeback_control *wbc)
|
||
{
|
||
trace_ocfs2_writepage(
|
||
(unsigned long long)OCFS2_I(page->mapping->host)->ip_blkno,
|
||
page->index);
|
||
|
||
return block_write_full_page(page, ocfs2_get_block, wbc);
|
||
}
|
||
|
||
/* Taken from ext3. We don't necessarily need the full blown
|
||
* functionality yet, but IMHO it's better to cut and paste the whole
|
||
* thing so we can avoid introducing our own bugs (and easily pick up
|
||
* their fixes when they happen) --Mark */
|
||
int walk_page_buffers( handle_t *handle,
|
||
struct buffer_head *head,
|
||
unsigned from,
|
||
unsigned to,
|
||
int *partial,
|
||
int (*fn)( handle_t *handle,
|
||
struct buffer_head *bh))
|
||
{
|
||
struct buffer_head *bh;
|
||
unsigned block_start, block_end;
|
||
unsigned blocksize = head->b_size;
|
||
int err, ret = 0;
|
||
struct buffer_head *next;
|
||
|
||
for ( bh = head, block_start = 0;
|
||
ret == 0 && (bh != head || !block_start);
|
||
block_start = block_end, bh = next)
|
||
{
|
||
next = bh->b_this_page;
|
||
block_end = block_start + blocksize;
|
||
if (block_end <= from || block_start >= to) {
|
||
if (partial && !buffer_uptodate(bh))
|
||
*partial = 1;
|
||
continue;
|
||
}
|
||
err = (*fn)(handle, bh);
|
||
if (!ret)
|
||
ret = err;
|
||
}
|
||
return ret;
|
||
}
|
||
|
||
static sector_t ocfs2_bmap(struct address_space *mapping, sector_t block)
|
||
{
|
||
sector_t status;
|
||
u64 p_blkno = 0;
|
||
int err = 0;
|
||
struct inode *inode = mapping->host;
|
||
|
||
trace_ocfs2_bmap((unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)block);
|
||
|
||
/*
|
||
* The swap code (ab-)uses ->bmap to get a block mapping and then
|
||
* bypasseѕ the file system for actual I/O. We really can't allow
|
||
* that on refcounted inodes, so we have to skip out here. And yes,
|
||
* 0 is the magic code for a bmap error..
|
||
*/
|
||
if (ocfs2_is_refcount_inode(inode))
|
||
return 0;
|
||
|
||
/* We don't need to lock journal system files, since they aren't
|
||
* accessed concurrently from multiple nodes.
|
||
*/
|
||
if (!INODE_JOURNAL(inode)) {
|
||
err = ocfs2_inode_lock(inode, NULL, 0);
|
||
if (err) {
|
||
if (err != -ENOENT)
|
||
mlog_errno(err);
|
||
goto bail;
|
||
}
|
||
down_read(&OCFS2_I(inode)->ip_alloc_sem);
|
||
}
|
||
|
||
if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
|
||
err = ocfs2_extent_map_get_blocks(inode, block, &p_blkno, NULL,
|
||
NULL);
|
||
|
||
if (!INODE_JOURNAL(inode)) {
|
||
up_read(&OCFS2_I(inode)->ip_alloc_sem);
|
||
ocfs2_inode_unlock(inode, 0);
|
||
}
|
||
|
||
if (err) {
|
||
mlog(ML_ERROR, "get_blocks() failed, block = %llu\n",
|
||
(unsigned long long)block);
|
||
mlog_errno(err);
|
||
goto bail;
|
||
}
|
||
|
||
bail:
|
||
status = err ? 0 : p_blkno;
|
||
|
||
return status;
|
||
}
|
||
|
||
static int ocfs2_releasepage(struct page *page, gfp_t wait)
|
||
{
|
||
if (!page_has_buffers(page))
|
||
return 0;
|
||
return try_to_free_buffers(page);
|
||
}
|
||
|
||
static void ocfs2_figure_cluster_boundaries(struct ocfs2_super *osb,
|
||
u32 cpos,
|
||
unsigned int *start,
|
||
unsigned int *end)
|
||
{
|
||
unsigned int cluster_start = 0, cluster_end = PAGE_SIZE;
|
||
|
||
if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits)) {
|
||
unsigned int cpp;
|
||
|
||
cpp = 1 << (PAGE_SHIFT - osb->s_clustersize_bits);
|
||
|
||
cluster_start = cpos % cpp;
|
||
cluster_start = cluster_start << osb->s_clustersize_bits;
|
||
|
||
cluster_end = cluster_start + osb->s_clustersize;
|
||
}
|
||
|
||
BUG_ON(cluster_start > PAGE_SIZE);
|
||
BUG_ON(cluster_end > PAGE_SIZE);
|
||
|
||
if (start)
|
||
*start = cluster_start;
|
||
if (end)
|
||
*end = cluster_end;
|
||
}
|
||
|
||
/*
|
||
* 'from' and 'to' are the region in the page to avoid zeroing.
|
||
*
|
||
* If pagesize > clustersize, this function will avoid zeroing outside
|
||
* of the cluster boundary.
|
||
*
|
||
* from == to == 0 is code for "zero the entire cluster region"
|
||
*/
|
||
static void ocfs2_clear_page_regions(struct page *page,
|
||
struct ocfs2_super *osb, u32 cpos,
|
||
unsigned from, unsigned to)
|
||
{
|
||
void *kaddr;
|
||
unsigned int cluster_start, cluster_end;
|
||
|
||
ocfs2_figure_cluster_boundaries(osb, cpos, &cluster_start, &cluster_end);
|
||
|
||
kaddr = kmap_atomic(page);
|
||
|
||
if (from || to) {
|
||
if (from > cluster_start)
|
||
memset(kaddr + cluster_start, 0, from - cluster_start);
|
||
if (to < cluster_end)
|
||
memset(kaddr + to, 0, cluster_end - to);
|
||
} else {
|
||
memset(kaddr + cluster_start, 0, cluster_end - cluster_start);
|
||
}
|
||
|
||
kunmap_atomic(kaddr);
|
||
}
|
||
|
||
/*
|
||
* Nonsparse file systems fully allocate before we get to the write
|
||
* code. This prevents ocfs2_write() from tagging the write as an
|
||
* allocating one, which means ocfs2_map_page_blocks() might try to
|
||
* read-in the blocks at the tail of our file. Avoid reading them by
|
||
* testing i_size against each block offset.
|
||
*/
|
||
static int ocfs2_should_read_blk(struct inode *inode, struct page *page,
|
||
unsigned int block_start)
|
||
{
|
||
u64 offset = page_offset(page) + block_start;
|
||
|
||
if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)))
|
||
return 1;
|
||
|
||
if (i_size_read(inode) > offset)
|
||
return 1;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* Some of this taken from __block_write_begin(). We already have our
|
||
* mapping by now though, and the entire write will be allocating or
|
||
* it won't, so not much need to use BH_New.
|
||
*
|
||
* This will also skip zeroing, which is handled externally.
|
||
*/
|
||
int ocfs2_map_page_blocks(struct page *page, u64 *p_blkno,
|
||
struct inode *inode, unsigned int from,
|
||
unsigned int to, int new)
|
||
{
|
||
int ret = 0;
|
||
struct buffer_head *head, *bh, *wait[2], **wait_bh = wait;
|
||
unsigned int block_end, block_start;
|
||
unsigned int bsize = i_blocksize(inode);
|
||
|
||
if (!page_has_buffers(page))
|
||
create_empty_buffers(page, bsize, 0);
|
||
|
||
head = page_buffers(page);
|
||
for (bh = head, block_start = 0; bh != head || !block_start;
|
||
bh = bh->b_this_page, block_start += bsize) {
|
||
block_end = block_start + bsize;
|
||
|
||
clear_buffer_new(bh);
|
||
|
||
/*
|
||
* Ignore blocks outside of our i/o range -
|
||
* they may belong to unallocated clusters.
|
||
*/
|
||
if (block_start >= to || block_end <= from) {
|
||
if (PageUptodate(page))
|
||
set_buffer_uptodate(bh);
|
||
continue;
|
||
}
|
||
|
||
/*
|
||
* For an allocating write with cluster size >= page
|
||
* size, we always write the entire page.
|
||
*/
|
||
if (new)
|
||
set_buffer_new(bh);
|
||
|
||
if (!buffer_mapped(bh)) {
|
||
map_bh(bh, inode->i_sb, *p_blkno);
|
||
clean_bdev_bh_alias(bh);
|
||
}
|
||
|
||
if (PageUptodate(page)) {
|
||
if (!buffer_uptodate(bh))
|
||
set_buffer_uptodate(bh);
|
||
} else if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
|
||
!buffer_new(bh) &&
|
||
ocfs2_should_read_blk(inode, page, block_start) &&
|
||
(block_start < from || block_end > to)) {
|
||
ll_rw_block(REQ_OP_READ, 0, 1, &bh);
|
||
*wait_bh++=bh;
|
||
}
|
||
|
||
*p_blkno = *p_blkno + 1;
|
||
}
|
||
|
||
/*
|
||
* If we issued read requests - let them complete.
|
||
*/
|
||
while(wait_bh > wait) {
|
||
wait_on_buffer(*--wait_bh);
|
||
if (!buffer_uptodate(*wait_bh))
|
||
ret = -EIO;
|
||
}
|
||
|
||
if (ret == 0 || !new)
|
||
return ret;
|
||
|
||
/*
|
||
* If we get -EIO above, zero out any newly allocated blocks
|
||
* to avoid exposing stale data.
|
||
*/
|
||
bh = head;
|
||
block_start = 0;
|
||
do {
|
||
block_end = block_start + bsize;
|
||
if (block_end <= from)
|
||
goto next_bh;
|
||
if (block_start >= to)
|
||
break;
|
||
|
||
zero_user(page, block_start, bh->b_size);
|
||
set_buffer_uptodate(bh);
|
||
mark_buffer_dirty(bh);
|
||
|
||
next_bh:
|
||
block_start = block_end;
|
||
bh = bh->b_this_page;
|
||
} while (bh != head);
|
||
|
||
return ret;
|
||
}
|
||
|
||
#if (PAGE_SIZE >= OCFS2_MAX_CLUSTERSIZE)
|
||
#define OCFS2_MAX_CTXT_PAGES 1
|
||
#else
|
||
#define OCFS2_MAX_CTXT_PAGES (OCFS2_MAX_CLUSTERSIZE / PAGE_SIZE)
|
||
#endif
|
||
|
||
#define OCFS2_MAX_CLUSTERS_PER_PAGE (PAGE_SIZE / OCFS2_MIN_CLUSTERSIZE)
|
||
|
||
struct ocfs2_unwritten_extent {
|
||
struct list_head ue_node;
|
||
struct list_head ue_ip_node;
|
||
u32 ue_cpos;
|
||
u32 ue_phys;
|
||
};
|
||
|
||
/*
|
||
* Describe the state of a single cluster to be written to.
|
||
*/
|
||
struct ocfs2_write_cluster_desc {
|
||
u32 c_cpos;
|
||
u32 c_phys;
|
||
/*
|
||
* Give this a unique field because c_phys eventually gets
|
||
* filled.
|
||
*/
|
||
unsigned c_new;
|
||
unsigned c_clear_unwritten;
|
||
unsigned c_needs_zero;
|
||
};
|
||
|
||
struct ocfs2_write_ctxt {
|
||
/* Logical cluster position / len of write */
|
||
u32 w_cpos;
|
||
u32 w_clen;
|
||
|
||
/* First cluster allocated in a nonsparse extend */
|
||
u32 w_first_new_cpos;
|
||
|
||
/* Type of caller. Must be one of buffer, mmap, direct. */
|
||
ocfs2_write_type_t w_type;
|
||
|
||
struct ocfs2_write_cluster_desc w_desc[OCFS2_MAX_CLUSTERS_PER_PAGE];
|
||
|
||
/*
|
||
* This is true if page_size > cluster_size.
|
||
*
|
||
* It triggers a set of special cases during write which might
|
||
* have to deal with allocating writes to partial pages.
|
||
*/
|
||
unsigned int w_large_pages;
|
||
|
||
/*
|
||
* Pages involved in this write.
|
||
*
|
||
* w_target_page is the page being written to by the user.
|
||
*
|
||
* w_pages is an array of pages which always contains
|
||
* w_target_page, and in the case of an allocating write with
|
||
* page_size < cluster size, it will contain zero'd and mapped
|
||
* pages adjacent to w_target_page which need to be written
|
||
* out in so that future reads from that region will get
|
||
* zero's.
|
||
*/
|
||
unsigned int w_num_pages;
|
||
struct page *w_pages[OCFS2_MAX_CTXT_PAGES];
|
||
struct page *w_target_page;
|
||
|
||
/*
|
||
* w_target_locked is used for page_mkwrite path indicating no unlocking
|
||
* against w_target_page in ocfs2_write_end_nolock.
|
||
*/
|
||
unsigned int w_target_locked:1;
|
||
|
||
/*
|
||
* ocfs2_write_end() uses this to know what the real range to
|
||
* write in the target should be.
|
||
*/
|
||
unsigned int w_target_from;
|
||
unsigned int w_target_to;
|
||
|
||
/*
|
||
* We could use journal_current_handle() but this is cleaner,
|
||
* IMHO -Mark
|
||
*/
|
||
handle_t *w_handle;
|
||
|
||
struct buffer_head *w_di_bh;
|
||
|
||
struct ocfs2_cached_dealloc_ctxt w_dealloc;
|
||
|
||
struct list_head w_unwritten_list;
|
||
unsigned int w_unwritten_count;
|
||
};
|
||
|
||
void ocfs2_unlock_and_free_pages(struct page **pages, int num_pages)
|
||
{
|
||
int i;
|
||
|
||
for(i = 0; i < num_pages; i++) {
|
||
if (pages[i]) {
|
||
unlock_page(pages[i]);
|
||
mark_page_accessed(pages[i]);
|
||
put_page(pages[i]);
|
||
}
|
||
}
|
||
}
|
||
|
||
static void ocfs2_unlock_pages(struct ocfs2_write_ctxt *wc)
|
||
{
|
||
int i;
|
||
|
||
/*
|
||
* w_target_locked is only set to true in the page_mkwrite() case.
|
||
* The intent is to allow us to lock the target page from write_begin()
|
||
* to write_end(). The caller must hold a ref on w_target_page.
|
||
*/
|
||
if (wc->w_target_locked) {
|
||
BUG_ON(!wc->w_target_page);
|
||
for (i = 0; i < wc->w_num_pages; i++) {
|
||
if (wc->w_target_page == wc->w_pages[i]) {
|
||
wc->w_pages[i] = NULL;
|
||
break;
|
||
}
|
||
}
|
||
mark_page_accessed(wc->w_target_page);
|
||
put_page(wc->w_target_page);
|
||
}
|
||
ocfs2_unlock_and_free_pages(wc->w_pages, wc->w_num_pages);
|
||
}
|
||
|
||
static void ocfs2_free_unwritten_list(struct inode *inode,
|
||
struct list_head *head)
|
||
{
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
struct ocfs2_unwritten_extent *ue = NULL, *tmp = NULL;
|
||
|
||
list_for_each_entry_safe(ue, tmp, head, ue_node) {
|
||
list_del(&ue->ue_node);
|
||
spin_lock(&oi->ip_lock);
|
||
list_del(&ue->ue_ip_node);
|
||
spin_unlock(&oi->ip_lock);
|
||
kfree(ue);
|
||
}
|
||
}
|
||
|
||
static void ocfs2_free_write_ctxt(struct inode *inode,
|
||
struct ocfs2_write_ctxt *wc)
|
||
{
|
||
ocfs2_free_unwritten_list(inode, &wc->w_unwritten_list);
|
||
ocfs2_unlock_pages(wc);
|
||
brelse(wc->w_di_bh);
|
||
kfree(wc);
|
||
}
|
||
|
||
static int ocfs2_alloc_write_ctxt(struct ocfs2_write_ctxt **wcp,
|
||
struct ocfs2_super *osb, loff_t pos,
|
||
unsigned len, ocfs2_write_type_t type,
|
||
struct buffer_head *di_bh)
|
||
{
|
||
u32 cend;
|
||
struct ocfs2_write_ctxt *wc;
|
||
|
||
wc = kzalloc(sizeof(struct ocfs2_write_ctxt), GFP_NOFS);
|
||
if (!wc)
|
||
return -ENOMEM;
|
||
|
||
wc->w_cpos = pos >> osb->s_clustersize_bits;
|
||
wc->w_first_new_cpos = UINT_MAX;
|
||
cend = (pos + len - 1) >> osb->s_clustersize_bits;
|
||
wc->w_clen = cend - wc->w_cpos + 1;
|
||
get_bh(di_bh);
|
||
wc->w_di_bh = di_bh;
|
||
wc->w_type = type;
|
||
|
||
if (unlikely(PAGE_SHIFT > osb->s_clustersize_bits))
|
||
wc->w_large_pages = 1;
|
||
else
|
||
wc->w_large_pages = 0;
|
||
|
||
ocfs2_init_dealloc_ctxt(&wc->w_dealloc);
|
||
INIT_LIST_HEAD(&wc->w_unwritten_list);
|
||
|
||
*wcp = wc;
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* If a page has any new buffers, zero them out here, and mark them uptodate
|
||
* and dirty so they'll be written out (in order to prevent uninitialised
|
||
* block data from leaking). And clear the new bit.
|
||
*/
|
||
static void ocfs2_zero_new_buffers(struct page *page, unsigned from, unsigned to)
|
||
{
|
||
unsigned int block_start, block_end;
|
||
struct buffer_head *head, *bh;
|
||
|
||
BUG_ON(!PageLocked(page));
|
||
if (!page_has_buffers(page))
|
||
return;
|
||
|
||
bh = head = page_buffers(page);
|
||
block_start = 0;
|
||
do {
|
||
block_end = block_start + bh->b_size;
|
||
|
||
if (buffer_new(bh)) {
|
||
if (block_end > from && block_start < to) {
|
||
if (!PageUptodate(page)) {
|
||
unsigned start, end;
|
||
|
||
start = max(from, block_start);
|
||
end = min(to, block_end);
|
||
|
||
zero_user_segment(page, start, end);
|
||
set_buffer_uptodate(bh);
|
||
}
|
||
|
||
clear_buffer_new(bh);
|
||
mark_buffer_dirty(bh);
|
||
}
|
||
}
|
||
|
||
block_start = block_end;
|
||
bh = bh->b_this_page;
|
||
} while (bh != head);
|
||
}
|
||
|
||
/*
|
||
* Only called when we have a failure during allocating write to write
|
||
* zero's to the newly allocated region.
|
||
*/
|
||
static void ocfs2_write_failure(struct inode *inode,
|
||
struct ocfs2_write_ctxt *wc,
|
||
loff_t user_pos, unsigned user_len)
|
||
{
|
||
int i;
|
||
unsigned from = user_pos & (PAGE_SIZE - 1),
|
||
to = user_pos + user_len;
|
||
struct page *tmppage;
|
||
|
||
if (wc->w_target_page)
|
||
ocfs2_zero_new_buffers(wc->w_target_page, from, to);
|
||
|
||
for(i = 0; i < wc->w_num_pages; i++) {
|
||
tmppage = wc->w_pages[i];
|
||
|
||
if (tmppage && page_has_buffers(tmppage)) {
|
||
if (ocfs2_should_order_data(inode))
|
||
ocfs2_jbd2_inode_add_write(wc->w_handle, inode,
|
||
user_pos, user_len);
|
||
|
||
block_commit_write(tmppage, from, to);
|
||
}
|
||
}
|
||
}
|
||
|
||
static int ocfs2_prepare_page_for_write(struct inode *inode, u64 *p_blkno,
|
||
struct ocfs2_write_ctxt *wc,
|
||
struct page *page, u32 cpos,
|
||
loff_t user_pos, unsigned user_len,
|
||
int new)
|
||
{
|
||
int ret;
|
||
unsigned int map_from = 0, map_to = 0;
|
||
unsigned int cluster_start, cluster_end;
|
||
unsigned int user_data_from = 0, user_data_to = 0;
|
||
|
||
ocfs2_figure_cluster_boundaries(OCFS2_SB(inode->i_sb), cpos,
|
||
&cluster_start, &cluster_end);
|
||
|
||
/* treat the write as new if the a hole/lseek spanned across
|
||
* the page boundary.
|
||
*/
|
||
new = new | ((i_size_read(inode) <= page_offset(page)) &&
|
||
(page_offset(page) <= user_pos));
|
||
|
||
if (page == wc->w_target_page) {
|
||
map_from = user_pos & (PAGE_SIZE - 1);
|
||
map_to = map_from + user_len;
|
||
|
||
if (new)
|
||
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
||
cluster_start, cluster_end,
|
||
new);
|
||
else
|
||
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
||
map_from, map_to, new);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
user_data_from = map_from;
|
||
user_data_to = map_to;
|
||
if (new) {
|
||
map_from = cluster_start;
|
||
map_to = cluster_end;
|
||
}
|
||
} else {
|
||
/*
|
||
* If we haven't allocated the new page yet, we
|
||
* shouldn't be writing it out without copying user
|
||
* data. This is likely a math error from the caller.
|
||
*/
|
||
BUG_ON(!new);
|
||
|
||
map_from = cluster_start;
|
||
map_to = cluster_end;
|
||
|
||
ret = ocfs2_map_page_blocks(page, p_blkno, inode,
|
||
cluster_start, cluster_end, new);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Parts of newly allocated pages need to be zero'd.
|
||
*
|
||
* Above, we have also rewritten 'to' and 'from' - as far as
|
||
* the rest of the function is concerned, the entire cluster
|
||
* range inside of a page needs to be written.
|
||
*
|
||
* We can skip this if the page is up to date - it's already
|
||
* been zero'd from being read in as a hole.
|
||
*/
|
||
if (new && !PageUptodate(page))
|
||
ocfs2_clear_page_regions(page, OCFS2_SB(inode->i_sb),
|
||
cpos, user_data_from, user_data_to);
|
||
|
||
flush_dcache_page(page);
|
||
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* This function will only grab one clusters worth of pages.
|
||
*/
|
||
static int ocfs2_grab_pages_for_write(struct address_space *mapping,
|
||
struct ocfs2_write_ctxt *wc,
|
||
u32 cpos, loff_t user_pos,
|
||
unsigned user_len, int new,
|
||
struct page *mmap_page)
|
||
{
|
||
int ret = 0, i;
|
||
unsigned long start, target_index, end_index, index;
|
||
struct inode *inode = mapping->host;
|
||
loff_t last_byte;
|
||
|
||
target_index = user_pos >> PAGE_SHIFT;
|
||
|
||
/*
|
||
* Figure out how many pages we'll be manipulating here. For
|
||
* non allocating write, we just change the one
|
||
* page. Otherwise, we'll need a whole clusters worth. If we're
|
||
* writing past i_size, we only need enough pages to cover the
|
||
* last page of the write.
|
||
*/
|
||
if (new) {
|
||
wc->w_num_pages = ocfs2_pages_per_cluster(inode->i_sb);
|
||
start = ocfs2_align_clusters_to_page_index(inode->i_sb, cpos);
|
||
/*
|
||
* We need the index *past* the last page we could possibly
|
||
* touch. This is the page past the end of the write or
|
||
* i_size, whichever is greater.
|
||
*/
|
||
last_byte = max(user_pos + user_len, i_size_read(inode));
|
||
BUG_ON(last_byte < 1);
|
||
end_index = ((last_byte - 1) >> PAGE_SHIFT) + 1;
|
||
if ((start + wc->w_num_pages) > end_index)
|
||
wc->w_num_pages = end_index - start;
|
||
} else {
|
||
wc->w_num_pages = 1;
|
||
start = target_index;
|
||
}
|
||
end_index = (user_pos + user_len - 1) >> PAGE_SHIFT;
|
||
|
||
for(i = 0; i < wc->w_num_pages; i++) {
|
||
index = start + i;
|
||
|
||
if (index >= target_index && index <= end_index &&
|
||
wc->w_type == OCFS2_WRITE_MMAP) {
|
||
/*
|
||
* ocfs2_pagemkwrite() is a little different
|
||
* and wants us to directly use the page
|
||
* passed in.
|
||
*/
|
||
lock_page(mmap_page);
|
||
|
||
/* Exit and let the caller retry */
|
||
if (mmap_page->mapping != mapping) {
|
||
WARN_ON(mmap_page->mapping);
|
||
unlock_page(mmap_page);
|
||
ret = -EAGAIN;
|
||
goto out;
|
||
}
|
||
|
||
get_page(mmap_page);
|
||
wc->w_pages[i] = mmap_page;
|
||
wc->w_target_locked = true;
|
||
} else if (index >= target_index && index <= end_index &&
|
||
wc->w_type == OCFS2_WRITE_DIRECT) {
|
||
/* Direct write has no mapping page. */
|
||
wc->w_pages[i] = NULL;
|
||
continue;
|
||
} else {
|
||
wc->w_pages[i] = find_or_create_page(mapping, index,
|
||
GFP_NOFS);
|
||
if (!wc->w_pages[i]) {
|
||
ret = -ENOMEM;
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
wait_for_stable_page(wc->w_pages[i]);
|
||
|
||
if (index == target_index)
|
||
wc->w_target_page = wc->w_pages[i];
|
||
}
|
||
out:
|
||
if (ret)
|
||
wc->w_target_locked = false;
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Prepare a single cluster for write one cluster into the file.
|
||
*/
|
||
static int ocfs2_write_cluster(struct address_space *mapping,
|
||
u32 *phys, unsigned int new,
|
||
unsigned int clear_unwritten,
|
||
unsigned int should_zero,
|
||
struct ocfs2_alloc_context *data_ac,
|
||
struct ocfs2_alloc_context *meta_ac,
|
||
struct ocfs2_write_ctxt *wc, u32 cpos,
|
||
loff_t user_pos, unsigned user_len)
|
||
{
|
||
int ret, i;
|
||
u64 p_blkno;
|
||
struct inode *inode = mapping->host;
|
||
struct ocfs2_extent_tree et;
|
||
int bpc = ocfs2_clusters_to_blocks(inode->i_sb, 1);
|
||
|
||
if (new) {
|
||
u32 tmp_pos;
|
||
|
||
/*
|
||
* This is safe to call with the page locks - it won't take
|
||
* any additional semaphores or cluster locks.
|
||
*/
|
||
tmp_pos = cpos;
|
||
ret = ocfs2_add_inode_data(OCFS2_SB(inode->i_sb), inode,
|
||
&tmp_pos, 1, !clear_unwritten,
|
||
wc->w_di_bh, wc->w_handle,
|
||
data_ac, meta_ac, NULL);
|
||
/*
|
||
* This shouldn't happen because we must have already
|
||
* calculated the correct meta data allocation required. The
|
||
* internal tree allocation code should know how to increase
|
||
* transaction credits itself.
|
||
*
|
||
* If need be, we could handle -EAGAIN for a
|
||
* RESTART_TRANS here.
|
||
*/
|
||
mlog_bug_on_msg(ret == -EAGAIN,
|
||
"Inode %llu: EAGAIN return during allocation.\n",
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
} else if (clear_unwritten) {
|
||
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
|
||
wc->w_di_bh);
|
||
ret = ocfs2_mark_extent_written(inode, &et,
|
||
wc->w_handle, cpos, 1, *phys,
|
||
meta_ac, &wc->w_dealloc);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* The only reason this should fail is due to an inability to
|
||
* find the extent added.
|
||
*/
|
||
ret = ocfs2_get_clusters(inode, cpos, phys, NULL, NULL);
|
||
if (ret < 0) {
|
||
mlog(ML_ERROR, "Get physical blkno failed for inode %llu, "
|
||
"at logical cluster %u",
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno, cpos);
|
||
goto out;
|
||
}
|
||
|
||
BUG_ON(*phys == 0);
|
||
|
||
p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, *phys);
|
||
if (!should_zero)
|
||
p_blkno += (user_pos >> inode->i_sb->s_blocksize_bits) & (u64)(bpc - 1);
|
||
|
||
for(i = 0; i < wc->w_num_pages; i++) {
|
||
int tmpret;
|
||
|
||
/* This is the direct io target page. */
|
||
if (wc->w_pages[i] == NULL) {
|
||
p_blkno++;
|
||
continue;
|
||
}
|
||
|
||
tmpret = ocfs2_prepare_page_for_write(inode, &p_blkno, wc,
|
||
wc->w_pages[i], cpos,
|
||
user_pos, user_len,
|
||
should_zero);
|
||
if (tmpret) {
|
||
mlog_errno(tmpret);
|
||
if (ret == 0)
|
||
ret = tmpret;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* We only have cleanup to do in case of allocating write.
|
||
*/
|
||
if (ret && new)
|
||
ocfs2_write_failure(inode, wc, user_pos, user_len);
|
||
|
||
out:
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_write_cluster_by_desc(struct address_space *mapping,
|
||
struct ocfs2_alloc_context *data_ac,
|
||
struct ocfs2_alloc_context *meta_ac,
|
||
struct ocfs2_write_ctxt *wc,
|
||
loff_t pos, unsigned len)
|
||
{
|
||
int ret, i;
|
||
loff_t cluster_off;
|
||
unsigned int local_len = len;
|
||
struct ocfs2_write_cluster_desc *desc;
|
||
struct ocfs2_super *osb = OCFS2_SB(mapping->host->i_sb);
|
||
|
||
for (i = 0; i < wc->w_clen; i++) {
|
||
desc = &wc->w_desc[i];
|
||
|
||
/*
|
||
* We have to make sure that the total write passed in
|
||
* doesn't extend past a single cluster.
|
||
*/
|
||
local_len = len;
|
||
cluster_off = pos & (osb->s_clustersize - 1);
|
||
if ((cluster_off + local_len) > osb->s_clustersize)
|
||
local_len = osb->s_clustersize - cluster_off;
|
||
|
||
ret = ocfs2_write_cluster(mapping, &desc->c_phys,
|
||
desc->c_new,
|
||
desc->c_clear_unwritten,
|
||
desc->c_needs_zero,
|
||
data_ac, meta_ac,
|
||
wc, desc->c_cpos, pos, local_len);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
len -= local_len;
|
||
pos += local_len;
|
||
}
|
||
|
||
ret = 0;
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* ocfs2_write_end() wants to know which parts of the target page it
|
||
* should complete the write on. It's easiest to compute them ahead of
|
||
* time when a more complete view of the write is available.
|
||
*/
|
||
static void ocfs2_set_target_boundaries(struct ocfs2_super *osb,
|
||
struct ocfs2_write_ctxt *wc,
|
||
loff_t pos, unsigned len, int alloc)
|
||
{
|
||
struct ocfs2_write_cluster_desc *desc;
|
||
|
||
wc->w_target_from = pos & (PAGE_SIZE - 1);
|
||
wc->w_target_to = wc->w_target_from + len;
|
||
|
||
if (alloc == 0)
|
||
return;
|
||
|
||
/*
|
||
* Allocating write - we may have different boundaries based
|
||
* on page size and cluster size.
|
||
*
|
||
* NOTE: We can no longer compute one value from the other as
|
||
* the actual write length and user provided length may be
|
||
* different.
|
||
*/
|
||
|
||
if (wc->w_large_pages) {
|
||
/*
|
||
* We only care about the 1st and last cluster within
|
||
* our range and whether they should be zero'd or not. Either
|
||
* value may be extended out to the start/end of a
|
||
* newly allocated cluster.
|
||
*/
|
||
desc = &wc->w_desc[0];
|
||
if (desc->c_needs_zero)
|
||
ocfs2_figure_cluster_boundaries(osb,
|
||
desc->c_cpos,
|
||
&wc->w_target_from,
|
||
NULL);
|
||
|
||
desc = &wc->w_desc[wc->w_clen - 1];
|
||
if (desc->c_needs_zero)
|
||
ocfs2_figure_cluster_boundaries(osb,
|
||
desc->c_cpos,
|
||
NULL,
|
||
&wc->w_target_to);
|
||
} else {
|
||
wc->w_target_from = 0;
|
||
wc->w_target_to = PAGE_SIZE;
|
||
}
|
||
}
|
||
|
||
/*
|
||
* Check if this extent is marked UNWRITTEN by direct io. If so, we need not to
|
||
* do the zero work. And should not to clear UNWRITTEN since it will be cleared
|
||
* by the direct io procedure.
|
||
* If this is a new extent that allocated by direct io, we should mark it in
|
||
* the ip_unwritten_list.
|
||
*/
|
||
static int ocfs2_unwritten_check(struct inode *inode,
|
||
struct ocfs2_write_ctxt *wc,
|
||
struct ocfs2_write_cluster_desc *desc)
|
||
{
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
struct ocfs2_unwritten_extent *ue = NULL, *new = NULL;
|
||
int ret = 0;
|
||
|
||
if (!desc->c_needs_zero)
|
||
return 0;
|
||
|
||
retry:
|
||
spin_lock(&oi->ip_lock);
|
||
/* Needs not to zero no metter buffer or direct. The one who is zero
|
||
* the cluster is doing zero. And he will clear unwritten after all
|
||
* cluster io finished. */
|
||
list_for_each_entry(ue, &oi->ip_unwritten_list, ue_ip_node) {
|
||
if (desc->c_cpos == ue->ue_cpos) {
|
||
BUG_ON(desc->c_new);
|
||
desc->c_needs_zero = 0;
|
||
desc->c_clear_unwritten = 0;
|
||
goto unlock;
|
||
}
|
||
}
|
||
|
||
if (wc->w_type != OCFS2_WRITE_DIRECT)
|
||
goto unlock;
|
||
|
||
if (new == NULL) {
|
||
spin_unlock(&oi->ip_lock);
|
||
new = kmalloc(sizeof(struct ocfs2_unwritten_extent),
|
||
GFP_NOFS);
|
||
if (new == NULL) {
|
||
ret = -ENOMEM;
|
||
goto out;
|
||
}
|
||
goto retry;
|
||
}
|
||
/* This direct write will doing zero. */
|
||
new->ue_cpos = desc->c_cpos;
|
||
new->ue_phys = desc->c_phys;
|
||
desc->c_clear_unwritten = 0;
|
||
list_add_tail(&new->ue_ip_node, &oi->ip_unwritten_list);
|
||
list_add_tail(&new->ue_node, &wc->w_unwritten_list);
|
||
wc->w_unwritten_count++;
|
||
new = NULL;
|
||
unlock:
|
||
spin_unlock(&oi->ip_lock);
|
||
out:
|
||
kfree(new);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Populate each single-cluster write descriptor in the write context
|
||
* with information about the i/o to be done.
|
||
*
|
||
* Returns the number of clusters that will have to be allocated, as
|
||
* well as a worst case estimate of the number of extent records that
|
||
* would have to be created during a write to an unwritten region.
|
||
*/
|
||
static int ocfs2_populate_write_desc(struct inode *inode,
|
||
struct ocfs2_write_ctxt *wc,
|
||
unsigned int *clusters_to_alloc,
|
||
unsigned int *extents_to_split)
|
||
{
|
||
int ret;
|
||
struct ocfs2_write_cluster_desc *desc;
|
||
unsigned int num_clusters = 0;
|
||
unsigned int ext_flags = 0;
|
||
u32 phys = 0;
|
||
int i;
|
||
|
||
*clusters_to_alloc = 0;
|
||
*extents_to_split = 0;
|
||
|
||
for (i = 0; i < wc->w_clen; i++) {
|
||
desc = &wc->w_desc[i];
|
||
desc->c_cpos = wc->w_cpos + i;
|
||
|
||
if (num_clusters == 0) {
|
||
/*
|
||
* Need to look up the next extent record.
|
||
*/
|
||
ret = ocfs2_get_clusters(inode, desc->c_cpos, &phys,
|
||
&num_clusters, &ext_flags);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
/* We should already CoW the refcountd extent. */
|
||
BUG_ON(ext_flags & OCFS2_EXT_REFCOUNTED);
|
||
|
||
/*
|
||
* Assume worst case - that we're writing in
|
||
* the middle of the extent.
|
||
*
|
||
* We can assume that the write proceeds from
|
||
* left to right, in which case the extent
|
||
* insert code is smart enough to coalesce the
|
||
* next splits into the previous records created.
|
||
*/
|
||
if (ext_flags & OCFS2_EXT_UNWRITTEN)
|
||
*extents_to_split = *extents_to_split + 2;
|
||
} else if (phys) {
|
||
/*
|
||
* Only increment phys if it doesn't describe
|
||
* a hole.
|
||
*/
|
||
phys++;
|
||
}
|
||
|
||
/*
|
||
* If w_first_new_cpos is < UINT_MAX, we have a non-sparse
|
||
* file that got extended. w_first_new_cpos tells us
|
||
* where the newly allocated clusters are so we can
|
||
* zero them.
|
||
*/
|
||
if (desc->c_cpos >= wc->w_first_new_cpos) {
|
||
BUG_ON(phys == 0);
|
||
desc->c_needs_zero = 1;
|
||
}
|
||
|
||
desc->c_phys = phys;
|
||
if (phys == 0) {
|
||
desc->c_new = 1;
|
||
desc->c_needs_zero = 1;
|
||
desc->c_clear_unwritten = 1;
|
||
*clusters_to_alloc = *clusters_to_alloc + 1;
|
||
}
|
||
|
||
if (ext_flags & OCFS2_EXT_UNWRITTEN) {
|
||
desc->c_clear_unwritten = 1;
|
||
desc->c_needs_zero = 1;
|
||
}
|
||
|
||
ret = ocfs2_unwritten_check(inode, wc, desc);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
num_clusters--;
|
||
}
|
||
|
||
ret = 0;
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_write_begin_inline(struct address_space *mapping,
|
||
struct inode *inode,
|
||
struct ocfs2_write_ctxt *wc)
|
||
{
|
||
int ret;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
struct page *page;
|
||
handle_t *handle;
|
||
struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
||
|
||
handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS);
|
||
if (IS_ERR(handle)) {
|
||
ret = PTR_ERR(handle);
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
page = find_or_create_page(mapping, 0, GFP_NOFS);
|
||
if (!page) {
|
||
ocfs2_commit_trans(osb, handle);
|
||
ret = -ENOMEM;
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
/*
|
||
* If we don't set w_num_pages then this page won't get unlocked
|
||
* and freed on cleanup of the write context.
|
||
*/
|
||
wc->w_pages[0] = wc->w_target_page = page;
|
||
wc->w_num_pages = 1;
|
||
|
||
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
|
||
OCFS2_JOURNAL_ACCESS_WRITE);
|
||
if (ret) {
|
||
ocfs2_commit_trans(osb, handle);
|
||
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
if (!(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL))
|
||
ocfs2_set_inode_data_inline(inode, di);
|
||
|
||
if (!PageUptodate(page)) {
|
||
ret = ocfs2_read_inline_data(inode, page, wc->w_di_bh);
|
||
if (ret) {
|
||
ocfs2_commit_trans(osb, handle);
|
||
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
wc->w_handle = handle;
|
||
out:
|
||
return ret;
|
||
}
|
||
|
||
int ocfs2_size_fits_inline_data(struct buffer_head *di_bh, u64 new_size)
|
||
{
|
||
struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data;
|
||
|
||
if (new_size <= le16_to_cpu(di->id2.i_data.id_count))
|
||
return 1;
|
||
return 0;
|
||
}
|
||
|
||
static int ocfs2_try_to_write_inline_data(struct address_space *mapping,
|
||
struct inode *inode, loff_t pos,
|
||
unsigned len, struct page *mmap_page,
|
||
struct ocfs2_write_ctxt *wc)
|
||
{
|
||
int ret, written = 0;
|
||
loff_t end = pos + len;
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
struct ocfs2_dinode *di = NULL;
|
||
|
||
trace_ocfs2_try_to_write_inline_data((unsigned long long)oi->ip_blkno,
|
||
len, (unsigned long long)pos,
|
||
oi->ip_dyn_features);
|
||
|
||
/*
|
||
* Handle inodes which already have inline data 1st.
|
||
*/
|
||
if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
|
||
if (mmap_page == NULL &&
|
||
ocfs2_size_fits_inline_data(wc->w_di_bh, end))
|
||
goto do_inline_write;
|
||
|
||
/*
|
||
* The write won't fit - we have to give this inode an
|
||
* inline extent list now.
|
||
*/
|
||
ret = ocfs2_convert_inline_data_to_extents(inode, wc->w_di_bh);
|
||
if (ret)
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
/*
|
||
* Check whether the inode can accept inline data.
|
||
*/
|
||
if (oi->ip_clusters != 0 || i_size_read(inode) != 0)
|
||
return 0;
|
||
|
||
/*
|
||
* Check whether the write can fit.
|
||
*/
|
||
di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
||
if (mmap_page ||
|
||
end > ocfs2_max_inline_data_with_xattr(inode->i_sb, di))
|
||
return 0;
|
||
|
||
do_inline_write:
|
||
ret = ocfs2_write_begin_inline(mapping, inode, wc);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
/*
|
||
* This signals to the caller that the data can be written
|
||
* inline.
|
||
*/
|
||
written = 1;
|
||
out:
|
||
return written ? written : ret;
|
||
}
|
||
|
||
/*
|
||
* This function only does anything for file systems which can't
|
||
* handle sparse files.
|
||
*
|
||
* What we want to do here is fill in any hole between the current end
|
||
* of allocation and the end of our write. That way the rest of the
|
||
* write path can treat it as an non-allocating write, which has no
|
||
* special case code for sparse/nonsparse files.
|
||
*/
|
||
static int ocfs2_expand_nonsparse_inode(struct inode *inode,
|
||
struct buffer_head *di_bh,
|
||
loff_t pos, unsigned len,
|
||
struct ocfs2_write_ctxt *wc)
|
||
{
|
||
int ret;
|
||
loff_t newsize = pos + len;
|
||
|
||
BUG_ON(ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
|
||
|
||
if (newsize <= i_size_read(inode))
|
||
return 0;
|
||
|
||
ret = ocfs2_extend_no_holes(inode, di_bh, newsize, pos);
|
||
if (ret)
|
||
mlog_errno(ret);
|
||
|
||
/* There is no wc if this is call from direct. */
|
||
if (wc)
|
||
wc->w_first_new_cpos =
|
||
ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode));
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_zero_tail(struct inode *inode, struct buffer_head *di_bh,
|
||
loff_t pos)
|
||
{
|
||
int ret = 0;
|
||
|
||
BUG_ON(!ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb)));
|
||
if (pos > i_size_read(inode))
|
||
ret = ocfs2_zero_extend(inode, di_bh, pos);
|
||
|
||
return ret;
|
||
}
|
||
|
||
int ocfs2_write_begin_nolock(struct address_space *mapping,
|
||
loff_t pos, unsigned len, ocfs2_write_type_t type,
|
||
struct page **pagep, void **fsdata,
|
||
struct buffer_head *di_bh, struct page *mmap_page)
|
||
{
|
||
int ret, cluster_of_pages, credits = OCFS2_INODE_UPDATE_CREDITS;
|
||
unsigned int clusters_to_alloc, extents_to_split, clusters_need = 0;
|
||
struct ocfs2_write_ctxt *wc;
|
||
struct inode *inode = mapping->host;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
struct ocfs2_dinode *di;
|
||
struct ocfs2_alloc_context *data_ac = NULL;
|
||
struct ocfs2_alloc_context *meta_ac = NULL;
|
||
handle_t *handle;
|
||
struct ocfs2_extent_tree et;
|
||
int try_free = 1, ret1;
|
||
|
||
try_again:
|
||
ret = ocfs2_alloc_write_ctxt(&wc, osb, pos, len, type, di_bh);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
return ret;
|
||
}
|
||
|
||
if (ocfs2_supports_inline_data(osb)) {
|
||
ret = ocfs2_try_to_write_inline_data(mapping, inode, pos, len,
|
||
mmap_page, wc);
|
||
if (ret == 1) {
|
||
ret = 0;
|
||
goto success;
|
||
}
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
/* Direct io change i_size late, should not zero tail here. */
|
||
if (type != OCFS2_WRITE_DIRECT) {
|
||
if (ocfs2_sparse_alloc(osb))
|
||
ret = ocfs2_zero_tail(inode, di_bh, pos);
|
||
else
|
||
ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
|
||
len, wc);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
ret = ocfs2_check_range_for_refcount(inode, pos, len);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
} else if (ret == 1) {
|
||
clusters_need = wc->w_clen;
|
||
ret = ocfs2_refcount_cow(inode, di_bh,
|
||
wc->w_cpos, wc->w_clen, UINT_MAX);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
ret = ocfs2_populate_write_desc(inode, wc, &clusters_to_alloc,
|
||
&extents_to_split);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
clusters_need += clusters_to_alloc;
|
||
|
||
di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
||
|
||
trace_ocfs2_write_begin_nolock(
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(long long)i_size_read(inode),
|
||
le32_to_cpu(di->i_clusters),
|
||
pos, len, type, mmap_page,
|
||
clusters_to_alloc, extents_to_split);
|
||
|
||
/*
|
||
* We set w_target_from, w_target_to here so that
|
||
* ocfs2_write_end() knows which range in the target page to
|
||
* write out. An allocation requires that we write the entire
|
||
* cluster range.
|
||
*/
|
||
if (clusters_to_alloc || extents_to_split) {
|
||
/*
|
||
* XXX: We are stretching the limits of
|
||
* ocfs2_lock_allocators(). It greatly over-estimates
|
||
* the work to be done.
|
||
*/
|
||
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode),
|
||
wc->w_di_bh);
|
||
ret = ocfs2_lock_allocators(inode, &et,
|
||
clusters_to_alloc, extents_to_split,
|
||
&data_ac, &meta_ac);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
if (data_ac)
|
||
data_ac->ac_resv = &OCFS2_I(inode)->ip_la_data_resv;
|
||
|
||
credits = ocfs2_calc_extend_credits(inode->i_sb,
|
||
&di->id2.i_list);
|
||
} else if (type == OCFS2_WRITE_DIRECT)
|
||
/* direct write needs not to start trans if no extents alloc. */
|
||
goto success;
|
||
|
||
/*
|
||
* We have to zero sparse allocated clusters, unwritten extent clusters,
|
||
* and non-sparse clusters we just extended. For non-sparse writes,
|
||
* we know zeros will only be needed in the first and/or last cluster.
|
||
*/
|
||
if (wc->w_clen && (wc->w_desc[0].c_needs_zero ||
|
||
wc->w_desc[wc->w_clen - 1].c_needs_zero))
|
||
cluster_of_pages = 1;
|
||
else
|
||
cluster_of_pages = 0;
|
||
|
||
ocfs2_set_target_boundaries(osb, wc, pos, len, cluster_of_pages);
|
||
|
||
handle = ocfs2_start_trans(osb, credits);
|
||
if (IS_ERR(handle)) {
|
||
ret = PTR_ERR(handle);
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
wc->w_handle = handle;
|
||
|
||
if (clusters_to_alloc) {
|
||
ret = dquot_alloc_space_nodirty(inode,
|
||
ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
|
||
if (ret)
|
||
goto out_commit;
|
||
}
|
||
|
||
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), wc->w_di_bh,
|
||
OCFS2_JOURNAL_ACCESS_WRITE);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out_quota;
|
||
}
|
||
|
||
/*
|
||
* Fill our page array first. That way we've grabbed enough so
|
||
* that we can zero and flush if we error after adding the
|
||
* extent.
|
||
*/
|
||
ret = ocfs2_grab_pages_for_write(mapping, wc, wc->w_cpos, pos, len,
|
||
cluster_of_pages, mmap_page);
|
||
if (ret && ret != -EAGAIN) {
|
||
mlog_errno(ret);
|
||
goto out_quota;
|
||
}
|
||
|
||
/*
|
||
* ocfs2_grab_pages_for_write() returns -EAGAIN if it could not lock
|
||
* the target page. In this case, we exit with no error and no target
|
||
* page. This will trigger the caller, page_mkwrite(), to re-try
|
||
* the operation.
|
||
*/
|
||
if (ret == -EAGAIN) {
|
||
BUG_ON(wc->w_target_page);
|
||
ret = 0;
|
||
goto out_quota;
|
||
}
|
||
|
||
ret = ocfs2_write_cluster_by_desc(mapping, data_ac, meta_ac, wc, pos,
|
||
len);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out_quota;
|
||
}
|
||
|
||
if (data_ac)
|
||
ocfs2_free_alloc_context(data_ac);
|
||
if (meta_ac)
|
||
ocfs2_free_alloc_context(meta_ac);
|
||
|
||
success:
|
||
if (pagep)
|
||
*pagep = wc->w_target_page;
|
||
*fsdata = wc;
|
||
return 0;
|
||
out_quota:
|
||
if (clusters_to_alloc)
|
||
dquot_free_space(inode,
|
||
ocfs2_clusters_to_bytes(osb->sb, clusters_to_alloc));
|
||
out_commit:
|
||
ocfs2_commit_trans(osb, handle);
|
||
|
||
out:
|
||
/*
|
||
* The mmapped page won't be unlocked in ocfs2_free_write_ctxt(),
|
||
* even in case of error here like ENOSPC and ENOMEM. So, we need
|
||
* to unlock the target page manually to prevent deadlocks when
|
||
* retrying again on ENOSPC, or when returning non-VM_FAULT_LOCKED
|
||
* to VM code.
|
||
*/
|
||
if (wc->w_target_locked)
|
||
unlock_page(mmap_page);
|
||
|
||
ocfs2_free_write_ctxt(inode, wc);
|
||
|
||
if (data_ac) {
|
||
ocfs2_free_alloc_context(data_ac);
|
||
data_ac = NULL;
|
||
}
|
||
if (meta_ac) {
|
||
ocfs2_free_alloc_context(meta_ac);
|
||
meta_ac = NULL;
|
||
}
|
||
|
||
if (ret == -ENOSPC && try_free) {
|
||
/*
|
||
* Try to free some truncate log so that we can have enough
|
||
* clusters to allocate.
|
||
*/
|
||
try_free = 0;
|
||
|
||
ret1 = ocfs2_try_to_free_truncate_log(osb, clusters_need);
|
||
if (ret1 == 1)
|
||
goto try_again;
|
||
|
||
if (ret1 < 0)
|
||
mlog_errno(ret1);
|
||
}
|
||
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_write_begin(struct file *file, struct address_space *mapping,
|
||
loff_t pos, unsigned len, unsigned flags,
|
||
struct page **pagep, void **fsdata)
|
||
{
|
||
int ret;
|
||
struct buffer_head *di_bh = NULL;
|
||
struct inode *inode = mapping->host;
|
||
|
||
ret = ocfs2_inode_lock(inode, &di_bh, 1);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* Take alloc sem here to prevent concurrent lookups. That way
|
||
* the mapping, zeroing and tree manipulation within
|
||
* ocfs2_write() will be safe against ->readpage(). This
|
||
* should also serve to lock out allocation from a shared
|
||
* writeable region.
|
||
*/
|
||
down_write(&OCFS2_I(inode)->ip_alloc_sem);
|
||
|
||
ret = ocfs2_write_begin_nolock(mapping, pos, len, OCFS2_WRITE_BUFFER,
|
||
pagep, fsdata, di_bh, NULL);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out_fail;
|
||
}
|
||
|
||
brelse(di_bh);
|
||
|
||
return 0;
|
||
|
||
out_fail:
|
||
up_write(&OCFS2_I(inode)->ip_alloc_sem);
|
||
|
||
brelse(di_bh);
|
||
ocfs2_inode_unlock(inode, 1);
|
||
|
||
return ret;
|
||
}
|
||
|
||
static void ocfs2_write_end_inline(struct inode *inode, loff_t pos,
|
||
unsigned len, unsigned *copied,
|
||
struct ocfs2_dinode *di,
|
||
struct ocfs2_write_ctxt *wc)
|
||
{
|
||
void *kaddr;
|
||
|
||
if (unlikely(*copied < len)) {
|
||
if (!PageUptodate(wc->w_target_page)) {
|
||
*copied = 0;
|
||
return;
|
||
}
|
||
}
|
||
|
||
kaddr = kmap_atomic(wc->w_target_page);
|
||
memcpy(di->id2.i_data.id_data + pos, kaddr + pos, *copied);
|
||
kunmap_atomic(kaddr);
|
||
|
||
trace_ocfs2_write_end_inline(
|
||
(unsigned long long)OCFS2_I(inode)->ip_blkno,
|
||
(unsigned long long)pos, *copied,
|
||
le16_to_cpu(di->id2.i_data.id_count),
|
||
le16_to_cpu(di->i_dyn_features));
|
||
}
|
||
|
||
int ocfs2_write_end_nolock(struct address_space *mapping,
|
||
loff_t pos, unsigned len, unsigned copied, void *fsdata)
|
||
{
|
||
int i, ret;
|
||
unsigned from, to, start = pos & (PAGE_SIZE - 1);
|
||
struct inode *inode = mapping->host;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
struct ocfs2_write_ctxt *wc = fsdata;
|
||
struct ocfs2_dinode *di = (struct ocfs2_dinode *)wc->w_di_bh->b_data;
|
||
handle_t *handle = wc->w_handle;
|
||
struct page *tmppage;
|
||
|
||
BUG_ON(!list_empty(&wc->w_unwritten_list));
|
||
|
||
if (handle) {
|
||
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode),
|
||
wc->w_di_bh, OCFS2_JOURNAL_ACCESS_WRITE);
|
||
if (ret) {
|
||
copied = ret;
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
}
|
||
|
||
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) {
|
||
ocfs2_write_end_inline(inode, pos, len, &copied, di, wc);
|
||
goto out_write_size;
|
||
}
|
||
|
||
if (unlikely(copied < len) && wc->w_target_page) {
|
||
loff_t new_isize;
|
||
|
||
if (!PageUptodate(wc->w_target_page))
|
||
copied = 0;
|
||
|
||
new_isize = max_t(loff_t, i_size_read(inode), pos + copied);
|
||
if (new_isize > page_offset(wc->w_target_page))
|
||
ocfs2_zero_new_buffers(wc->w_target_page, start+copied,
|
||
start+len);
|
||
else {
|
||
/*
|
||
* When page is fully beyond new isize (data copy
|
||
* failed), do not bother zeroing the page. Invalidate
|
||
* it instead so that writeback does not get confused
|
||
* put page & buffer dirty bits into inconsistent
|
||
* state.
|
||
*/
|
||
block_invalidatepage(wc->w_target_page, 0, PAGE_SIZE);
|
||
}
|
||
}
|
||
if (wc->w_target_page)
|
||
flush_dcache_page(wc->w_target_page);
|
||
|
||
for(i = 0; i < wc->w_num_pages; i++) {
|
||
tmppage = wc->w_pages[i];
|
||
|
||
/* This is the direct io target page. */
|
||
if (tmppage == NULL)
|
||
continue;
|
||
|
||
if (tmppage == wc->w_target_page) {
|
||
from = wc->w_target_from;
|
||
to = wc->w_target_to;
|
||
|
||
BUG_ON(from > PAGE_SIZE ||
|
||
to > PAGE_SIZE ||
|
||
to < from);
|
||
} else {
|
||
/*
|
||
* Pages adjacent to the target (if any) imply
|
||
* a hole-filling write in which case we want
|
||
* to flush their entire range.
|
||
*/
|
||
from = 0;
|
||
to = PAGE_SIZE;
|
||
}
|
||
|
||
if (page_has_buffers(tmppage)) {
|
||
if (handle && ocfs2_should_order_data(inode)) {
|
||
loff_t start_byte =
|
||
((loff_t)tmppage->index << PAGE_SHIFT) +
|
||
from;
|
||
loff_t length = to - from;
|
||
ocfs2_jbd2_inode_add_write(handle, inode,
|
||
start_byte, length);
|
||
}
|
||
block_commit_write(tmppage, from, to);
|
||
}
|
||
}
|
||
|
||
out_write_size:
|
||
/* Direct io do not update i_size here. */
|
||
if (wc->w_type != OCFS2_WRITE_DIRECT) {
|
||
pos += copied;
|
||
if (pos > i_size_read(inode)) {
|
||
i_size_write(inode, pos);
|
||
mark_inode_dirty(inode);
|
||
}
|
||
inode->i_blocks = ocfs2_inode_sector_count(inode);
|
||
di->i_size = cpu_to_le64((u64)i_size_read(inode));
|
||
inode->i_mtime = inode->i_ctime = current_time(inode);
|
||
di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec);
|
||
di->i_mtime_nsec = di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
|
||
if (handle)
|
||
ocfs2_update_inode_fsync_trans(handle, inode, 1);
|
||
}
|
||
if (handle)
|
||
ocfs2_journal_dirty(handle, wc->w_di_bh);
|
||
|
||
out:
|
||
/* unlock pages before dealloc since it needs acquiring j_trans_barrier
|
||
* lock, or it will cause a deadlock since journal commit threads holds
|
||
* this lock and will ask for the page lock when flushing the data.
|
||
* put it here to preserve the unlock order.
|
||
*/
|
||
ocfs2_unlock_pages(wc);
|
||
|
||
if (handle)
|
||
ocfs2_commit_trans(osb, handle);
|
||
|
||
ocfs2_run_deallocs(osb, &wc->w_dealloc);
|
||
|
||
brelse(wc->w_di_bh);
|
||
kfree(wc);
|
||
|
||
return copied;
|
||
}
|
||
|
||
static int ocfs2_write_end(struct file *file, struct address_space *mapping,
|
||
loff_t pos, unsigned len, unsigned copied,
|
||
struct page *page, void *fsdata)
|
||
{
|
||
int ret;
|
||
struct inode *inode = mapping->host;
|
||
|
||
ret = ocfs2_write_end_nolock(mapping, pos, len, copied, fsdata);
|
||
|
||
up_write(&OCFS2_I(inode)->ip_alloc_sem);
|
||
ocfs2_inode_unlock(inode, 1);
|
||
|
||
return ret;
|
||
}
|
||
|
||
struct ocfs2_dio_write_ctxt {
|
||
struct list_head dw_zero_list;
|
||
unsigned dw_zero_count;
|
||
int dw_orphaned;
|
||
pid_t dw_writer_pid;
|
||
};
|
||
|
||
static struct ocfs2_dio_write_ctxt *
|
||
ocfs2_dio_alloc_write_ctx(struct buffer_head *bh, int *alloc)
|
||
{
|
||
struct ocfs2_dio_write_ctxt *dwc = NULL;
|
||
|
||
if (bh->b_private)
|
||
return bh->b_private;
|
||
|
||
dwc = kmalloc(sizeof(struct ocfs2_dio_write_ctxt), GFP_NOFS);
|
||
if (dwc == NULL)
|
||
return NULL;
|
||
INIT_LIST_HEAD(&dwc->dw_zero_list);
|
||
dwc->dw_zero_count = 0;
|
||
dwc->dw_orphaned = 0;
|
||
dwc->dw_writer_pid = task_pid_nr(current);
|
||
bh->b_private = dwc;
|
||
*alloc = 1;
|
||
|
||
return dwc;
|
||
}
|
||
|
||
static void ocfs2_dio_free_write_ctx(struct inode *inode,
|
||
struct ocfs2_dio_write_ctxt *dwc)
|
||
{
|
||
ocfs2_free_unwritten_list(inode, &dwc->dw_zero_list);
|
||
kfree(dwc);
|
||
}
|
||
|
||
/*
|
||
* TODO: Make this into a generic get_blocks function.
|
||
*
|
||
* From do_direct_io in direct-io.c:
|
||
* "So what we do is to permit the ->get_blocks function to populate
|
||
* bh.b_size with the size of IO which is permitted at this offset and
|
||
* this i_blkbits."
|
||
*
|
||
* This function is called directly from get_more_blocks in direct-io.c.
|
||
*
|
||
* called like this: dio->get_blocks(dio->inode, fs_startblk,
|
||
* fs_count, map_bh, dio->rw == WRITE);
|
||
*/
|
||
static int ocfs2_dio_wr_get_block(struct inode *inode, sector_t iblock,
|
||
struct buffer_head *bh_result, int create)
|
||
{
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
struct ocfs2_write_ctxt *wc;
|
||
struct ocfs2_write_cluster_desc *desc = NULL;
|
||
struct ocfs2_dio_write_ctxt *dwc = NULL;
|
||
struct buffer_head *di_bh = NULL;
|
||
u64 p_blkno;
|
||
unsigned int i_blkbits = inode->i_sb->s_blocksize_bits;
|
||
loff_t pos = iblock << i_blkbits;
|
||
sector_t endblk = (i_size_read(inode) - 1) >> i_blkbits;
|
||
unsigned len, total_len = bh_result->b_size;
|
||
int ret = 0, first_get_block = 0;
|
||
|
||
len = osb->s_clustersize - (pos & (osb->s_clustersize - 1));
|
||
len = min(total_len, len);
|
||
|
||
/*
|
||
* bh_result->b_size is count in get_more_blocks according to write
|
||
* "pos" and "end", we need map twice to return different buffer state:
|
||
* 1. area in file size, not set NEW;
|
||
* 2. area out file size, set NEW.
|
||
*
|
||
* iblock endblk
|
||
* |--------|---------|---------|---------
|
||
* |<-------area in file------->|
|
||
*/
|
||
|
||
if ((iblock <= endblk) &&
|
||
((iblock + ((len - 1) >> i_blkbits)) > endblk))
|
||
len = (endblk - iblock + 1) << i_blkbits;
|
||
|
||
mlog(0, "get block of %lu at %llu:%u req %u\n",
|
||
inode->i_ino, pos, len, total_len);
|
||
|
||
/*
|
||
* Because we need to change file size in ocfs2_dio_end_io_write(), or
|
||
* we may need to add it to orphan dir. So can not fall to fast path
|
||
* while file size will be changed.
|
||
*/
|
||
if (pos + total_len <= i_size_read(inode)) {
|
||
|
||
/* This is the fast path for re-write. */
|
||
ret = ocfs2_lock_get_block(inode, iblock, bh_result, create);
|
||
if (buffer_mapped(bh_result) &&
|
||
!buffer_new(bh_result) &&
|
||
ret == 0)
|
||
goto out;
|
||
|
||
/* Clear state set by ocfs2_get_block. */
|
||
bh_result->b_state = 0;
|
||
}
|
||
|
||
dwc = ocfs2_dio_alloc_write_ctx(bh_result, &first_get_block);
|
||
if (unlikely(dwc == NULL)) {
|
||
ret = -ENOMEM;
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
if (ocfs2_clusters_for_bytes(inode->i_sb, pos + total_len) >
|
||
ocfs2_clusters_for_bytes(inode->i_sb, i_size_read(inode)) &&
|
||
!dwc->dw_orphaned) {
|
||
/*
|
||
* when we are going to alloc extents beyond file size, add the
|
||
* inode to orphan dir, so we can recall those spaces when
|
||
* system crashed during write.
|
||
*/
|
||
ret = ocfs2_add_inode_to_orphan(osb, inode);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
dwc->dw_orphaned = 1;
|
||
}
|
||
|
||
ret = ocfs2_inode_lock(inode, &di_bh, 1);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
down_write(&oi->ip_alloc_sem);
|
||
|
||
if (first_get_block) {
|
||
if (ocfs2_sparse_alloc(osb))
|
||
ret = ocfs2_zero_tail(inode, di_bh, pos);
|
||
else
|
||
ret = ocfs2_expand_nonsparse_inode(inode, di_bh, pos,
|
||
total_len, NULL);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto unlock;
|
||
}
|
||
}
|
||
|
||
ret = ocfs2_write_begin_nolock(inode->i_mapping, pos, len,
|
||
OCFS2_WRITE_DIRECT, NULL,
|
||
(void **)&wc, di_bh, NULL);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto unlock;
|
||
}
|
||
|
||
desc = &wc->w_desc[0];
|
||
|
||
p_blkno = ocfs2_clusters_to_blocks(inode->i_sb, desc->c_phys);
|
||
BUG_ON(p_blkno == 0);
|
||
p_blkno += iblock & (u64)(ocfs2_clusters_to_blocks(inode->i_sb, 1) - 1);
|
||
|
||
map_bh(bh_result, inode->i_sb, p_blkno);
|
||
bh_result->b_size = len;
|
||
if (desc->c_needs_zero)
|
||
set_buffer_new(bh_result);
|
||
|
||
if (iblock > endblk)
|
||
set_buffer_new(bh_result);
|
||
|
||
/* May sleep in end_io. It should not happen in a irq context. So defer
|
||
* it to dio work queue. */
|
||
set_buffer_defer_completion(bh_result);
|
||
|
||
if (!list_empty(&wc->w_unwritten_list)) {
|
||
struct ocfs2_unwritten_extent *ue = NULL;
|
||
|
||
ue = list_first_entry(&wc->w_unwritten_list,
|
||
struct ocfs2_unwritten_extent,
|
||
ue_node);
|
||
BUG_ON(ue->ue_cpos != desc->c_cpos);
|
||
/* The physical address may be 0, fill it. */
|
||
ue->ue_phys = desc->c_phys;
|
||
|
||
list_splice_tail_init(&wc->w_unwritten_list, &dwc->dw_zero_list);
|
||
dwc->dw_zero_count += wc->w_unwritten_count;
|
||
}
|
||
|
||
ret = ocfs2_write_end_nolock(inode->i_mapping, pos, len, len, wc);
|
||
BUG_ON(ret != len);
|
||
ret = 0;
|
||
unlock:
|
||
up_write(&oi->ip_alloc_sem);
|
||
ocfs2_inode_unlock(inode, 1);
|
||
brelse(di_bh);
|
||
out:
|
||
if (ret < 0)
|
||
ret = -EIO;
|
||
return ret;
|
||
}
|
||
|
||
static int ocfs2_dio_end_io_write(struct inode *inode,
|
||
struct ocfs2_dio_write_ctxt *dwc,
|
||
loff_t offset,
|
||
ssize_t bytes)
|
||
{
|
||
struct ocfs2_cached_dealloc_ctxt dealloc;
|
||
struct ocfs2_extent_tree et;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
struct ocfs2_inode_info *oi = OCFS2_I(inode);
|
||
struct ocfs2_unwritten_extent *ue = NULL;
|
||
struct buffer_head *di_bh = NULL;
|
||
struct ocfs2_dinode *di;
|
||
struct ocfs2_alloc_context *data_ac = NULL;
|
||
struct ocfs2_alloc_context *meta_ac = NULL;
|
||
handle_t *handle = NULL;
|
||
loff_t end = offset + bytes;
|
||
int ret = 0, credits = 0;
|
||
|
||
ocfs2_init_dealloc_ctxt(&dealloc);
|
||
|
||
/* We do clear unwritten, delete orphan, change i_size here. If neither
|
||
* of these happen, we can skip all this. */
|
||
if (list_empty(&dwc->dw_zero_list) &&
|
||
end <= i_size_read(inode) &&
|
||
!dwc->dw_orphaned)
|
||
goto out;
|
||
|
||
ret = ocfs2_inode_lock(inode, &di_bh, 1);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
goto out;
|
||
}
|
||
|
||
down_write(&oi->ip_alloc_sem);
|
||
|
||
/* Delete orphan before acquire i_mutex. */
|
||
if (dwc->dw_orphaned) {
|
||
BUG_ON(dwc->dw_writer_pid != task_pid_nr(current));
|
||
|
||
end = end > i_size_read(inode) ? end : 0;
|
||
|
||
ret = ocfs2_del_inode_from_orphan(osb, inode, di_bh,
|
||
!!end, end);
|
||
if (ret < 0)
|
||
mlog_errno(ret);
|
||
}
|
||
|
||
di = (struct ocfs2_dinode *)di_bh->b_data;
|
||
|
||
ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh);
|
||
|
||
/* Attach dealloc with extent tree in case that we may reuse extents
|
||
* which are already unlinked from current extent tree due to extent
|
||
* rotation and merging.
|
||
*/
|
||
et.et_dealloc = &dealloc;
|
||
|
||
ret = ocfs2_lock_allocators(inode, &et, 0, dwc->dw_zero_count*2,
|
||
&data_ac, &meta_ac);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto unlock;
|
||
}
|
||
|
||
credits = ocfs2_calc_extend_credits(inode->i_sb, &di->id2.i_list);
|
||
|
||
handle = ocfs2_start_trans(osb, credits);
|
||
if (IS_ERR(handle)) {
|
||
ret = PTR_ERR(handle);
|
||
mlog_errno(ret);
|
||
goto unlock;
|
||
}
|
||
ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh,
|
||
OCFS2_JOURNAL_ACCESS_WRITE);
|
||
if (ret) {
|
||
mlog_errno(ret);
|
||
goto commit;
|
||
}
|
||
|
||
list_for_each_entry(ue, &dwc->dw_zero_list, ue_node) {
|
||
ret = ocfs2_mark_extent_written(inode, &et, handle,
|
||
ue->ue_cpos, 1,
|
||
ue->ue_phys,
|
||
meta_ac, &dealloc);
|
||
if (ret < 0) {
|
||
mlog_errno(ret);
|
||
break;
|
||
}
|
||
}
|
||
|
||
if (end > i_size_read(inode)) {
|
||
ret = ocfs2_set_inode_size(handle, inode, di_bh, end);
|
||
if (ret < 0)
|
||
mlog_errno(ret);
|
||
}
|
||
commit:
|
||
ocfs2_commit_trans(osb, handle);
|
||
unlock:
|
||
up_write(&oi->ip_alloc_sem);
|
||
ocfs2_inode_unlock(inode, 1);
|
||
brelse(di_bh);
|
||
out:
|
||
if (data_ac)
|
||
ocfs2_free_alloc_context(data_ac);
|
||
if (meta_ac)
|
||
ocfs2_free_alloc_context(meta_ac);
|
||
ocfs2_run_deallocs(osb, &dealloc);
|
||
ocfs2_dio_free_write_ctx(inode, dwc);
|
||
|
||
return ret;
|
||
}
|
||
|
||
/*
|
||
* ocfs2_dio_end_io is called by the dio core when a dio is finished. We're
|
||
* particularly interested in the aio/dio case. We use the rw_lock DLM lock
|
||
* to protect io on one node from truncation on another.
|
||
*/
|
||
static int ocfs2_dio_end_io(struct kiocb *iocb,
|
||
loff_t offset,
|
||
ssize_t bytes,
|
||
void *private)
|
||
{
|
||
struct inode *inode = file_inode(iocb->ki_filp);
|
||
int level;
|
||
int ret = 0;
|
||
|
||
/* this io's submitter should not have unlocked this before we could */
|
||
BUG_ON(!ocfs2_iocb_is_rw_locked(iocb));
|
||
|
||
if (bytes <= 0)
|
||
mlog_ratelimited(ML_ERROR, "Direct IO failed, bytes = %lld",
|
||
(long long)bytes);
|
||
if (private) {
|
||
if (bytes > 0)
|
||
ret = ocfs2_dio_end_io_write(inode, private, offset,
|
||
bytes);
|
||
else
|
||
ocfs2_dio_free_write_ctx(inode, private);
|
||
}
|
||
|
||
ocfs2_iocb_clear_rw_locked(iocb);
|
||
|
||
level = ocfs2_iocb_rw_locked_level(iocb);
|
||
ocfs2_rw_unlock(inode, level);
|
||
return ret;
|
||
}
|
||
|
||
static ssize_t ocfs2_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
|
||
{
|
||
struct file *file = iocb->ki_filp;
|
||
struct inode *inode = file->f_mapping->host;
|
||
struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
|
||
get_block_t *get_block;
|
||
|
||
/*
|
||
* Fallback to buffered I/O if we see an inode without
|
||
* extents.
|
||
*/
|
||
if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)
|
||
return 0;
|
||
|
||
/* Fallback to buffered I/O if we do not support append dio. */
|
||
if (iocb->ki_pos + iter->count > i_size_read(inode) &&
|
||
!ocfs2_supports_append_dio(osb))
|
||
return 0;
|
||
|
||
if (iov_iter_rw(iter) == READ)
|
||
get_block = ocfs2_lock_get_block;
|
||
else
|
||
get_block = ocfs2_dio_wr_get_block;
|
||
|
||
return __blockdev_direct_IO(iocb, inode, inode->i_sb->s_bdev,
|
||
iter, get_block,
|
||
ocfs2_dio_end_io, NULL, 0);
|
||
}
|
||
|
||
const struct address_space_operations ocfs2_aops = {
|
||
.readpage = ocfs2_readpage,
|
||
.readpages = ocfs2_readpages,
|
||
.writepage = ocfs2_writepage,
|
||
.write_begin = ocfs2_write_begin,
|
||
.write_end = ocfs2_write_end,
|
||
.bmap = ocfs2_bmap,
|
||
.direct_IO = ocfs2_direct_IO,
|
||
.invalidatepage = block_invalidatepage,
|
||
.releasepage = ocfs2_releasepage,
|
||
.migratepage = buffer_migrate_page,
|
||
.is_partially_uptodate = block_is_partially_uptodate,
|
||
.error_remove_page = generic_error_remove_page,
|
||
};
|