6173 lines
159 KiB
C
6173 lines
159 KiB
C
// SPDX-License-Identifier: GPL-2.0-only
|
|
/*
|
|
* Overview:
|
|
* This is the generic MTD driver for NAND flash devices. It should be
|
|
* capable of working with almost all NAND chips currently available.
|
|
*
|
|
* Additional technical information is available on
|
|
* http://www.linux-mtd.infradead.org/doc/nand.html
|
|
*
|
|
* Copyright (C) 2000 Steven J. Hill (sjhill@realitydiluted.com)
|
|
* 2002-2006 Thomas Gleixner (tglx@linutronix.de)
|
|
*
|
|
* Credits:
|
|
* David Woodhouse for adding multichip support
|
|
*
|
|
* Aleph One Ltd. and Toby Churchill Ltd. for supporting the
|
|
* rework for 2K page size chips
|
|
*
|
|
* TODO:
|
|
* Enable cached programming for 2k page size chips
|
|
* Check, if mtd->ecctype should be set to MTD_ECC_HW
|
|
* if we have HW ECC support.
|
|
* BBT table is not serialized, has to be fixed
|
|
*/
|
|
|
|
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
|
|
|
|
#include <linux/module.h>
|
|
#include <linux/delay.h>
|
|
#include <linux/errno.h>
|
|
#include <linux/err.h>
|
|
#include <linux/sched.h>
|
|
#include <linux/slab.h>
|
|
#include <linux/mm.h>
|
|
#include <linux/types.h>
|
|
#include <linux/mtd/mtd.h>
|
|
#include <linux/mtd/nand_ecc.h>
|
|
#include <linux/mtd/nand_bch.h>
|
|
#include <linux/interrupt.h>
|
|
#include <linux/bitops.h>
|
|
#include <linux/io.h>
|
|
#include <linux/mtd/partitions.h>
|
|
#include <linux/of.h>
|
|
#include <linux/gpio/consumer.h>
|
|
|
|
#include "internals.h"
|
|
|
|
/* Define default oob placement schemes for large and small page devices */
|
|
static int nand_ooblayout_ecc_sp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (!section) {
|
|
oobregion->offset = 0;
|
|
if (mtd->oobsize == 16)
|
|
oobregion->length = 4;
|
|
else
|
|
oobregion->length = 3;
|
|
} else {
|
|
if (mtd->oobsize == 8)
|
|
return -ERANGE;
|
|
|
|
oobregion->offset = 6;
|
|
oobregion->length = ecc->total - 4;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_sp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
if (section > 1)
|
|
return -ERANGE;
|
|
|
|
if (mtd->oobsize == 16) {
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = 8;
|
|
oobregion->offset = 8;
|
|
} else {
|
|
oobregion->length = 2;
|
|
if (!section)
|
|
oobregion->offset = 3;
|
|
else
|
|
oobregion->offset = 6;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_sp_ops = {
|
|
.ecc = nand_ooblayout_ecc_sp,
|
|
.free = nand_ooblayout_free_sp,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_sp_ops);
|
|
|
|
static int nand_ooblayout_ecc_lp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section || !ecc->total)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = ecc->total;
|
|
oobregion->offset = mtd->oobsize - oobregion->length;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_lp(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
oobregion->length = mtd->oobsize - ecc->total - 2;
|
|
oobregion->offset = 2;
|
|
|
|
return 0;
|
|
}
|
|
|
|
const struct mtd_ooblayout_ops nand_ooblayout_lp_ops = {
|
|
.ecc = nand_ooblayout_ecc_lp,
|
|
.free = nand_ooblayout_free_lp,
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_ooblayout_lp_ops);
|
|
|
|
/*
|
|
* Support the old "large page" layout used for 1-bit Hamming ECC where ECC
|
|
* are placed at a fixed offset.
|
|
*/
|
|
static int nand_ooblayout_ecc_lp_hamming(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (section)
|
|
return -ERANGE;
|
|
|
|
switch (mtd->oobsize) {
|
|
case 64:
|
|
oobregion->offset = 40;
|
|
break;
|
|
case 128:
|
|
oobregion->offset = 80;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
oobregion->length = ecc->total;
|
|
if (oobregion->offset + oobregion->length > mtd->oobsize)
|
|
return -ERANGE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_ooblayout_free_lp_hamming(struct mtd_info *mtd, int section,
|
|
struct mtd_oob_region *oobregion)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int ecc_offset = 0;
|
|
|
|
if (section < 0 || section > 1)
|
|
return -ERANGE;
|
|
|
|
switch (mtd->oobsize) {
|
|
case 64:
|
|
ecc_offset = 40;
|
|
break;
|
|
case 128:
|
|
ecc_offset = 80;
|
|
break;
|
|
default:
|
|
return -EINVAL;
|
|
}
|
|
|
|
if (section == 0) {
|
|
oobregion->offset = 2;
|
|
oobregion->length = ecc_offset - 2;
|
|
} else {
|
|
oobregion->offset = ecc_offset + ecc->total;
|
|
oobregion->length = mtd->oobsize - oobregion->offset;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static const struct mtd_ooblayout_ops nand_ooblayout_lp_hamming_ops = {
|
|
.ecc = nand_ooblayout_ecc_lp_hamming,
|
|
.free = nand_ooblayout_free_lp_hamming,
|
|
};
|
|
|
|
static int nand_pairing_dist3_get_info(struct mtd_info *mtd, int page,
|
|
struct mtd_pairing_info *info)
|
|
{
|
|
int lastpage = (mtd->erasesize / mtd->writesize) - 1;
|
|
int dist = 3;
|
|
|
|
if (page == lastpage)
|
|
dist = 2;
|
|
|
|
if (!page || (page & 1)) {
|
|
info->group = 0;
|
|
info->pair = (page + 1) / 2;
|
|
} else {
|
|
info->group = 1;
|
|
info->pair = (page + 1 - dist) / 2;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_pairing_dist3_get_wunit(struct mtd_info *mtd,
|
|
const struct mtd_pairing_info *info)
|
|
{
|
|
int lastpair = ((mtd->erasesize / mtd->writesize) - 1) / 2;
|
|
int page = info->pair * 2;
|
|
int dist = 3;
|
|
|
|
if (!info->group && !info->pair)
|
|
return 0;
|
|
|
|
if (info->pair == lastpair && info->group)
|
|
dist = 2;
|
|
|
|
if (!info->group)
|
|
page--;
|
|
else if (info->pair)
|
|
page += dist - 1;
|
|
|
|
if (page >= mtd->erasesize / mtd->writesize)
|
|
return -EINVAL;
|
|
|
|
return page;
|
|
}
|
|
|
|
const struct mtd_pairing_scheme dist3_pairing_scheme = {
|
|
.ngroups = 2,
|
|
.get_info = nand_pairing_dist3_get_info,
|
|
.get_wunit = nand_pairing_dist3_get_wunit,
|
|
};
|
|
|
|
static int check_offs_len(struct nand_chip *chip, loff_t ofs, uint64_t len)
|
|
{
|
|
int ret = 0;
|
|
|
|
/* Start address must align on block boundary */
|
|
if (ofs & ((1ULL << chip->phys_erase_shift) - 1)) {
|
|
pr_debug("%s: unaligned address\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
/* Length must align on block boundary */
|
|
if (len & ((1ULL << chip->phys_erase_shift) - 1)) {
|
|
pr_debug("%s: length not block aligned\n", __func__);
|
|
ret = -EINVAL;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_extract_bits - Copy unaligned bits from one buffer to another one
|
|
* @dst: destination buffer
|
|
* @dst_off: bit offset at which the writing starts
|
|
* @src: source buffer
|
|
* @src_off: bit offset at which the reading starts
|
|
* @nbits: number of bits to copy from @src to @dst
|
|
*
|
|
* Copy bits from one memory region to another (overlap authorized).
|
|
*/
|
|
void nand_extract_bits(u8 *dst, unsigned int dst_off, const u8 *src,
|
|
unsigned int src_off, unsigned int nbits)
|
|
{
|
|
unsigned int tmp, n;
|
|
|
|
dst += dst_off / 8;
|
|
dst_off %= 8;
|
|
src += src_off / 8;
|
|
src_off %= 8;
|
|
|
|
while (nbits) {
|
|
n = min3(8 - dst_off, 8 - src_off, nbits);
|
|
|
|
tmp = (*src >> src_off) & GENMASK(n - 1, 0);
|
|
*dst &= ~GENMASK(n - 1 + dst_off, dst_off);
|
|
*dst |= tmp << dst_off;
|
|
|
|
dst_off += n;
|
|
if (dst_off >= 8) {
|
|
dst++;
|
|
dst_off -= 8;
|
|
}
|
|
|
|
src_off += n;
|
|
if (src_off >= 8) {
|
|
src++;
|
|
src_off -= 8;
|
|
}
|
|
|
|
nbits -= n;
|
|
}
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_extract_bits);
|
|
|
|
/**
|
|
* nand_select_target() - Select a NAND target (A.K.A. die)
|
|
* @chip: NAND chip object
|
|
* @cs: the CS line to select. Note that this CS id is always from the chip
|
|
* PoV, not the controller one
|
|
*
|
|
* Select a NAND target so that further operations executed on @chip go to the
|
|
* selected NAND target.
|
|
*/
|
|
void nand_select_target(struct nand_chip *chip, unsigned int cs)
|
|
{
|
|
/*
|
|
* cs should always lie between 0 and nanddev_ntargets(), when that's
|
|
* not the case it's a bug and the caller should be fixed.
|
|
*/
|
|
if (WARN_ON(cs > nanddev_ntargets(&chip->base)))
|
|
return;
|
|
|
|
chip->cur_cs = cs;
|
|
|
|
if (chip->legacy.select_chip)
|
|
chip->legacy.select_chip(chip, cs);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_select_target);
|
|
|
|
/**
|
|
* nand_deselect_target() - Deselect the currently selected target
|
|
* @chip: NAND chip object
|
|
*
|
|
* Deselect the currently selected NAND target. The result of operations
|
|
* executed on @chip after the target has been deselected is undefined.
|
|
*/
|
|
void nand_deselect_target(struct nand_chip *chip)
|
|
{
|
|
if (chip->legacy.select_chip)
|
|
chip->legacy.select_chip(chip, -1);
|
|
|
|
chip->cur_cs = -1;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_deselect_target);
|
|
|
|
/**
|
|
* nand_release_device - [GENERIC] release chip
|
|
* @chip: NAND chip object
|
|
*
|
|
* Release chip lock and wake up anyone waiting on the device.
|
|
*/
|
|
static void nand_release_device(struct nand_chip *chip)
|
|
{
|
|
/* Release the controller and the chip */
|
|
mutex_unlock(&chip->controller->lock);
|
|
mutex_unlock(&chip->lock);
|
|
}
|
|
|
|
/**
|
|
* nand_bbm_get_next_page - Get the next page for bad block markers
|
|
* @chip: NAND chip object
|
|
* @page: First page to start checking for bad block marker usage
|
|
*
|
|
* Returns an integer that corresponds to the page offset within a block, for
|
|
* a page that is used to store bad block markers. If no more pages are
|
|
* available, -EINVAL is returned.
|
|
*/
|
|
int nand_bbm_get_next_page(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int last_page = ((mtd->erasesize - mtd->writesize) >>
|
|
chip->page_shift) & chip->pagemask;
|
|
unsigned int bbm_flags = NAND_BBM_FIRSTPAGE | NAND_BBM_SECONDPAGE
|
|
| NAND_BBM_LASTPAGE;
|
|
|
|
if (page == 0 && !(chip->options & bbm_flags))
|
|
return 0;
|
|
if (page == 0 && chip->options & NAND_BBM_FIRSTPAGE)
|
|
return 0;
|
|
if (page <= 1 && chip->options & NAND_BBM_SECONDPAGE)
|
|
return 1;
|
|
if (page <= last_page && chip->options & NAND_BBM_LASTPAGE)
|
|
return last_page;
|
|
|
|
return -EINVAL;
|
|
}
|
|
|
|
/**
|
|
* nand_block_bad - [DEFAULT] Read bad block marker from the chip
|
|
* @chip: NAND chip object
|
|
* @ofs: offset from device start
|
|
*
|
|
* Check, if the block is bad.
|
|
*/
|
|
static int nand_block_bad(struct nand_chip *chip, loff_t ofs)
|
|
{
|
|
int first_page, page_offset;
|
|
int res;
|
|
u8 bad;
|
|
|
|
first_page = (int)(ofs >> chip->page_shift) & chip->pagemask;
|
|
page_offset = nand_bbm_get_next_page(chip, 0);
|
|
|
|
while (page_offset >= 0) {
|
|
res = chip->ecc.read_oob(chip, first_page + page_offset);
|
|
if (res < 0)
|
|
return res;
|
|
|
|
bad = chip->oob_poi[chip->badblockpos];
|
|
|
|
if (likely(chip->badblockbits == 8))
|
|
res = bad != 0xFF;
|
|
else
|
|
res = hweight8(bad) < chip->badblockbits;
|
|
if (res)
|
|
return res;
|
|
|
|
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_isbad_bbm(struct nand_chip *chip, loff_t ofs)
|
|
{
|
|
if (chip->options & NAND_NO_BBM_QUIRK)
|
|
return 0;
|
|
|
|
if (chip->legacy.block_bad)
|
|
return chip->legacy.block_bad(chip, ofs);
|
|
|
|
return nand_block_bad(chip, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_get_device - [GENERIC] Get chip for selected access
|
|
* @chip: NAND chip structure
|
|
*
|
|
* Lock the device and its controller for exclusive access
|
|
*
|
|
* Return: -EBUSY if the chip has been suspended, 0 otherwise
|
|
*/
|
|
static int nand_get_device(struct nand_chip *chip)
|
|
{
|
|
mutex_lock(&chip->lock);
|
|
if (chip->suspended) {
|
|
mutex_unlock(&chip->lock);
|
|
return -EBUSY;
|
|
}
|
|
mutex_lock(&chip->controller->lock);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_check_wp - [GENERIC] check if the chip is write protected
|
|
* @chip: NAND chip object
|
|
*
|
|
* Check, if the device is write protected. The function expects, that the
|
|
* device is already selected.
|
|
*/
|
|
static int nand_check_wp(struct nand_chip *chip)
|
|
{
|
|
u8 status;
|
|
int ret;
|
|
|
|
/* Broken xD cards report WP despite being writable */
|
|
if (chip->options & NAND_BROKEN_XD)
|
|
return 0;
|
|
|
|
/* Check the WP bit */
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status & NAND_STATUS_WP ? 0 : 1;
|
|
}
|
|
|
|
/**
|
|
* nand_fill_oob - [INTERN] Transfer client buffer to oob
|
|
* @chip: NAND chip object
|
|
* @oob: oob data buffer
|
|
* @len: oob data write length
|
|
* @ops: oob ops structure
|
|
*/
|
|
static uint8_t *nand_fill_oob(struct nand_chip *chip, uint8_t *oob, size_t len,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
/*
|
|
* Initialise to all 0xFF, to avoid the possibility of left over OOB
|
|
* data from a previous OOB read.
|
|
*/
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
|
|
|
switch (ops->mode) {
|
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_RAW:
|
|
memcpy(chip->oob_poi + ops->ooboffs, oob, len);
|
|
return oob + len;
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
ret = mtd_ooblayout_set_databytes(mtd, oob, chip->oob_poi,
|
|
ops->ooboffs, len);
|
|
BUG_ON(ret);
|
|
return oob + len;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* nand_do_write_oob - [MTD Interface] NAND write out-of-band
|
|
* @chip: NAND chip object
|
|
* @to: offset to write to
|
|
* @ops: oob operation description structure
|
|
*
|
|
* NAND write out-of-band.
|
|
*/
|
|
static int nand_do_write_oob(struct nand_chip *chip, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int chipnr, page, status, len, ret;
|
|
|
|
pr_debug("%s: to = 0x%08x, len = %i\n",
|
|
__func__, (unsigned int)to, (int)ops->ooblen);
|
|
|
|
len = mtd_oobavail(mtd, ops);
|
|
|
|
/* Do not allow write past end of page */
|
|
if ((ops->ooboffs + ops->ooblen) > len) {
|
|
pr_debug("%s: attempt to write past end of page\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
|
|
|
/*
|
|
* Reset the chip. Some chips (like the Toshiba TC5832DC found in one
|
|
* of my DiskOnChip 2000 test units) will clear the whole data page too
|
|
* if we don't do this. I have no clue why, but I seem to have 'fixed'
|
|
* it in the doc2000 driver in August 1999. dwmw2.
|
|
*/
|
|
ret = nand_reset(chip, chipnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nand_select_target(chip, chipnr);
|
|
|
|
/* Shift to get page */
|
|
page = (int)(to >> chip->page_shift);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(chip)) {
|
|
nand_deselect_target(chip);
|
|
return -EROFS;
|
|
}
|
|
|
|
/* Invalidate the page cache, if we write to the cached page */
|
|
if (page == chip->pagecache.page)
|
|
chip->pagecache.page = -1;
|
|
|
|
nand_fill_oob(chip, ops->oobbuf, ops->ooblen, ops);
|
|
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
status = chip->ecc.write_oob_raw(chip, page & chip->pagemask);
|
|
else
|
|
status = chip->ecc.write_oob(chip, page & chip->pagemask);
|
|
|
|
nand_deselect_target(chip);
|
|
|
|
if (status)
|
|
return status;
|
|
|
|
ops->oobretlen = ops->ooblen;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_default_block_markbad - [DEFAULT] mark a block bad via bad block marker
|
|
* @chip: NAND chip object
|
|
* @ofs: offset from device start
|
|
*
|
|
* This is the default implementation, which can be overridden by a hardware
|
|
* specific driver. It provides the details for writing a bad block marker to a
|
|
* block.
|
|
*/
|
|
static int nand_default_block_markbad(struct nand_chip *chip, loff_t ofs)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct mtd_oob_ops ops;
|
|
uint8_t buf[2] = { 0, 0 };
|
|
int ret = 0, res, page_offset;
|
|
|
|
memset(&ops, 0, sizeof(ops));
|
|
ops.oobbuf = buf;
|
|
ops.ooboffs = chip->badblockpos;
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
ops.ooboffs &= ~0x01;
|
|
ops.len = ops.ooblen = 2;
|
|
} else {
|
|
ops.len = ops.ooblen = 1;
|
|
}
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
|
|
|
page_offset = nand_bbm_get_next_page(chip, 0);
|
|
|
|
while (page_offset >= 0) {
|
|
res = nand_do_write_oob(chip,
|
|
ofs + (page_offset * mtd->writesize),
|
|
&ops);
|
|
|
|
if (!ret)
|
|
ret = res;
|
|
|
|
page_offset = nand_bbm_get_next_page(chip, page_offset + 1);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_markbad_bbm - mark a block by updating the BBM
|
|
* @chip: NAND chip object
|
|
* @ofs: offset of the block to mark bad
|
|
*/
|
|
int nand_markbad_bbm(struct nand_chip *chip, loff_t ofs)
|
|
{
|
|
if (chip->legacy.block_markbad)
|
|
return chip->legacy.block_markbad(chip, ofs);
|
|
|
|
return nand_default_block_markbad(chip, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad_lowlevel - mark a block bad
|
|
* @chip: NAND chip object
|
|
* @ofs: offset from device start
|
|
*
|
|
* This function performs the generic NAND bad block marking steps (i.e., bad
|
|
* block table(s) and/or marker(s)). We only allow the hardware driver to
|
|
* specify how to write bad block markers to OOB (chip->legacy.block_markbad).
|
|
*
|
|
* We try operations in the following order:
|
|
*
|
|
* (1) erase the affected block, to allow OOB marker to be written cleanly
|
|
* (2) write bad block marker to OOB area of affected block (unless flag
|
|
* NAND_BBT_NO_OOB_BBM is present)
|
|
* (3) update the BBT
|
|
*
|
|
* Note that we retain the first error encountered in (2) or (3), finish the
|
|
* procedures, and dump the error in the end.
|
|
*/
|
|
static int nand_block_markbad_lowlevel(struct nand_chip *chip, loff_t ofs)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int res, ret = 0;
|
|
|
|
if (!(chip->bbt_options & NAND_BBT_NO_OOB_BBM)) {
|
|
struct erase_info einfo;
|
|
|
|
/* Attempt erase before marking OOB */
|
|
memset(&einfo, 0, sizeof(einfo));
|
|
einfo.addr = ofs;
|
|
einfo.len = 1ULL << chip->phys_erase_shift;
|
|
nand_erase_nand(chip, &einfo, 0);
|
|
|
|
/* Write bad block marker to OOB */
|
|
ret = nand_get_device(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_markbad_bbm(chip, ofs);
|
|
nand_release_device(chip);
|
|
}
|
|
|
|
/* Mark block bad in BBT */
|
|
if (chip->bbt) {
|
|
res = nand_markbad_bbt(chip, ofs);
|
|
if (!ret)
|
|
ret = res;
|
|
}
|
|
|
|
if (!ret)
|
|
mtd->ecc_stats.badblocks++;
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_block_isreserved - [GENERIC] Check if a block is marked reserved.
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset from device start
|
|
*
|
|
* Check if the block is marked as reserved.
|
|
*/
|
|
static int nand_block_isreserved(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (!chip->bbt)
|
|
return 0;
|
|
/* Return info from the table */
|
|
return nand_isreserved_bbt(chip, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_block_checkbad - [GENERIC] Check if a block is marked bad
|
|
* @chip: NAND chip object
|
|
* @ofs: offset from device start
|
|
* @allowbbt: 1, if its allowed to access the bbt area
|
|
*
|
|
* Check, if the block is bad. Either by reading the bad block table or
|
|
* calling of the scan function.
|
|
*/
|
|
static int nand_block_checkbad(struct nand_chip *chip, loff_t ofs, int allowbbt)
|
|
{
|
|
/* Return info from the table */
|
|
if (chip->bbt)
|
|
return nand_isbad_bbt(chip, ofs, allowbbt);
|
|
|
|
return nand_isbad_bbm(chip, ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_soft_waitrdy - Poll STATUS reg until RDY bit is set to 1
|
|
* @chip: NAND chip structure
|
|
* @timeout_ms: Timeout in ms
|
|
*
|
|
* Poll the STATUS register using ->exec_op() until the RDY bit becomes 1.
|
|
* If that does not happen whitin the specified timeout, -ETIMEDOUT is
|
|
* returned.
|
|
*
|
|
* This helper is intended to be used when the controller does not have access
|
|
* to the NAND R/B pin.
|
|
*
|
|
* Be aware that calling this helper from an ->exec_op() implementation means
|
|
* ->exec_op() must be re-entrant.
|
|
*
|
|
* Return 0 if the NAND chip is ready, a negative error otherwise.
|
|
*/
|
|
int nand_soft_waitrdy(struct nand_chip *chip, unsigned long timeout_ms)
|
|
{
|
|
const struct nand_sdr_timings *timings;
|
|
u8 status = 0;
|
|
int ret;
|
|
|
|
if (!nand_has_exec_op(chip))
|
|
return -ENOTSUPP;
|
|
|
|
/* Wait tWB before polling the STATUS reg. */
|
|
timings = nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
ndelay(PSEC_TO_NSEC(timings->tWB_max));
|
|
|
|
ret = nand_status_op(chip, NULL);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* +1 below is necessary because if we are now in the last fraction
|
|
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
|
|
* small jiffy fraction - possibly leading to false timeout
|
|
*/
|
|
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
|
|
do {
|
|
ret = nand_read_data_op(chip, &status, sizeof(status), true,
|
|
false);
|
|
if (ret)
|
|
break;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
|
|
/*
|
|
* Typical lowest execution time for a tR on most NANDs is 10us,
|
|
* use this as polling delay before doing something smarter (ie.
|
|
* deriving a delay from the timeout value, timeout_ms/ratio).
|
|
*/
|
|
udelay(10);
|
|
} while (time_before(jiffies, timeout_ms));
|
|
|
|
/*
|
|
* We have to exit READ_STATUS mode in order to read real data on the
|
|
* bus in case the WAITRDY instruction is preceding a DATA_IN
|
|
* instruction.
|
|
*/
|
|
nand_exit_status_op(chip);
|
|
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status & NAND_STATUS_READY ? 0 : -ETIMEDOUT;
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_soft_waitrdy);
|
|
|
|
/**
|
|
* nand_gpio_waitrdy - Poll R/B GPIO pin until ready
|
|
* @chip: NAND chip structure
|
|
* @gpiod: GPIO descriptor of R/B pin
|
|
* @timeout_ms: Timeout in ms
|
|
*
|
|
* Poll the R/B GPIO pin until it becomes ready. If that does not happen
|
|
* whitin the specified timeout, -ETIMEDOUT is returned.
|
|
*
|
|
* This helper is intended to be used when the controller has access to the
|
|
* NAND R/B pin over GPIO.
|
|
*
|
|
* Return 0 if the R/B pin indicates chip is ready, a negative error otherwise.
|
|
*/
|
|
int nand_gpio_waitrdy(struct nand_chip *chip, struct gpio_desc *gpiod,
|
|
unsigned long timeout_ms)
|
|
{
|
|
|
|
/*
|
|
* Wait until R/B pin indicates chip is ready or timeout occurs.
|
|
* +1 below is necessary because if we are now in the last fraction
|
|
* of jiffy and msecs_to_jiffies is 1 then we will wait only that
|
|
* small jiffy fraction - possibly leading to false timeout.
|
|
*/
|
|
timeout_ms = jiffies + msecs_to_jiffies(timeout_ms) + 1;
|
|
do {
|
|
if (gpiod_get_value_cansleep(gpiod))
|
|
return 0;
|
|
|
|
cond_resched();
|
|
} while (time_before(jiffies, timeout_ms));
|
|
|
|
return gpiod_get_value_cansleep(gpiod) ? 0 : -ETIMEDOUT;
|
|
};
|
|
EXPORT_SYMBOL_GPL(nand_gpio_waitrdy);
|
|
|
|
/**
|
|
* panic_nand_wait - [GENERIC] wait until the command is done
|
|
* @chip: NAND chip structure
|
|
* @timeo: timeout
|
|
*
|
|
* Wait for command done. This is a helper function for nand_wait used when
|
|
* we are in interrupt context. May happen when in panic and trying to write
|
|
* an oops through mtdoops.
|
|
*/
|
|
void panic_nand_wait(struct nand_chip *chip, unsigned long timeo)
|
|
{
|
|
int i;
|
|
for (i = 0; i < timeo; i++) {
|
|
if (chip->legacy.dev_ready) {
|
|
if (chip->legacy.dev_ready(chip))
|
|
break;
|
|
} else {
|
|
int ret;
|
|
u8 status;
|
|
|
|
ret = nand_read_data_op(chip, &status, sizeof(status),
|
|
true, false);
|
|
if (ret)
|
|
return;
|
|
|
|
if (status & NAND_STATUS_READY)
|
|
break;
|
|
}
|
|
mdelay(1);
|
|
}
|
|
}
|
|
|
|
static bool nand_supports_get_features(struct nand_chip *chip, int addr)
|
|
{
|
|
return (chip->parameters.supports_set_get_features &&
|
|
test_bit(addr, chip->parameters.get_feature_list));
|
|
}
|
|
|
|
static bool nand_supports_set_features(struct nand_chip *chip, int addr)
|
|
{
|
|
return (chip->parameters.supports_set_get_features &&
|
|
test_bit(addr, chip->parameters.set_feature_list));
|
|
}
|
|
|
|
/**
|
|
* nand_reset_interface - Reset data interface and timings
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Reset the Data interface and timings to ONFI mode 0.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_reset_interface(struct nand_chip *chip, int chipnr)
|
|
{
|
|
const struct nand_controller_ops *ops = chip->controller->ops;
|
|
int ret;
|
|
|
|
if (!nand_controller_can_setup_interface(chip))
|
|
return 0;
|
|
|
|
/*
|
|
* The ONFI specification says:
|
|
* "
|
|
* To transition from NV-DDR or NV-DDR2 to the SDR data
|
|
* interface, the host shall use the Reset (FFh) command
|
|
* using SDR timing mode 0. A device in any timing mode is
|
|
* required to recognize Reset (FFh) command issued in SDR
|
|
* timing mode 0.
|
|
* "
|
|
*
|
|
* Configure the data interface in SDR mode and set the
|
|
* timings to timing mode 0.
|
|
*/
|
|
|
|
chip->current_interface_config = nand_get_reset_interface_config();
|
|
ret = ops->setup_interface(chip, chipnr,
|
|
chip->current_interface_config);
|
|
if (ret)
|
|
pr_err("Failed to configure data interface to SDR timing mode 0\n");
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_setup_interface - Setup the best data interface and timings
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Configure what has been reported to be the best data interface and NAND
|
|
* timings supported by the chip and the driver.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_setup_interface(struct nand_chip *chip, int chipnr)
|
|
{
|
|
const struct nand_controller_ops *ops = chip->controller->ops;
|
|
u8 tmode_param[ONFI_SUBFEATURE_PARAM_LEN] = { };
|
|
int ret;
|
|
|
|
if (!nand_controller_can_setup_interface(chip))
|
|
return 0;
|
|
|
|
/*
|
|
* A nand_reset_interface() put both the NAND chip and the NAND
|
|
* controller in timings mode 0. If the default mode for this chip is
|
|
* also 0, no need to proceed to the change again. Plus, at probe time,
|
|
* nand_setup_interface() uses ->set/get_features() which would
|
|
* fail anyway as the parameter page is not available yet.
|
|
*/
|
|
if (!chip->best_interface_config)
|
|
return 0;
|
|
|
|
tmode_param[0] = chip->best_interface_config->timings.mode;
|
|
|
|
/* Change the mode on the chip side (if supported by the NAND chip) */
|
|
if (nand_supports_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE)) {
|
|
nand_select_target(chip, chipnr);
|
|
ret = nand_set_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
|
|
tmode_param);
|
|
nand_deselect_target(chip);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/* Change the mode on the controller side */
|
|
ret = ops->setup_interface(chip, chipnr, chip->best_interface_config);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Check the mode has been accepted by the chip, if supported */
|
|
if (!nand_supports_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE))
|
|
goto update_interface_config;
|
|
|
|
memset(tmode_param, 0, ONFI_SUBFEATURE_PARAM_LEN);
|
|
nand_select_target(chip, chipnr);
|
|
ret = nand_get_features(chip, ONFI_FEATURE_ADDR_TIMING_MODE,
|
|
tmode_param);
|
|
nand_deselect_target(chip);
|
|
if (ret)
|
|
goto err_reset_chip;
|
|
|
|
if (tmode_param[0] != chip->best_interface_config->timings.mode) {
|
|
pr_warn("timing mode %d not acknowledged by the NAND chip\n",
|
|
chip->best_interface_config->timings.mode);
|
|
goto err_reset_chip;
|
|
}
|
|
|
|
update_interface_config:
|
|
chip->current_interface_config = chip->best_interface_config;
|
|
|
|
return 0;
|
|
|
|
err_reset_chip:
|
|
/*
|
|
* Fallback to mode 0 if the chip explicitly did not ack the chosen
|
|
* timing mode.
|
|
*/
|
|
nand_reset_interface(chip, chipnr);
|
|
nand_select_target(chip, chipnr);
|
|
nand_reset_op(chip);
|
|
nand_deselect_target(chip);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_choose_best_sdr_timings - Pick up the best SDR timings that both the
|
|
* NAND controller and the NAND chip support
|
|
* @chip: the NAND chip
|
|
* @iface: the interface configuration (can eventually be updated)
|
|
* @spec_timings: specific timings, when not fitting the ONFI specification
|
|
*
|
|
* If specific timings are provided, use them. Otherwise, retrieve supported
|
|
* timing modes from ONFI information.
|
|
*/
|
|
int nand_choose_best_sdr_timings(struct nand_chip *chip,
|
|
struct nand_interface_config *iface,
|
|
struct nand_sdr_timings *spec_timings)
|
|
{
|
|
const struct nand_controller_ops *ops = chip->controller->ops;
|
|
int best_mode = 0, mode, ret;
|
|
|
|
iface->type = NAND_SDR_IFACE;
|
|
|
|
if (spec_timings) {
|
|
iface->timings.sdr = *spec_timings;
|
|
iface->timings.mode = onfi_find_closest_sdr_mode(spec_timings);
|
|
|
|
/* Verify the controller supports the requested interface */
|
|
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
|
|
iface);
|
|
if (!ret) {
|
|
chip->best_interface_config = iface;
|
|
return ret;
|
|
}
|
|
|
|
/* Fallback to slower modes */
|
|
best_mode = iface->timings.mode;
|
|
} else if (chip->parameters.onfi) {
|
|
best_mode = fls(chip->parameters.onfi->async_timing_mode) - 1;
|
|
}
|
|
|
|
for (mode = best_mode; mode >= 0; mode--) {
|
|
onfi_fill_interface_config(chip, iface, NAND_SDR_IFACE, mode);
|
|
|
|
ret = ops->setup_interface(chip, NAND_DATA_IFACE_CHECK_ONLY,
|
|
iface);
|
|
if (!ret)
|
|
break;
|
|
}
|
|
|
|
chip->best_interface_config = iface;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_choose_interface_config - find the best data interface and timings
|
|
* @chip: The NAND chip
|
|
*
|
|
* Find the best data interface and NAND timings supported by the chip
|
|
* and the driver. Eventually let the NAND manufacturer driver propose his own
|
|
* set of timings.
|
|
*
|
|
* After this function nand_chip->interface_config is initialized with the best
|
|
* timing mode available.
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_choose_interface_config(struct nand_chip *chip)
|
|
{
|
|
struct nand_interface_config *iface;
|
|
int ret;
|
|
|
|
if (!nand_controller_can_setup_interface(chip))
|
|
return 0;
|
|
|
|
iface = kzalloc(sizeof(*iface), GFP_KERNEL);
|
|
if (!iface)
|
|
return -ENOMEM;
|
|
|
|
if (chip->ops.choose_interface_config)
|
|
ret = chip->ops.choose_interface_config(chip, iface);
|
|
else
|
|
ret = nand_choose_best_sdr_timings(chip, iface, NULL);
|
|
|
|
if (ret)
|
|
kfree(iface);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_fill_column_cycles - fill the column cycles of an address
|
|
* @chip: The NAND chip
|
|
* @addrs: Array of address cycles to fill
|
|
* @offset_in_page: The offset in the page
|
|
*
|
|
* Fills the first or the first two bytes of the @addrs field depending
|
|
* on the NAND bus width and the page size.
|
|
*
|
|
* Returns the number of cycles needed to encode the column, or a negative
|
|
* error code in case one of the arguments is invalid.
|
|
*/
|
|
static int nand_fill_column_cycles(struct nand_chip *chip, u8 *addrs,
|
|
unsigned int offset_in_page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Make sure the offset is less than the actual page size. */
|
|
if (offset_in_page > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/*
|
|
* On small page NANDs, there's a dedicated command to access the OOB
|
|
* area, and the column address is relative to the start of the OOB
|
|
* area, not the start of the page. Asjust the address accordingly.
|
|
*/
|
|
if (mtd->writesize <= 512 && offset_in_page >= mtd->writesize)
|
|
offset_in_page -= mtd->writesize;
|
|
|
|
/*
|
|
* The offset in page is expressed in bytes, if the NAND bus is 16-bit
|
|
* wide, then it must be divided by 2.
|
|
*/
|
|
if (chip->options & NAND_BUSWIDTH_16) {
|
|
if (WARN_ON(offset_in_page % 2))
|
|
return -EINVAL;
|
|
|
|
offset_in_page /= 2;
|
|
}
|
|
|
|
addrs[0] = offset_in_page;
|
|
|
|
/*
|
|
* Small page NANDs use 1 cycle for the columns, while large page NANDs
|
|
* need 2
|
|
*/
|
|
if (mtd->writesize <= 512)
|
|
return 1;
|
|
|
|
addrs[1] = offset_in_page >> 8;
|
|
|
|
return 2;
|
|
}
|
|
|
|
static int nand_sp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u8 addrs[4];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_ADDR(3, addrs, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
int ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
if (offset_in_page >= mtd->writesize)
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
else if (offset_in_page >= 256 &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
addrs[1] = page;
|
|
addrs[2] = page >> 8;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
addrs[3] = page >> 16;
|
|
instrs[1].ctx.addr.naddrs++;
|
|
}
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
static int nand_lp_exec_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
u8 addrs[5];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_ADDR(4, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_READSTART, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
int ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
addrs[2] = page;
|
|
addrs[3] = page >> 8;
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3) {
|
|
addrs[4] = page >> 16;
|
|
instrs[1].ctx.addr.naddrs++;
|
|
}
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_op - Do a READ PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to read
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, void *buf, unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
if (mtd->writesize > 512)
|
|
return nand_lp_exec_read_page_op(chip, page,
|
|
offset_in_page, buf,
|
|
len);
|
|
|
|
return nand_sp_exec_read_page_op(chip, page, offset_in_page,
|
|
buf, len);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, offset_in_page, page);
|
|
if (len)
|
|
chip->legacy.read_buf(chip, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_page_op);
|
|
|
|
/**
|
|
* nand_read_param_page_op - Do a READ PARAMETER PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: parameter page to read
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ PARAMETER PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_param_page_op(struct nand_chip *chip, u8 page, void *buf,
|
|
unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
u8 *p = buf;
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_PARAM, 0),
|
|
NAND_OP_ADDR(1, &page, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tR_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PARAM, page, -1);
|
|
for (i = 0; i < len; i++)
|
|
p[i] = chip->legacy.read_byte(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_change_read_column_op - Do a CHANGE READ COLUMN operation
|
|
* @chip: The NAND chip
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function issues a CHANGE READ COLUMN operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_change_read_column_op(struct nand_chip *chip,
|
|
unsigned int offset_in_page, void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/* Small page NANDs do not support column change. */
|
|
if (mtd->writesize <= 512)
|
|
return -ENOTSUPP;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
u8 addrs[2] = {};
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RNDOUT, 0),
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_RNDOUTSTART,
|
|
PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
int ret;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
instrs[3].ctx.data.force_8bit = force_8bit;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RNDOUT, offset_in_page, -1);
|
|
if (len)
|
|
chip->legacy.read_buf(chip, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_change_read_column_op);
|
|
|
|
/**
|
|
* nand_read_oob_op - Do a READ OOB operation
|
|
* @chip: The NAND chip
|
|
* @page: page to read
|
|
* @offset_in_oob: offset within the OOB area
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a READ OOB operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_oob_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_oob, void *buf, unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_oob + len > mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip))
|
|
return nand_read_page_op(chip, page,
|
|
mtd->writesize + offset_in_oob,
|
|
buf, len);
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READOOB, offset_in_oob, page);
|
|
if (len)
|
|
chip->legacy.read_buf(chip, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_oob_op);
|
|
|
|
static int nand_exec_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len, bool prog)
|
|
{
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
u8 addrs[5] = {};
|
|
struct nand_op_instr instrs[] = {
|
|
/*
|
|
* The first instruction will be dropped if we're dealing
|
|
* with a large page NAND and adjusted if we're dealing
|
|
* with a small page NAND and the page offset is > 255.
|
|
*/
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
NAND_OP_CMD(NAND_CMD_SEQIN, 0),
|
|
NAND_OP_ADDR(0, addrs, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
int naddrs = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (naddrs < 0)
|
|
return naddrs;
|
|
|
|
addrs[naddrs++] = page;
|
|
addrs[naddrs++] = page >> 8;
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
addrs[naddrs++] = page >> 16;
|
|
|
|
instrs[2].ctx.addr.naddrs = naddrs;
|
|
|
|
/* Drop the last two instructions if we're not programming the page. */
|
|
if (!prog) {
|
|
op.ninstrs -= 2;
|
|
/* Also drop the DATA_OUT instruction if empty. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
}
|
|
|
|
if (mtd->writesize <= 512) {
|
|
/*
|
|
* Small pages need some more tweaking: we have to adjust the
|
|
* first instruction depending on the page offset we're trying
|
|
* to access.
|
|
*/
|
|
if (offset_in_page >= mtd->writesize)
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READOOB;
|
|
else if (offset_in_page >= 256 &&
|
|
!(chip->options & NAND_BUSWIDTH_16))
|
|
instrs[0].ctx.cmd.opcode = NAND_CMD_READ1;
|
|
} else {
|
|
/*
|
|
* Drop the first command if we're dealing with a large page
|
|
* NAND.
|
|
*/
|
|
op.instrs++;
|
|
op.ninstrs--;
|
|
}
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (!prog || ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return status;
|
|
}
|
|
|
|
/**
|
|
* nand_prog_page_begin_op - starts a PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to write
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to write to the page
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues the first half of a PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_begin_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip))
|
|
return nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
len, false);
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page, page);
|
|
|
|
if (buf)
|
|
chip->legacy.write_buf(chip, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_begin_op);
|
|
|
|
/**
|
|
* nand_prog_page_end_op - ends a PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function issues the second half of a PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_end_op(struct nand_chip *chip)
|
|
{
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_PAGEPROG,
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tPROG_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
|
|
ret = chip->legacy.waitfunc(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
status = ret;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_end_op);
|
|
|
|
/**
|
|
* nand_prog_page_op - Do a full PROG PAGE operation
|
|
* @chip: The NAND chip
|
|
* @page: page to write
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to write to the page
|
|
* @len: length of the buffer
|
|
*
|
|
* This function issues a full PROG PAGE operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_prog_page_op(struct nand_chip *chip, unsigned int page,
|
|
unsigned int offset_in_page, const void *buf,
|
|
unsigned int len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status;
|
|
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
status = nand_exec_prog_page_op(chip, page, offset_in_page, buf,
|
|
len, true);
|
|
} else {
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SEQIN, offset_in_page,
|
|
page);
|
|
chip->legacy.write_buf(chip, buf, len);
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_PAGEPROG, -1, -1);
|
|
status = chip->legacy.waitfunc(chip);
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_prog_page_op);
|
|
|
|
/**
|
|
* nand_change_write_column_op - Do a CHANGE WRITE COLUMN operation
|
|
* @chip: The NAND chip
|
|
* @offset_in_page: offset within the page
|
|
* @buf: buffer containing the data to send to the NAND
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function issues a CHANGE WRITE COLUMN operation.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_change_write_column_op(struct nand_chip *chip,
|
|
unsigned int offset_in_page,
|
|
const void *buf, unsigned int len,
|
|
bool force_8bit)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (offset_in_page + len > mtd->writesize + mtd->oobsize)
|
|
return -EINVAL;
|
|
|
|
/* Small page NANDs do not support column change. */
|
|
if (mtd->writesize <= 512)
|
|
return -ENOTSUPP;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
u8 addrs[2];
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RNDIN, 0),
|
|
NAND_OP_ADDR(2, addrs, PSEC_TO_NSEC(sdr->tCCS_min)),
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
int ret;
|
|
|
|
ret = nand_fill_column_cycles(chip, addrs, offset_in_page);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
instrs[2].ctx.data.force_8bit = force_8bit;
|
|
|
|
/* Drop the DATA_OUT instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RNDIN, offset_in_page, -1);
|
|
if (len)
|
|
chip->legacy.write_buf(chip, buf, len);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_change_write_column_op);
|
|
|
|
/**
|
|
* nand_readid_op - Do a READID operation
|
|
* @chip: The NAND chip
|
|
* @addr: address cycle to pass after the READID command
|
|
* @buf: buffer used to store the ID
|
|
* @len: length of the buffer
|
|
*
|
|
* This function sends a READID command and reads back the ID returned by the
|
|
* NAND.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_readid_op(struct nand_chip *chip, u8 addr, void *buf,
|
|
unsigned int len)
|
|
{
|
|
unsigned int i;
|
|
u8 *id = buf;
|
|
|
|
if (len && !buf)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READID, 0),
|
|
NAND_OP_ADDR(1, &addr, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
/* Drop the DATA_IN instruction if len is set to 0. */
|
|
if (!len)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READID, addr, -1);
|
|
|
|
for (i = 0; i < len; i++)
|
|
id[i] = chip->legacy.read_byte(chip);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_readid_op);
|
|
|
|
/**
|
|
* nand_status_op - Do a STATUS operation
|
|
* @chip: The NAND chip
|
|
* @status: out variable to store the NAND status
|
|
*
|
|
* This function sends a STATUS command and reads back the status returned by
|
|
* the NAND.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_status_op(struct nand_chip *chip, u8 *status)
|
|
{
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_STATUS,
|
|
PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_IN(1, status, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
if (!status)
|
|
op.ninstrs--;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_STATUS, -1, -1);
|
|
if (status)
|
|
*status = chip->legacy.read_byte(chip);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_status_op);
|
|
|
|
/**
|
|
* nand_exit_status_op - Exit a STATUS operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function sends a READ0 command to cancel the effect of the STATUS
|
|
* command to avoid reading only the status until a new read command is sent.
|
|
*
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_exit_status_op(struct nand_chip *chip)
|
|
{
|
|
if (nand_has_exec_op(chip)) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_READ0, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_READ0, -1, -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_erase_op - Do an erase operation
|
|
* @chip: The NAND chip
|
|
* @eraseblock: block to erase
|
|
*
|
|
* This function sends an ERASE command and waits for the NAND to be ready
|
|
* before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_erase_op(struct nand_chip *chip, unsigned int eraseblock)
|
|
{
|
|
unsigned int page = eraseblock <<
|
|
(chip->phys_erase_shift - chip->page_shift);
|
|
int ret;
|
|
u8 status;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
u8 addrs[3] = { page, page >> 8, page >> 16 };
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_ERASE1, 0),
|
|
NAND_OP_ADDR(2, addrs, 0),
|
|
NAND_OP_CMD(NAND_CMD_ERASE2,
|
|
PSEC_TO_MSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tBERS_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
if (chip->options & NAND_ROW_ADDR_3)
|
|
instrs[1].ctx.addr.naddrs++;
|
|
|
|
ret = nand_exec_op(chip, &op);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_status_op(chip, &status);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE1, -1, page);
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_ERASE2, -1, -1);
|
|
|
|
ret = chip->legacy.waitfunc(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
status = ret;
|
|
}
|
|
|
|
if (status & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_erase_op);
|
|
|
|
/**
|
|
* nand_set_features_op - Do a SET FEATURES operation
|
|
* @chip: The NAND chip
|
|
* @feature: feature id
|
|
* @data: 4 bytes of data
|
|
*
|
|
* This function sends a SET FEATURES command and waits for the NAND to be
|
|
* ready before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
static int nand_set_features_op(struct nand_chip *chip, u8 feature,
|
|
const void *data)
|
|
{
|
|
const u8 *params = data;
|
|
int i, ret;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_SET_FEATURES, 0),
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tADL_min)),
|
|
NAND_OP_8BIT_DATA_OUT(ONFI_SUBFEATURE_PARAM_LEN, data,
|
|
PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_SET_FEATURES, feature, -1);
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
chip->legacy.write_byte(chip, params[i]);
|
|
|
|
ret = chip->legacy.waitfunc(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ret & NAND_STATUS_FAIL)
|
|
return -EIO;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_get_features_op - Do a GET FEATURES operation
|
|
* @chip: The NAND chip
|
|
* @feature: feature id
|
|
* @data: 4 bytes of data
|
|
*
|
|
* This function sends a GET FEATURES command and waits for the NAND to be
|
|
* ready before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
static int nand_get_features_op(struct nand_chip *chip, u8 feature,
|
|
void *data)
|
|
{
|
|
u8 *params = data;
|
|
int i;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_GET_FEATURES, 0),
|
|
NAND_OP_ADDR(1, &feature, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tFEAT_max),
|
|
PSEC_TO_NSEC(sdr->tRR_min)),
|
|
NAND_OP_8BIT_DATA_IN(ONFI_SUBFEATURE_PARAM_LEN,
|
|
data, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_GET_FEATURES, feature, -1);
|
|
for (i = 0; i < ONFI_SUBFEATURE_PARAM_LEN; ++i)
|
|
params[i] = chip->legacy.read_byte(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static int nand_wait_rdy_op(struct nand_chip *chip, unsigned int timeout_ms,
|
|
unsigned int delay_ns)
|
|
{
|
|
if (nand_has_exec_op(chip)) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(timeout_ms),
|
|
PSEC_TO_NSEC(delay_ns)),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
/* Apply delay or wait for ready/busy pin */
|
|
if (!chip->legacy.dev_ready)
|
|
udelay(chip->legacy.chip_delay);
|
|
else
|
|
nand_wait_ready(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_reset_op - Do a reset operation
|
|
* @chip: The NAND chip
|
|
*
|
|
* This function sends a RESET command and waits for the NAND to be ready
|
|
* before returning.
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_reset_op(struct nand_chip *chip)
|
|
{
|
|
if (nand_has_exec_op(chip)) {
|
|
const struct nand_sdr_timings *sdr =
|
|
nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_CMD(NAND_CMD_RESET, PSEC_TO_NSEC(sdr->tWB_max)),
|
|
NAND_OP_WAIT_RDY(PSEC_TO_MSEC(sdr->tRST_max), 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
chip->legacy.cmdfunc(chip, NAND_CMD_RESET, -1, -1);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_reset_op);
|
|
|
|
/**
|
|
* nand_read_data_op - Read data from the NAND
|
|
* @chip: The NAND chip
|
|
* @buf: buffer used to store the data
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
* @check_only: do not actually run the command, only checks if the
|
|
* controller driver supports it
|
|
*
|
|
* This function does a raw data read on the bus. Usually used after launching
|
|
* another NAND operation like nand_read_page_op().
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_read_data_op(struct nand_chip *chip, void *buf, unsigned int len,
|
|
bool force_8bit, bool check_only)
|
|
{
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_DATA_IN(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
if (check_only)
|
|
return nand_check_op(chip, &op);
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
if (check_only)
|
|
return 0;
|
|
|
|
if (force_8bit) {
|
|
u8 *p = buf;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
p[i] = chip->legacy.read_byte(chip);
|
|
} else {
|
|
chip->legacy.read_buf(chip, buf, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_read_data_op);
|
|
|
|
/**
|
|
* nand_write_data_op - Write data from the NAND
|
|
* @chip: The NAND chip
|
|
* @buf: buffer containing the data to send on the bus
|
|
* @len: length of the buffer
|
|
* @force_8bit: force 8-bit bus access
|
|
*
|
|
* This function does a raw data write on the bus. Usually used after launching
|
|
* another NAND operation like nand_write_page_begin_op().
|
|
* This function does not select/unselect the CS line.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_write_data_op(struct nand_chip *chip, const void *buf,
|
|
unsigned int len, bool force_8bit)
|
|
{
|
|
if (!len || !buf)
|
|
return -EINVAL;
|
|
|
|
if (nand_has_exec_op(chip)) {
|
|
struct nand_op_instr instrs[] = {
|
|
NAND_OP_DATA_OUT(len, buf, 0),
|
|
};
|
|
struct nand_operation op = NAND_OPERATION(chip->cur_cs, instrs);
|
|
|
|
instrs[0].ctx.data.force_8bit = force_8bit;
|
|
|
|
return nand_exec_op(chip, &op);
|
|
}
|
|
|
|
if (force_8bit) {
|
|
const u8 *p = buf;
|
|
unsigned int i;
|
|
|
|
for (i = 0; i < len; i++)
|
|
chip->legacy.write_byte(chip, p[i]);
|
|
} else {
|
|
chip->legacy.write_buf(chip, buf, len);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_write_data_op);
|
|
|
|
/**
|
|
* struct nand_op_parser_ctx - Context used by the parser
|
|
* @instrs: array of all the instructions that must be addressed
|
|
* @ninstrs: length of the @instrs array
|
|
* @subop: Sub-operation to be passed to the NAND controller
|
|
*
|
|
* This structure is used by the core to split NAND operations into
|
|
* sub-operations that can be handled by the NAND controller.
|
|
*/
|
|
struct nand_op_parser_ctx {
|
|
const struct nand_op_instr *instrs;
|
|
unsigned int ninstrs;
|
|
struct nand_subop subop;
|
|
};
|
|
|
|
/**
|
|
* nand_op_parser_must_split_instr - Checks if an instruction must be split
|
|
* @pat: the parser pattern element that matches @instr
|
|
* @instr: pointer to the instruction to check
|
|
* @start_offset: this is an in/out parameter. If @instr has already been
|
|
* split, then @start_offset is the offset from which to start
|
|
* (either an address cycle or an offset in the data buffer).
|
|
* Conversely, if the function returns true (ie. instr must be
|
|
* split), this parameter is updated to point to the first
|
|
* data/address cycle that has not been taken care of.
|
|
*
|
|
* Some NAND controllers are limited and cannot send X address cycles with a
|
|
* unique operation, or cannot read/write more than Y bytes at the same time.
|
|
* In this case, split the instruction that does not fit in a single
|
|
* controller-operation into two or more chunks.
|
|
*
|
|
* Returns true if the instruction must be split, false otherwise.
|
|
* The @start_offset parameter is also updated to the offset at which the next
|
|
* bundle of instruction must start (if an address or a data instruction).
|
|
*/
|
|
static bool
|
|
nand_op_parser_must_split_instr(const struct nand_op_parser_pattern_elem *pat,
|
|
const struct nand_op_instr *instr,
|
|
unsigned int *start_offset)
|
|
{
|
|
switch (pat->type) {
|
|
case NAND_OP_ADDR_INSTR:
|
|
if (!pat->ctx.addr.maxcycles)
|
|
break;
|
|
|
|
if (instr->ctx.addr.naddrs - *start_offset >
|
|
pat->ctx.addr.maxcycles) {
|
|
*start_offset += pat->ctx.addr.maxcycles;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
case NAND_OP_DATA_IN_INSTR:
|
|
case NAND_OP_DATA_OUT_INSTR:
|
|
if (!pat->ctx.data.maxlen)
|
|
break;
|
|
|
|
if (instr->ctx.data.len - *start_offset >
|
|
pat->ctx.data.maxlen) {
|
|
*start_offset += pat->ctx.data.maxlen;
|
|
return true;
|
|
}
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/**
|
|
* nand_op_parser_match_pat - Checks if a pattern matches the instructions
|
|
* remaining in the parser context
|
|
* @pat: the pattern to test
|
|
* @ctx: the parser context structure to match with the pattern @pat
|
|
*
|
|
* Check if @pat matches the set or a sub-set of instructions remaining in @ctx.
|
|
* Returns true if this is the case, false ortherwise. When true is returned,
|
|
* @ctx->subop is updated with the set of instructions to be passed to the
|
|
* controller driver.
|
|
*/
|
|
static bool
|
|
nand_op_parser_match_pat(const struct nand_op_parser_pattern *pat,
|
|
struct nand_op_parser_ctx *ctx)
|
|
{
|
|
unsigned int instr_offset = ctx->subop.first_instr_start_off;
|
|
const struct nand_op_instr *end = ctx->instrs + ctx->ninstrs;
|
|
const struct nand_op_instr *instr = ctx->subop.instrs;
|
|
unsigned int i, ninstrs;
|
|
|
|
for (i = 0, ninstrs = 0; i < pat->nelems && instr < end; i++) {
|
|
/*
|
|
* The pattern instruction does not match the operation
|
|
* instruction. If the instruction is marked optional in the
|
|
* pattern definition, we skip the pattern element and continue
|
|
* to the next one. If the element is mandatory, there's no
|
|
* match and we can return false directly.
|
|
*/
|
|
if (instr->type != pat->elems[i].type) {
|
|
if (!pat->elems[i].optional)
|
|
return false;
|
|
|
|
continue;
|
|
}
|
|
|
|
/*
|
|
* Now check the pattern element constraints. If the pattern is
|
|
* not able to handle the whole instruction in a single step,
|
|
* we have to split it.
|
|
* The last_instr_end_off value comes back updated to point to
|
|
* the position where we have to split the instruction (the
|
|
* start of the next subop chunk).
|
|
*/
|
|
if (nand_op_parser_must_split_instr(&pat->elems[i], instr,
|
|
&instr_offset)) {
|
|
ninstrs++;
|
|
i++;
|
|
break;
|
|
}
|
|
|
|
instr++;
|
|
ninstrs++;
|
|
instr_offset = 0;
|
|
}
|
|
|
|
/*
|
|
* This can happen if all instructions of a pattern are optional.
|
|
* Still, if there's not at least one instruction handled by this
|
|
* pattern, this is not a match, and we should try the next one (if
|
|
* any).
|
|
*/
|
|
if (!ninstrs)
|
|
return false;
|
|
|
|
/*
|
|
* We had a match on the pattern head, but the pattern may be longer
|
|
* than the instructions we're asked to execute. We need to make sure
|
|
* there's no mandatory elements in the pattern tail.
|
|
*/
|
|
for (; i < pat->nelems; i++) {
|
|
if (!pat->elems[i].optional)
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* We have a match: update the subop structure accordingly and return
|
|
* true.
|
|
*/
|
|
ctx->subop.ninstrs = ninstrs;
|
|
ctx->subop.last_instr_end_off = instr_offset;
|
|
|
|
return true;
|
|
}
|
|
|
|
#if IS_ENABLED(CONFIG_DYNAMIC_DEBUG) || defined(DEBUG)
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
{
|
|
const struct nand_op_instr *instr;
|
|
char *prefix = " ";
|
|
unsigned int i;
|
|
|
|
pr_debug("executing subop (CS%d):\n", ctx->subop.cs);
|
|
|
|
for (i = 0; i < ctx->ninstrs; i++) {
|
|
instr = &ctx->instrs[i];
|
|
|
|
if (instr == &ctx->subop.instrs[0])
|
|
prefix = " ->";
|
|
|
|
nand_op_trace(prefix, instr);
|
|
|
|
if (instr == &ctx->subop.instrs[ctx->subop.ninstrs - 1])
|
|
prefix = " ";
|
|
}
|
|
}
|
|
#else
|
|
static void nand_op_parser_trace(const struct nand_op_parser_ctx *ctx)
|
|
{
|
|
/* NOP */
|
|
}
|
|
#endif
|
|
|
|
static int nand_op_parser_cmp_ctx(const struct nand_op_parser_ctx *a,
|
|
const struct nand_op_parser_ctx *b)
|
|
{
|
|
if (a->subop.ninstrs < b->subop.ninstrs)
|
|
return -1;
|
|
else if (a->subop.ninstrs > b->subop.ninstrs)
|
|
return 1;
|
|
|
|
if (a->subop.last_instr_end_off < b->subop.last_instr_end_off)
|
|
return -1;
|
|
else if (a->subop.last_instr_end_off > b->subop.last_instr_end_off)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_op_parser_exec_op - exec_op parser
|
|
* @chip: the NAND chip
|
|
* @parser: patterns description provided by the controller driver
|
|
* @op: the NAND operation to address
|
|
* @check_only: when true, the function only checks if @op can be handled but
|
|
* does not execute the operation
|
|
*
|
|
* Helper function designed to ease integration of NAND controller drivers that
|
|
* only support a limited set of instruction sequences. The supported sequences
|
|
* are described in @parser, and the framework takes care of splitting @op into
|
|
* multiple sub-operations (if required) and pass them back to the ->exec()
|
|
* callback of the matching pattern if @check_only is set to false.
|
|
*
|
|
* NAND controller drivers should call this function from their own ->exec_op()
|
|
* implementation.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise. A failure can be
|
|
* caused by an unsupported operation (none of the supported patterns is able
|
|
* to handle the requested operation), or an error returned by one of the
|
|
* matching pattern->exec() hook.
|
|
*/
|
|
int nand_op_parser_exec_op(struct nand_chip *chip,
|
|
const struct nand_op_parser *parser,
|
|
const struct nand_operation *op, bool check_only)
|
|
{
|
|
struct nand_op_parser_ctx ctx = {
|
|
.subop.cs = op->cs,
|
|
.subop.instrs = op->instrs,
|
|
.instrs = op->instrs,
|
|
.ninstrs = op->ninstrs,
|
|
};
|
|
unsigned int i;
|
|
|
|
while (ctx.subop.instrs < op->instrs + op->ninstrs) {
|
|
const struct nand_op_parser_pattern *pattern;
|
|
struct nand_op_parser_ctx best_ctx;
|
|
int ret, best_pattern = -1;
|
|
|
|
for (i = 0; i < parser->npatterns; i++) {
|
|
struct nand_op_parser_ctx test_ctx = ctx;
|
|
|
|
pattern = &parser->patterns[i];
|
|
if (!nand_op_parser_match_pat(pattern, &test_ctx))
|
|
continue;
|
|
|
|
if (best_pattern >= 0 &&
|
|
nand_op_parser_cmp_ctx(&test_ctx, &best_ctx) <= 0)
|
|
continue;
|
|
|
|
best_pattern = i;
|
|
best_ctx = test_ctx;
|
|
}
|
|
|
|
if (best_pattern < 0) {
|
|
pr_debug("->exec_op() parser: pattern not found!\n");
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
ctx = best_ctx;
|
|
nand_op_parser_trace(&ctx);
|
|
|
|
if (!check_only) {
|
|
pattern = &parser->patterns[best_pattern];
|
|
ret = pattern->exec(chip, &ctx.subop);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
/*
|
|
* Update the context structure by pointing to the start of the
|
|
* next subop.
|
|
*/
|
|
ctx.subop.instrs = ctx.subop.instrs + ctx.subop.ninstrs;
|
|
if (ctx.subop.last_instr_end_off)
|
|
ctx.subop.instrs -= 1;
|
|
|
|
ctx.subop.first_instr_start_off = ctx.subop.last_instr_end_off;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_op_parser_exec_op);
|
|
|
|
static bool nand_instr_is_data(const struct nand_op_instr *instr)
|
|
{
|
|
return instr && (instr->type == NAND_OP_DATA_IN_INSTR ||
|
|
instr->type == NAND_OP_DATA_OUT_INSTR);
|
|
}
|
|
|
|
static bool nand_subop_instr_is_valid(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
return subop && instr_idx < subop->ninstrs;
|
|
}
|
|
|
|
static unsigned int nand_subop_get_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (instr_idx)
|
|
return 0;
|
|
|
|
return subop->first_instr_start_off;
|
|
}
|
|
|
|
/**
|
|
* nand_subop_get_addr_start_off - Get the start offset in an address array
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->addr.addrs field of address instructions. This is wrong as address
|
|
* instructions might be split.
|
|
*
|
|
* Given an address instruction, returns the offset of the first cycle to issue.
|
|
*/
|
|
unsigned int nand_subop_get_addr_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
|
|
return 0;
|
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_addr_start_off);
|
|
|
|
/**
|
|
* nand_subop_get_num_addr_cyc - Get the remaining address cycles to assert
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->addr->naddrs field of a data instruction. This is wrong as instructions
|
|
* might be split.
|
|
*
|
|
* Given an address instruction, returns the number of address cycle to issue.
|
|
*/
|
|
unsigned int nand_subop_get_num_addr_cyc(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
int start_off, end_off;
|
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
subop->instrs[instr_idx].type != NAND_OP_ADDR_INSTR))
|
|
return 0;
|
|
|
|
start_off = nand_subop_get_addr_start_off(subop, instr_idx);
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
subop->last_instr_end_off)
|
|
end_off = subop->last_instr_end_off;
|
|
else
|
|
end_off = subop->instrs[instr_idx].ctx.addr.naddrs;
|
|
|
|
return end_off - start_off;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_num_addr_cyc);
|
|
|
|
/**
|
|
* nand_subop_get_data_start_off - Get the start offset in a data array
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->data->buf.{in,out} field of data instructions. This is wrong as data
|
|
* instructions might be split.
|
|
*
|
|
* Given a data instruction, returns the offset to start from.
|
|
*/
|
|
unsigned int nand_subop_get_data_start_off(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
!nand_instr_is_data(&subop->instrs[instr_idx])))
|
|
return 0;
|
|
|
|
return nand_subop_get_start_off(subop, instr_idx);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_start_off);
|
|
|
|
/**
|
|
* nand_subop_get_data_len - Get the number of bytes to retrieve
|
|
* @subop: The entire sub-operation
|
|
* @instr_idx: Index of the instruction inside the sub-operation
|
|
*
|
|
* During driver development, one could be tempted to directly use the
|
|
* ->data->len field of a data instruction. This is wrong as data instructions
|
|
* might be split.
|
|
*
|
|
* Returns the length of the chunk of data to send/receive.
|
|
*/
|
|
unsigned int nand_subop_get_data_len(const struct nand_subop *subop,
|
|
unsigned int instr_idx)
|
|
{
|
|
int start_off = 0, end_off;
|
|
|
|
if (WARN_ON(!nand_subop_instr_is_valid(subop, instr_idx) ||
|
|
!nand_instr_is_data(&subop->instrs[instr_idx])))
|
|
return 0;
|
|
|
|
start_off = nand_subop_get_data_start_off(subop, instr_idx);
|
|
|
|
if (instr_idx == subop->ninstrs - 1 &&
|
|
subop->last_instr_end_off)
|
|
end_off = subop->last_instr_end_off;
|
|
else
|
|
end_off = subop->instrs[instr_idx].ctx.data.len;
|
|
|
|
return end_off - start_off;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_subop_get_data_len);
|
|
|
|
/**
|
|
* nand_reset - Reset and initialize a NAND device
|
|
* @chip: The NAND chip
|
|
* @chipnr: Internal die id
|
|
*
|
|
* Save the timings data structure, then apply SDR timings mode 0 (see
|
|
* nand_reset_interface for details), do the reset operation, and apply
|
|
* back the previous timings.
|
|
*
|
|
* Returns 0 on success, a negative error code otherwise.
|
|
*/
|
|
int nand_reset(struct nand_chip *chip, int chipnr)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_reset_interface(chip, chipnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/*
|
|
* The CS line has to be released before we can apply the new NAND
|
|
* interface settings, hence this weird nand_select_target()
|
|
* nand_deselect_target() dance.
|
|
*/
|
|
nand_select_target(chip, chipnr);
|
|
ret = nand_reset_op(chip);
|
|
nand_deselect_target(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_setup_interface(chip, chipnr);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_reset);
|
|
|
|
/**
|
|
* nand_get_features - wrapper to perform a GET_FEATURE
|
|
* @chip: NAND chip info structure
|
|
* @addr: feature address
|
|
* @subfeature_param: the subfeature parameters, a four bytes array
|
|
*
|
|
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
|
|
* operation cannot be handled.
|
|
*/
|
|
int nand_get_features(struct nand_chip *chip, int addr,
|
|
u8 *subfeature_param)
|
|
{
|
|
if (!nand_supports_get_features(chip, addr))
|
|
return -ENOTSUPP;
|
|
|
|
if (chip->legacy.get_features)
|
|
return chip->legacy.get_features(chip, addr, subfeature_param);
|
|
|
|
return nand_get_features_op(chip, addr, subfeature_param);
|
|
}
|
|
|
|
/**
|
|
* nand_set_features - wrapper to perform a SET_FEATURE
|
|
* @chip: NAND chip info structure
|
|
* @addr: feature address
|
|
* @subfeature_param: the subfeature parameters, a four bytes array
|
|
*
|
|
* Returns 0 for success, a negative error otherwise. Returns -ENOTSUPP if the
|
|
* operation cannot be handled.
|
|
*/
|
|
int nand_set_features(struct nand_chip *chip, int addr,
|
|
u8 *subfeature_param)
|
|
{
|
|
if (!nand_supports_set_features(chip, addr))
|
|
return -ENOTSUPP;
|
|
|
|
if (chip->legacy.set_features)
|
|
return chip->legacy.set_features(chip, addr, subfeature_param);
|
|
|
|
return nand_set_features_op(chip, addr, subfeature_param);
|
|
}
|
|
|
|
/**
|
|
* nand_check_erased_buf - check if a buffer contains (almost) only 0xff data
|
|
* @buf: buffer to test
|
|
* @len: buffer length
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
*
|
|
* Check if a buffer contains only 0xff, which means the underlying region
|
|
* has been erased and is ready to be programmed.
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
* considering the region is not erased.
|
|
* Note: The logic of this function has been extracted from the memweight
|
|
* implementation, except that nand_check_erased_buf function exit before
|
|
* testing the whole buffer if the number of bitflips exceed the
|
|
* bitflips_threshold value.
|
|
*
|
|
* Returns a positive number of bitflips less than or equal to
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
* threshold.
|
|
*/
|
|
static int nand_check_erased_buf(void *buf, int len, int bitflips_threshold)
|
|
{
|
|
const unsigned char *bitmap = buf;
|
|
int bitflips = 0;
|
|
int weight;
|
|
|
|
for (; len && ((uintptr_t)bitmap) % sizeof(long);
|
|
len--, bitmap++) {
|
|
weight = hweight8(*bitmap);
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
for (; len >= sizeof(long);
|
|
len -= sizeof(long), bitmap += sizeof(long)) {
|
|
unsigned long d = *((unsigned long *)bitmap);
|
|
if (d == ~0UL)
|
|
continue;
|
|
weight = hweight_long(d);
|
|
bitflips += BITS_PER_LONG - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
for (; len > 0; len--, bitmap++) {
|
|
weight = hweight8(*bitmap);
|
|
bitflips += BITS_PER_BYTE - weight;
|
|
if (unlikely(bitflips > bitflips_threshold))
|
|
return -EBADMSG;
|
|
}
|
|
|
|
return bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_check_erased_ecc_chunk - check if an ECC chunk contains (almost) only
|
|
* 0xff data
|
|
* @data: data buffer to test
|
|
* @datalen: data length
|
|
* @ecc: ECC buffer
|
|
* @ecclen: ECC length
|
|
* @extraoob: extra OOB buffer
|
|
* @extraooblen: extra OOB length
|
|
* @bitflips_threshold: maximum number of bitflips
|
|
*
|
|
* Check if a data buffer and its associated ECC and OOB data contains only
|
|
* 0xff pattern, which means the underlying region has been erased and is
|
|
* ready to be programmed.
|
|
* The bitflips_threshold specify the maximum number of bitflips before
|
|
* considering the region as not erased.
|
|
*
|
|
* Note:
|
|
* 1/ ECC algorithms are working on pre-defined block sizes which are usually
|
|
* different from the NAND page size. When fixing bitflips, ECC engines will
|
|
* report the number of errors per chunk, and the NAND core infrastructure
|
|
* expect you to return the maximum number of bitflips for the whole page.
|
|
* This is why you should always use this function on a single chunk and
|
|
* not on the whole page. After checking each chunk you should update your
|
|
* max_bitflips value accordingly.
|
|
* 2/ When checking for bitflips in erased pages you should not only check
|
|
* the payload data but also their associated ECC data, because a user might
|
|
* have programmed almost all bits to 1 but a few. In this case, we
|
|
* shouldn't consider the chunk as erased, and checking ECC bytes prevent
|
|
* this case.
|
|
* 3/ The extraoob argument is optional, and should be used if some of your OOB
|
|
* data are protected by the ECC engine.
|
|
* It could also be used if you support subpages and want to attach some
|
|
* extra OOB data to an ECC chunk.
|
|
*
|
|
* Returns a positive number of bitflips less than or equal to
|
|
* bitflips_threshold, or -ERROR_CODE for bitflips in excess of the
|
|
* threshold. In case of success, the passed buffers are filled with 0xff.
|
|
*/
|
|
int nand_check_erased_ecc_chunk(void *data, int datalen,
|
|
void *ecc, int ecclen,
|
|
void *extraoob, int extraooblen,
|
|
int bitflips_threshold)
|
|
{
|
|
int data_bitflips = 0, ecc_bitflips = 0, extraoob_bitflips = 0;
|
|
|
|
data_bitflips = nand_check_erased_buf(data, datalen,
|
|
bitflips_threshold);
|
|
if (data_bitflips < 0)
|
|
return data_bitflips;
|
|
|
|
bitflips_threshold -= data_bitflips;
|
|
|
|
ecc_bitflips = nand_check_erased_buf(ecc, ecclen, bitflips_threshold);
|
|
if (ecc_bitflips < 0)
|
|
return ecc_bitflips;
|
|
|
|
bitflips_threshold -= ecc_bitflips;
|
|
|
|
extraoob_bitflips = nand_check_erased_buf(extraoob, extraooblen,
|
|
bitflips_threshold);
|
|
if (extraoob_bitflips < 0)
|
|
return extraoob_bitflips;
|
|
|
|
if (data_bitflips)
|
|
memset(data, 0xff, datalen);
|
|
|
|
if (ecc_bitflips)
|
|
memset(ecc, 0xff, ecclen);
|
|
|
|
if (extraoob_bitflips)
|
|
memset(extraoob, 0xff, extraooblen);
|
|
|
|
return data_bitflips + ecc_bitflips + extraoob_bitflips;
|
|
}
|
|
EXPORT_SYMBOL(nand_check_erased_ecc_chunk);
|
|
|
|
/**
|
|
* nand_read_page_raw_notsupp - dummy read raw page function
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Returns -ENOTSUPP unconditionally.
|
|
*/
|
|
int nand_read_page_raw_notsupp(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_raw - [INTERN] read raw page data without ecc
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
|
*/
|
|
int nand_read_page_raw(struct nand_chip *chip, uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, buf, mtd->writesize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oob_required) {
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_read_page_raw);
|
|
|
|
/**
|
|
* nand_monolithic_read_page_raw - Monolithic page read in raw mode
|
|
* @chip: NAND chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* This is a raw page read, ie. without any error detection/correction.
|
|
* Monolithic means we are requesting all the relevant data (main plus
|
|
* eventually OOB) to be loaded in the NAND cache and sent over the
|
|
* bus (from the NAND chip to the NAND controller) in a single
|
|
* operation. This is an alternative to nand_read_page_raw(), which
|
|
* first reads the main data, and if the OOB data is requested too,
|
|
* then reads more data on the bus.
|
|
*/
|
|
int nand_monolithic_read_page_raw(struct nand_chip *chip, u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int size = mtd->writesize;
|
|
u8 *read_buf = buf;
|
|
int ret;
|
|
|
|
if (oob_required) {
|
|
size += mtd->oobsize;
|
|
|
|
if (buf != chip->data_buf)
|
|
read_buf = nand_get_data_buf(chip);
|
|
}
|
|
|
|
ret = nand_read_page_op(chip, page, 0, read_buf, size);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (buf != chip->data_buf)
|
|
memcpy(buf, read_buf, mtd->writesize);
|
|
|
|
return 0;
|
|
}
|
|
EXPORT_SYMBOL(nand_monolithic_read_page_raw);
|
|
|
|
/**
|
|
* nand_read_page_raw_syndrome - [INTERN] read raw page data without ecc
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* We need a special oob layout and handling even when OOB isn't used.
|
|
*/
|
|
static int nand_read_page_raw_syndrome(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size, ret;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
|
ret = nand_read_data_op(chip, buf, eccsize, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += eccsize;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
|
false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
|
false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size) {
|
|
ret = nand_read_data_op(chip, oob, size, false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_swecc - [REPLACEABLE] software ECC based page read function
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*/
|
|
static int nand_read_page_swecc(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
chip->ecc.read_page_raw(chip, buf, 1, page);
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_subpage - [REPLACEABLE] ECC based sub-page read function
|
|
* @chip: nand chip info structure
|
|
* @data_offs: offset of requested data within the page
|
|
* @readlen: data length
|
|
* @bufpoi: buffer to store read data
|
|
* @page: page number to read
|
|
*/
|
|
static int nand_read_subpage(struct nand_chip *chip, uint32_t data_offs,
|
|
uint32_t readlen, uint8_t *bufpoi, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int start_step, end_step, num_steps, ret;
|
|
uint8_t *p;
|
|
int data_col_addr, i, gaps = 0;
|
|
int datafrag_len, eccfrag_len, aligned_len, aligned_pos;
|
|
int busw = (chip->options & NAND_BUSWIDTH_16) ? 2 : 1;
|
|
int index, section = 0;
|
|
unsigned int max_bitflips = 0;
|
|
struct mtd_oob_region oobregion = { };
|
|
|
|
/* Column address within the page aligned to ECC size (256bytes) */
|
|
start_step = data_offs / chip->ecc.size;
|
|
end_step = (data_offs + readlen - 1) / chip->ecc.size;
|
|
num_steps = end_step - start_step + 1;
|
|
index = start_step * chip->ecc.bytes;
|
|
|
|
/* Data size aligned to ECC ecc.size */
|
|
datafrag_len = num_steps * chip->ecc.size;
|
|
eccfrag_len = num_steps * chip->ecc.bytes;
|
|
|
|
data_col_addr = start_step * chip->ecc.size;
|
|
/* If we read not a page aligned data */
|
|
p = bufpoi + data_col_addr;
|
|
ret = nand_read_page_op(chip, page, data_col_addr, p, datafrag_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Calculate ECC */
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size)
|
|
chip->ecc.calculate(chip, p, &chip->ecc.calc_buf[i]);
|
|
|
|
/*
|
|
* The performance is faster if we position offsets according to
|
|
* ecc.pos. Let's make sure that there are no gaps in ECC positions.
|
|
*/
|
|
ret = mtd_ooblayout_find_eccregion(mtd, index, §ion, &oobregion);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oobregion.length < eccfrag_len)
|
|
gaps = 1;
|
|
|
|
if (gaps) {
|
|
ret = nand_change_read_column_op(chip, mtd->writesize,
|
|
chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
} else {
|
|
/*
|
|
* Send the command to read the particular ECC bytes take care
|
|
* about buswidth alignment in read_buf.
|
|
*/
|
|
aligned_pos = oobregion.offset & ~(busw - 1);
|
|
aligned_len = eccfrag_len;
|
|
if (oobregion.offset & (busw - 1))
|
|
aligned_len++;
|
|
if ((oobregion.offset + (num_steps * chip->ecc.bytes)) &
|
|
(busw - 1))
|
|
aligned_len++;
|
|
|
|
ret = nand_change_read_column_op(chip,
|
|
mtd->writesize + aligned_pos,
|
|
&chip->oob_poi[aligned_pos],
|
|
aligned_len, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, chip->ecc.code_buf,
|
|
chip->oob_poi, index, eccfrag_len);
|
|
if (ret)
|
|
return ret;
|
|
|
|
p = bufpoi + data_col_addr;
|
|
for (i = 0; i < eccfrag_len ; i += chip->ecc.bytes, p += chip->ecc.size) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(chip, p, &chip->ecc.code_buf[i],
|
|
&chip->ecc.calc_buf[i]);
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
|
&chip->ecc.code_buf[i],
|
|
chip->ecc.bytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_hwecc - [REPLACEABLE] hardware ECC based page read function
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* Not for syndrome calculating ECC controllers which need a special oob layout.
|
|
*/
|
|
static int nand_read_page_hwecc(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *p = buf;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
uint8_t *ecc_code = chip->ecc.code_buf;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
|
}
|
|
|
|
ret = nand_read_data_op(chip, chip->oob_poi, mtd->oobsize, false,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = mtd_ooblayout_get_eccbytes(mtd, ecc_code, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
eccsteps = chip->ecc.steps;
|
|
p = buf;
|
|
|
|
for (i = 0 ; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
stat = chip->ecc.correct(chip, p, &ecc_code[i], &ecc_calc[i]);
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, eccsize,
|
|
&ecc_code[i], eccbytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page read
|
|
* @chip: nand chip info structure
|
|
* @buf: buffer to store read data
|
|
* @oob_required: caller requires OOB data read to chip->oob_poi
|
|
* @page: page number to read
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
* need a special oob layout and handling.
|
|
*/
|
|
static int nand_read_page_syndrome(struct nand_chip *chip, uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret, i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
int eccpadbytes = eccbytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
unsigned int max_bitflips = 0;
|
|
|
|
ret = nand_read_page_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
int stat;
|
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READ);
|
|
|
|
ret = nand_read_data_op(chip, p, eccsize, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.prepad,
|
|
false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->ecc.hwctl(chip, NAND_ECC_READSYN);
|
|
|
|
ret = nand_read_data_op(chip, oob, eccbytes, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
stat = chip->ecc.correct(chip, p, oob, NULL);
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_read_data_op(chip, oob, chip->ecc.postpad,
|
|
false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
|
|
if (stat == -EBADMSG &&
|
|
(chip->ecc.options & NAND_ECC_GENERIC_ERASED_CHECK)) {
|
|
/* check for empty pages with bitflips */
|
|
stat = nand_check_erased_ecc_chunk(p, chip->ecc.size,
|
|
oob - eccpadbytes,
|
|
eccpadbytes,
|
|
NULL, 0,
|
|
chip->ecc.strength);
|
|
}
|
|
|
|
if (stat < 0) {
|
|
mtd->ecc_stats.failed++;
|
|
} else {
|
|
mtd->ecc_stats.corrected += stat;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, stat);
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (i) {
|
|
ret = nand_read_data_op(chip, oob, i, false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_transfer_oob - [INTERN] Transfer oob to client buffer
|
|
* @chip: NAND chip object
|
|
* @oob: oob destination address
|
|
* @ops: oob ops structure
|
|
* @len: size of oob to transfer
|
|
*/
|
|
static uint8_t *nand_transfer_oob(struct nand_chip *chip, uint8_t *oob,
|
|
struct mtd_oob_ops *ops, size_t len)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
switch (ops->mode) {
|
|
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_RAW:
|
|
memcpy(oob, chip->oob_poi + ops->ooboffs, len);
|
|
return oob + len;
|
|
|
|
case MTD_OPS_AUTO_OOB:
|
|
ret = mtd_ooblayout_get_databytes(mtd, oob, chip->oob_poi,
|
|
ops->ooboffs, len);
|
|
BUG_ON(ret);
|
|
return oob + len;
|
|
|
|
default:
|
|
BUG();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/**
|
|
* nand_setup_read_retry - [INTERN] Set the READ RETRY mode
|
|
* @chip: NAND chip object
|
|
* @retry_mode: the retry mode to use
|
|
*
|
|
* Some vendors supply a special command to shift the Vt threshold, to be used
|
|
* when there are too many bitflips in a page (i.e., ECC error). After setting
|
|
* a new threshold, the host should retry reading the page.
|
|
*/
|
|
static int nand_setup_read_retry(struct nand_chip *chip, int retry_mode)
|
|
{
|
|
pr_debug("setting READ RETRY mode %d\n", retry_mode);
|
|
|
|
if (retry_mode >= chip->read_retries)
|
|
return -EINVAL;
|
|
|
|
if (!chip->ops.setup_read_retry)
|
|
return -EOPNOTSUPP;
|
|
|
|
return chip->ops.setup_read_retry(chip, retry_mode);
|
|
}
|
|
|
|
static void nand_wait_readrdy(struct nand_chip *chip)
|
|
{
|
|
const struct nand_sdr_timings *sdr;
|
|
|
|
if (!(chip->options & NAND_NEED_READRDY))
|
|
return;
|
|
|
|
sdr = nand_get_sdr_timings(nand_get_interface_config(chip));
|
|
WARN_ON(nand_wait_rdy_op(chip, PSEC_TO_MSEC(sdr->tR_max), 0));
|
|
}
|
|
|
|
/**
|
|
* nand_do_read_ops - [INTERN] Read data with ECC
|
|
* @chip: NAND chip object
|
|
* @from: offset to read from
|
|
* @ops: oob ops structure
|
|
*
|
|
* Internal function. Called with chip held.
|
|
*/
|
|
static int nand_do_read_ops(struct nand_chip *chip, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
int chipnr, page, realpage, col, bytes, aligned, oob_required;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret = 0;
|
|
uint32_t readlen = ops->len;
|
|
uint32_t oobreadlen = ops->ooblen;
|
|
uint32_t max_oobsize = mtd_oobavail(mtd, ops);
|
|
|
|
uint8_t *bufpoi, *oob, *buf;
|
|
int use_bounce_buf;
|
|
unsigned int max_bitflips = 0;
|
|
int retry_mode = 0;
|
|
bool ecc_fail = false;
|
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
|
nand_select_target(chip, chipnr);
|
|
|
|
realpage = (int)(from >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
col = (int)(from & (mtd->writesize - 1));
|
|
|
|
buf = ops->datbuf;
|
|
oob = ops->oobbuf;
|
|
oob_required = oob ? 1 : 0;
|
|
|
|
while (1) {
|
|
struct mtd_ecc_stats ecc_stats = mtd->ecc_stats;
|
|
|
|
bytes = min(mtd->writesize - col, readlen);
|
|
aligned = (bytes == mtd->writesize);
|
|
|
|
if (!aligned)
|
|
use_bounce_buf = 1;
|
|
else if (chip->options & NAND_USES_DMA)
|
|
use_bounce_buf = !virt_addr_valid(buf) ||
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
chip->buf_align);
|
|
else
|
|
use_bounce_buf = 0;
|
|
|
|
/* Is the current page in the buffer? */
|
|
if (realpage != chip->pagecache.page || oob) {
|
|
bufpoi = use_bounce_buf ? chip->data_buf : buf;
|
|
|
|
if (use_bounce_buf && aligned)
|
|
pr_debug("%s: using read bounce buffer for buf@%p\n",
|
|
__func__, buf);
|
|
|
|
read_retry:
|
|
/*
|
|
* Now read the page into the buffer. Absent an error,
|
|
* the read methods return max bitflips per ecc step.
|
|
*/
|
|
if (unlikely(ops->mode == MTD_OPS_RAW))
|
|
ret = chip->ecc.read_page_raw(chip, bufpoi,
|
|
oob_required,
|
|
page);
|
|
else if (!aligned && NAND_HAS_SUBPAGE_READ(chip) &&
|
|
!oob)
|
|
ret = chip->ecc.read_subpage(chip, col, bytes,
|
|
bufpoi, page);
|
|
else
|
|
ret = chip->ecc.read_page(chip, bufpoi,
|
|
oob_required, page);
|
|
if (ret < 0) {
|
|
if (use_bounce_buf)
|
|
/* Invalidate page cache */
|
|
chip->pagecache.page = -1;
|
|
break;
|
|
}
|
|
|
|
/*
|
|
* Copy back the data in the initial buffer when reading
|
|
* partial pages or when a bounce buffer is required.
|
|
*/
|
|
if (use_bounce_buf) {
|
|
if (!NAND_HAS_SUBPAGE_READ(chip) && !oob &&
|
|
!(mtd->ecc_stats.failed - ecc_stats.failed) &&
|
|
(ops->mode != MTD_OPS_RAW)) {
|
|
chip->pagecache.page = realpage;
|
|
chip->pagecache.bitflips = ret;
|
|
} else {
|
|
/* Invalidate page cache */
|
|
chip->pagecache.page = -1;
|
|
}
|
|
memcpy(buf, bufpoi + col, bytes);
|
|
}
|
|
|
|
if (unlikely(oob)) {
|
|
int toread = min(oobreadlen, max_oobsize);
|
|
|
|
if (toread) {
|
|
oob = nand_transfer_oob(chip, oob, ops,
|
|
toread);
|
|
oobreadlen -= toread;
|
|
}
|
|
}
|
|
|
|
nand_wait_readrdy(chip);
|
|
|
|
if (mtd->ecc_stats.failed - ecc_stats.failed) {
|
|
if (retry_mode + 1 < chip->read_retries) {
|
|
retry_mode++;
|
|
ret = nand_setup_read_retry(chip,
|
|
retry_mode);
|
|
if (ret < 0)
|
|
break;
|
|
|
|
/* Reset ecc_stats; retry */
|
|
mtd->ecc_stats = ecc_stats;
|
|
goto read_retry;
|
|
} else {
|
|
/* No more retry modes; real failure */
|
|
ecc_fail = true;
|
|
}
|
|
}
|
|
|
|
buf += bytes;
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
} else {
|
|
memcpy(buf, chip->data_buf + col, bytes);
|
|
buf += bytes;
|
|
max_bitflips = max_t(unsigned int, max_bitflips,
|
|
chip->pagecache.bitflips);
|
|
}
|
|
|
|
readlen -= bytes;
|
|
|
|
/* Reset to retry mode 0 */
|
|
if (retry_mode) {
|
|
ret = nand_setup_read_retry(chip, 0);
|
|
if (ret < 0)
|
|
break;
|
|
retry_mode = 0;
|
|
}
|
|
|
|
if (!readlen)
|
|
break;
|
|
|
|
/* For subsequent reads align to page boundary */
|
|
col = 0;
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
nand_deselect_target(chip);
|
|
nand_select_target(chip, chipnr);
|
|
}
|
|
}
|
|
nand_deselect_target(chip);
|
|
|
|
ops->retlen = ops->len - (size_t) readlen;
|
|
if (oob)
|
|
ops->oobretlen = ops->ooblen - oobreadlen;
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (ecc_fail)
|
|
return -EBADMSG;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob_std - [REPLACEABLE] the most common OOB data read function
|
|
* @chip: nand chip info structure
|
|
* @page: page number to read
|
|
*/
|
|
int nand_read_oob_std(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return nand_read_oob_op(chip, page, 0, chip->oob_poi, mtd->oobsize);
|
|
}
|
|
EXPORT_SYMBOL(nand_read_oob_std);
|
|
|
|
/**
|
|
* nand_read_oob_syndrome - [REPLACEABLE] OOB data read function for HW ECC
|
|
* with syndromes
|
|
* @chip: nand chip info structure
|
|
* @page: page number to read
|
|
*/
|
|
static int nand_read_oob_syndrome(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int length = mtd->oobsize;
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsize = chip->ecc.size;
|
|
uint8_t *bufpoi = chip->oob_poi;
|
|
int i, toread, sndrnd = 0, pos, ret;
|
|
|
|
ret = nand_read_page_op(chip, page, chip->ecc.size, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < chip->ecc.steps; i++) {
|
|
if (sndrnd) {
|
|
int ret;
|
|
|
|
pos = eccsize + i * (eccsize + chunk);
|
|
if (mtd->writesize > 512)
|
|
ret = nand_change_read_column_op(chip, pos,
|
|
NULL, 0,
|
|
false);
|
|
else
|
|
ret = nand_read_page_op(chip, page, pos, NULL,
|
|
0);
|
|
|
|
if (ret)
|
|
return ret;
|
|
} else
|
|
sndrnd = 1;
|
|
toread = min_t(int, length, chunk);
|
|
|
|
ret = nand_read_data_op(chip, bufpoi, toread, false, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bufpoi += toread;
|
|
length -= toread;
|
|
}
|
|
if (length > 0) {
|
|
ret = nand_read_data_op(chip, bufpoi, length, false, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_write_oob_std - [REPLACEABLE] the most common OOB data write function
|
|
* @chip: nand chip info structure
|
|
* @page: page number to write
|
|
*/
|
|
int nand_write_oob_std(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
return nand_prog_page_op(chip, page, mtd->writesize, chip->oob_poi,
|
|
mtd->oobsize);
|
|
}
|
|
EXPORT_SYMBOL(nand_write_oob_std);
|
|
|
|
/**
|
|
* nand_write_oob_syndrome - [REPLACEABLE] OOB data write function for HW ECC
|
|
* with syndrome - only for large page flash
|
|
* @chip: nand chip info structure
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_oob_syndrome(struct nand_chip *chip, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int chunk = chip->ecc.bytes + chip->ecc.prepad + chip->ecc.postpad;
|
|
int eccsize = chip->ecc.size, length = mtd->oobsize;
|
|
int ret, i, len, pos, sndcmd = 0, steps = chip->ecc.steps;
|
|
const uint8_t *bufpoi = chip->oob_poi;
|
|
|
|
/*
|
|
* data-ecc-data-ecc ... ecc-oob
|
|
* or
|
|
* data-pad-ecc-pad-data-pad .... ecc-pad-oob
|
|
*/
|
|
if (!chip->ecc.prepad && !chip->ecc.postpad) {
|
|
pos = steps * (eccsize + chunk);
|
|
steps = 0;
|
|
} else
|
|
pos = eccsize;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, pos, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; i < steps; i++) {
|
|
if (sndcmd) {
|
|
if (mtd->writesize <= 512) {
|
|
uint32_t fill = 0xFFFFFFFF;
|
|
|
|
len = eccsize;
|
|
while (len > 0) {
|
|
int num = min_t(int, len, 4);
|
|
|
|
ret = nand_write_data_op(chip, &fill,
|
|
num, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
len -= num;
|
|
}
|
|
} else {
|
|
pos = eccsize + i * (eccsize + chunk);
|
|
ret = nand_change_write_column_op(chip, pos,
|
|
NULL, 0,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
} else
|
|
sndcmd = 1;
|
|
len = min_t(int, length, chunk);
|
|
|
|
ret = nand_write_data_op(chip, bufpoi, len, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
bufpoi += len;
|
|
length -= len;
|
|
}
|
|
if (length > 0) {
|
|
ret = nand_write_data_op(chip, bufpoi, length, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/**
|
|
* nand_do_read_oob - [INTERN] NAND read out-of-band
|
|
* @chip: NAND chip object
|
|
* @from: offset to read from
|
|
* @ops: oob operations description structure
|
|
*
|
|
* NAND read out-of-band data from the spare area.
|
|
*/
|
|
static int nand_do_read_oob(struct nand_chip *chip, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int max_bitflips = 0;
|
|
int page, realpage, chipnr;
|
|
struct mtd_ecc_stats stats;
|
|
int readlen = ops->ooblen;
|
|
int len;
|
|
uint8_t *buf = ops->oobbuf;
|
|
int ret = 0;
|
|
|
|
pr_debug("%s: from = 0x%08Lx, len = %i\n",
|
|
__func__, (unsigned long long)from, readlen);
|
|
|
|
stats = mtd->ecc_stats;
|
|
|
|
len = mtd_oobavail(mtd, ops);
|
|
|
|
chipnr = (int)(from >> chip->chip_shift);
|
|
nand_select_target(chip, chipnr);
|
|
|
|
/* Shift to get page */
|
|
realpage = (int)(from >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
while (1) {
|
|
if (ops->mode == MTD_OPS_RAW)
|
|
ret = chip->ecc.read_oob_raw(chip, page);
|
|
else
|
|
ret = chip->ecc.read_oob(chip, page);
|
|
|
|
if (ret < 0)
|
|
break;
|
|
|
|
len = min(len, readlen);
|
|
buf = nand_transfer_oob(chip, buf, ops, len);
|
|
|
|
nand_wait_readrdy(chip);
|
|
|
|
max_bitflips = max_t(unsigned int, max_bitflips, ret);
|
|
|
|
readlen -= len;
|
|
if (!readlen)
|
|
break;
|
|
|
|
/* Increment page address */
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
nand_deselect_target(chip);
|
|
nand_select_target(chip, chipnr);
|
|
}
|
|
}
|
|
nand_deselect_target(chip);
|
|
|
|
ops->oobretlen = ops->ooblen - readlen;
|
|
|
|
if (ret < 0)
|
|
return ret;
|
|
|
|
if (mtd->ecc_stats.failed - stats.failed)
|
|
return -EBADMSG;
|
|
|
|
return max_bitflips;
|
|
}
|
|
|
|
/**
|
|
* nand_read_oob - [MTD Interface] NAND read data and/or out-of-band
|
|
* @mtd: MTD device structure
|
|
* @from: offset to read from
|
|
* @ops: oob operation description structure
|
|
*
|
|
* NAND read data and/or out-of-band data.
|
|
*/
|
|
static int nand_read_oob(struct mtd_info *mtd, loff_t from,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
ops->retlen = 0;
|
|
|
|
if (ops->mode != MTD_OPS_PLACE_OOB &&
|
|
ops->mode != MTD_OPS_AUTO_OOB &&
|
|
ops->mode != MTD_OPS_RAW)
|
|
return -ENOTSUPP;
|
|
|
|
ret = nand_get_device(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!ops->datbuf)
|
|
ret = nand_do_read_oob(chip, from, ops);
|
|
else
|
|
ret = nand_do_read_ops(chip, from, ops);
|
|
|
|
nand_release_device(chip);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_write_page_raw_notsupp - dummy raw page write function
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* Returns -ENOTSUPP unconditionally.
|
|
*/
|
|
int nand_write_page_raw_notsupp(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* nand_write_page_raw - [INTERN] raw page write function
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* Not for syndrome calculating ECC controllers, which use a special oob layout.
|
|
*/
|
|
int nand_write_page_raw(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, buf, mtd->writesize);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (oob_required) {
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
EXPORT_SYMBOL(nand_write_page_raw);
|
|
|
|
/**
|
|
* nand_monolithic_write_page_raw - Monolithic page write in raw mode
|
|
* @chip: NAND chip info structure
|
|
* @buf: data buffer to write
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* This is a raw page write, ie. without any error detection/correction.
|
|
* Monolithic means we are requesting all the relevant data (main plus
|
|
* eventually OOB) to be sent over the bus and effectively programmed
|
|
* into the NAND chip arrays in a single operation. This is an
|
|
* alternative to nand_write_page_raw(), which first sends the main
|
|
* data, then eventually send the OOB data by latching more data
|
|
* cycles on the NAND bus, and finally sends the program command to
|
|
* synchronyze the NAND chip cache.
|
|
*/
|
|
int nand_monolithic_write_page_raw(struct nand_chip *chip, const u8 *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
unsigned int size = mtd->writesize;
|
|
u8 *write_buf = (u8 *)buf;
|
|
|
|
if (oob_required) {
|
|
size += mtd->oobsize;
|
|
|
|
if (buf != chip->data_buf) {
|
|
write_buf = nand_get_data_buf(chip);
|
|
memcpy(write_buf, buf, mtd->writesize);
|
|
}
|
|
}
|
|
|
|
return nand_prog_page_op(chip, page, 0, write_buf, size);
|
|
}
|
|
EXPORT_SYMBOL(nand_monolithic_write_page_raw);
|
|
|
|
/**
|
|
* nand_write_page_raw_syndrome - [INTERN] raw page write function
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* We need a special oob layout and handling even when ECC isn't checked.
|
|
*/
|
|
static int nand_write_page_raw_syndrome(struct nand_chip *chip,
|
|
const uint8_t *buf, int oob_required,
|
|
int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int steps, size, ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (steps = chip->ecc.steps; steps > 0; steps--) {
|
|
ret = nand_write_data_op(chip, buf, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
buf += eccsize;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
size = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (size) {
|
|
ret = nand_write_data_op(chip, oob, size, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
/**
|
|
* nand_write_page_swecc - [REPLACEABLE] software ECC based page write function
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_page_swecc(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
const uint8_t *p = buf;
|
|
|
|
/* Software ECC calculation */
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize)
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return chip->ecc.write_page_raw(chip, buf, 1, page);
|
|
}
|
|
|
|
/**
|
|
* nand_write_page_hwecc - [REPLACEABLE] hardware ECC based page write function
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_page_hwecc(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, eccsize = chip->ecc.size, ret;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
const uint8_t *p = buf;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
chip->ecc.calculate(chip, p, &ecc_calc[i]);
|
|
}
|
|
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_subpage_hwecc - [REPLACEABLE] hardware ECC based subpage write
|
|
* @chip: nand chip info structure
|
|
* @offset: column address of subpage within the page
|
|
* @data_len: data length
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*/
|
|
static int nand_write_subpage_hwecc(struct nand_chip *chip, uint32_t offset,
|
|
uint32_t data_len, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
uint8_t *oob_buf = chip->oob_poi;
|
|
uint8_t *ecc_calc = chip->ecc.calc_buf;
|
|
int ecc_size = chip->ecc.size;
|
|
int ecc_bytes = chip->ecc.bytes;
|
|
int ecc_steps = chip->ecc.steps;
|
|
uint32_t start_step = offset / ecc_size;
|
|
uint32_t end_step = (offset + data_len - 1) / ecc_size;
|
|
int oob_bytes = mtd->oobsize / ecc_steps;
|
|
int step, ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (step = 0; step < ecc_steps; step++) {
|
|
/* configure controller for WRITE access */
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
|
|
|
/* write data (untouched subpages already masked by 0xFF) */
|
|
ret = nand_write_data_op(chip, buf, ecc_size, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* mask ECC of un-touched subpages by padding 0xFF */
|
|
if ((step < start_step) || (step > end_step))
|
|
memset(ecc_calc, 0xff, ecc_bytes);
|
|
else
|
|
chip->ecc.calculate(chip, buf, ecc_calc);
|
|
|
|
/* mask OOB of un-touched subpages by padding 0xFF */
|
|
/* if oob_required, preserve OOB metadata of written subpage */
|
|
if (!oob_required || (step < start_step) || (step > end_step))
|
|
memset(oob_buf, 0xff, oob_bytes);
|
|
|
|
buf += ecc_size;
|
|
ecc_calc += ecc_bytes;
|
|
oob_buf += oob_bytes;
|
|
}
|
|
|
|
/* copy calculated ECC for whole page to chip->buffer->oob */
|
|
/* this include masked-value(0xFF) for unwritten subpages */
|
|
ecc_calc = chip->ecc.calc_buf;
|
|
ret = mtd_ooblayout_set_eccbytes(mtd, ecc_calc, chip->oob_poi, 0,
|
|
chip->ecc.total);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* write OOB buffer to NAND device */
|
|
ret = nand_write_data_op(chip, chip->oob_poi, mtd->oobsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
|
|
/**
|
|
* nand_write_page_syndrome - [REPLACEABLE] hardware ECC syndrome based page write
|
|
* @chip: nand chip info structure
|
|
* @buf: data buffer
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
*
|
|
* The hw generator calculates the error syndrome automatically. Therefore we
|
|
* need a special oob layout and handling.
|
|
*/
|
|
static int nand_write_page_syndrome(struct nand_chip *chip, const uint8_t *buf,
|
|
int oob_required, int page)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int i, eccsize = chip->ecc.size;
|
|
int eccbytes = chip->ecc.bytes;
|
|
int eccsteps = chip->ecc.steps;
|
|
const uint8_t *p = buf;
|
|
uint8_t *oob = chip->oob_poi;
|
|
int ret;
|
|
|
|
ret = nand_prog_page_begin_op(chip, page, 0, NULL, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
for (i = 0; eccsteps; eccsteps--, i += eccbytes, p += eccsize) {
|
|
chip->ecc.hwctl(chip, NAND_ECC_WRITE);
|
|
|
|
ret = nand_write_data_op(chip, p, eccsize, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (chip->ecc.prepad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.prepad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.prepad;
|
|
}
|
|
|
|
chip->ecc.calculate(chip, p, oob);
|
|
|
|
ret = nand_write_data_op(chip, oob, eccbytes, false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += eccbytes;
|
|
|
|
if (chip->ecc.postpad) {
|
|
ret = nand_write_data_op(chip, oob, chip->ecc.postpad,
|
|
false);
|
|
if (ret)
|
|
return ret;
|
|
|
|
oob += chip->ecc.postpad;
|
|
}
|
|
}
|
|
|
|
/* Calculate remaining oob bytes */
|
|
i = mtd->oobsize - (oob - chip->oob_poi);
|
|
if (i) {
|
|
ret = nand_write_data_op(chip, oob, i, false);
|
|
if (ret)
|
|
return ret;
|
|
}
|
|
|
|
return nand_prog_page_end_op(chip);
|
|
}
|
|
|
|
/**
|
|
* nand_write_page - write one page
|
|
* @chip: NAND chip descriptor
|
|
* @offset: address offset within the page
|
|
* @data_len: length of actual data to be written
|
|
* @buf: the data to write
|
|
* @oob_required: must write chip->oob_poi to OOB
|
|
* @page: page number to write
|
|
* @raw: use _raw version of write_page
|
|
*/
|
|
static int nand_write_page(struct nand_chip *chip, uint32_t offset,
|
|
int data_len, const uint8_t *buf, int oob_required,
|
|
int page, int raw)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int status, subpage;
|
|
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) &&
|
|
chip->ecc.write_subpage)
|
|
subpage = offset || (data_len < mtd->writesize);
|
|
else
|
|
subpage = 0;
|
|
|
|
if (unlikely(raw))
|
|
status = chip->ecc.write_page_raw(chip, buf, oob_required,
|
|
page);
|
|
else if (subpage)
|
|
status = chip->ecc.write_subpage(chip, offset, data_len, buf,
|
|
oob_required, page);
|
|
else
|
|
status = chip->ecc.write_page(chip, buf, oob_required, page);
|
|
|
|
if (status < 0)
|
|
return status;
|
|
|
|
return 0;
|
|
}
|
|
|
|
#define NOTALIGNED(x) ((x & (chip->subpagesize - 1)) != 0)
|
|
|
|
/**
|
|
* nand_do_write_ops - [INTERN] NAND write with ECC
|
|
* @chip: NAND chip object
|
|
* @to: offset to write to
|
|
* @ops: oob operations description structure
|
|
*
|
|
* NAND write with ECC.
|
|
*/
|
|
static int nand_do_write_ops(struct nand_chip *chip, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int chipnr, realpage, page, column;
|
|
uint32_t writelen = ops->len;
|
|
|
|
uint32_t oobwritelen = ops->ooblen;
|
|
uint32_t oobmaxlen = mtd_oobavail(mtd, ops);
|
|
|
|
uint8_t *oob = ops->oobbuf;
|
|
uint8_t *buf = ops->datbuf;
|
|
int ret;
|
|
int oob_required = oob ? 1 : 0;
|
|
|
|
ops->retlen = 0;
|
|
if (!writelen)
|
|
return 0;
|
|
|
|
/* Reject writes, which are not page aligned */
|
|
if (NOTALIGNED(to) || NOTALIGNED(ops->len)) {
|
|
pr_notice("%s: attempt to write non page aligned data\n",
|
|
__func__);
|
|
return -EINVAL;
|
|
}
|
|
|
|
column = to & (mtd->writesize - 1);
|
|
|
|
chipnr = (int)(to >> chip->chip_shift);
|
|
nand_select_target(chip, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(chip)) {
|
|
ret = -EIO;
|
|
goto err_out;
|
|
}
|
|
|
|
realpage = (int)(to >> chip->page_shift);
|
|
page = realpage & chip->pagemask;
|
|
|
|
/* Invalidate the page cache, when we write to the cached page */
|
|
if (to <= ((loff_t)chip->pagecache.page << chip->page_shift) &&
|
|
((loff_t)chip->pagecache.page << chip->page_shift) < (to + ops->len))
|
|
chip->pagecache.page = -1;
|
|
|
|
/* Don't allow multipage oob writes with offset */
|
|
if (oob && ops->ooboffs && (ops->ooboffs + ops->ooblen > oobmaxlen)) {
|
|
ret = -EINVAL;
|
|
goto err_out;
|
|
}
|
|
|
|
while (1) {
|
|
int bytes = mtd->writesize;
|
|
uint8_t *wbuf = buf;
|
|
int use_bounce_buf;
|
|
int part_pagewr = (column || writelen < mtd->writesize);
|
|
|
|
if (part_pagewr)
|
|
use_bounce_buf = 1;
|
|
else if (chip->options & NAND_USES_DMA)
|
|
use_bounce_buf = !virt_addr_valid(buf) ||
|
|
!IS_ALIGNED((unsigned long)buf,
|
|
chip->buf_align);
|
|
else
|
|
use_bounce_buf = 0;
|
|
|
|
/*
|
|
* Copy the data from the initial buffer when doing partial page
|
|
* writes or when a bounce buffer is required.
|
|
*/
|
|
if (use_bounce_buf) {
|
|
pr_debug("%s: using write bounce buffer for buf@%p\n",
|
|
__func__, buf);
|
|
if (part_pagewr)
|
|
bytes = min_t(int, bytes - column, writelen);
|
|
wbuf = nand_get_data_buf(chip);
|
|
memset(wbuf, 0xff, mtd->writesize);
|
|
memcpy(&wbuf[column], buf, bytes);
|
|
}
|
|
|
|
if (unlikely(oob)) {
|
|
size_t len = min(oobwritelen, oobmaxlen);
|
|
oob = nand_fill_oob(chip, oob, len, ops);
|
|
oobwritelen -= len;
|
|
} else {
|
|
/* We still need to erase leftover OOB data */
|
|
memset(chip->oob_poi, 0xff, mtd->oobsize);
|
|
}
|
|
|
|
ret = nand_write_page(chip, column, bytes, wbuf,
|
|
oob_required, page,
|
|
(ops->mode == MTD_OPS_RAW));
|
|
if (ret)
|
|
break;
|
|
|
|
writelen -= bytes;
|
|
if (!writelen)
|
|
break;
|
|
|
|
column = 0;
|
|
buf += bytes;
|
|
realpage++;
|
|
|
|
page = realpage & chip->pagemask;
|
|
/* Check, if we cross a chip boundary */
|
|
if (!page) {
|
|
chipnr++;
|
|
nand_deselect_target(chip);
|
|
nand_select_target(chip, chipnr);
|
|
}
|
|
}
|
|
|
|
ops->retlen = ops->len - writelen;
|
|
if (unlikely(oob))
|
|
ops->oobretlen = ops->ooblen;
|
|
|
|
err_out:
|
|
nand_deselect_target(chip);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* panic_nand_write - [MTD Interface] NAND write with ECC
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @len: number of bytes to write
|
|
* @retlen: pointer to variable to store the number of written bytes
|
|
* @buf: the data to write
|
|
*
|
|
* NAND write with ECC. Used when performing writes in interrupt context, this
|
|
* may for example be called by mtdoops when writing an oops while in panic.
|
|
*/
|
|
static int panic_nand_write(struct mtd_info *mtd, loff_t to, size_t len,
|
|
size_t *retlen, const uint8_t *buf)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int chipnr = (int)(to >> chip->chip_shift);
|
|
struct mtd_oob_ops ops;
|
|
int ret;
|
|
|
|
nand_select_target(chip, chipnr);
|
|
|
|
/* Wait for the device to get ready */
|
|
panic_nand_wait(chip, 400);
|
|
|
|
memset(&ops, 0, sizeof(ops));
|
|
ops.len = len;
|
|
ops.datbuf = (uint8_t *)buf;
|
|
ops.mode = MTD_OPS_PLACE_OOB;
|
|
|
|
ret = nand_do_write_ops(chip, to, &ops);
|
|
|
|
*retlen = ops.retlen;
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_write_oob - [MTD Interface] NAND write data and/or out-of-band
|
|
* @mtd: MTD device structure
|
|
* @to: offset to write to
|
|
* @ops: oob operation description structure
|
|
*/
|
|
static int nand_write_oob(struct mtd_info *mtd, loff_t to,
|
|
struct mtd_oob_ops *ops)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret;
|
|
|
|
ops->retlen = 0;
|
|
|
|
ret = nand_get_device(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
switch (ops->mode) {
|
|
case MTD_OPS_PLACE_OOB:
|
|
case MTD_OPS_AUTO_OOB:
|
|
case MTD_OPS_RAW:
|
|
break;
|
|
|
|
default:
|
|
goto out;
|
|
}
|
|
|
|
if (!ops->datbuf)
|
|
ret = nand_do_write_oob(chip, to, ops);
|
|
else
|
|
ret = nand_do_write_ops(chip, to, ops);
|
|
|
|
out:
|
|
nand_release_device(chip);
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_erase - [MTD Interface] erase block(s)
|
|
* @mtd: MTD device structure
|
|
* @instr: erase instruction
|
|
*
|
|
* Erase one ore more blocks.
|
|
*/
|
|
static int nand_erase(struct mtd_info *mtd, struct erase_info *instr)
|
|
{
|
|
return nand_erase_nand(mtd_to_nand(mtd), instr, 0);
|
|
}
|
|
|
|
/**
|
|
* nand_erase_nand - [INTERN] erase block(s)
|
|
* @chip: NAND chip object
|
|
* @instr: erase instruction
|
|
* @allowbbt: allow erasing the bbt area
|
|
*
|
|
* Erase one ore more blocks.
|
|
*/
|
|
int nand_erase_nand(struct nand_chip *chip, struct erase_info *instr,
|
|
int allowbbt)
|
|
{
|
|
int page, pages_per_block, ret, chipnr;
|
|
loff_t len;
|
|
|
|
pr_debug("%s: start = 0x%012llx, len = %llu\n",
|
|
__func__, (unsigned long long)instr->addr,
|
|
(unsigned long long)instr->len);
|
|
|
|
if (check_offs_len(chip, instr->addr, instr->len))
|
|
return -EINVAL;
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
ret = nand_get_device(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Shift to get first page */
|
|
page = (int)(instr->addr >> chip->page_shift);
|
|
chipnr = (int)(instr->addr >> chip->chip_shift);
|
|
|
|
/* Calculate pages in each block */
|
|
pages_per_block = 1 << (chip->phys_erase_shift - chip->page_shift);
|
|
|
|
/* Select the NAND device */
|
|
nand_select_target(chip, chipnr);
|
|
|
|
/* Check, if it is write protected */
|
|
if (nand_check_wp(chip)) {
|
|
pr_debug("%s: device is write protected!\n",
|
|
__func__);
|
|
ret = -EIO;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Loop through the pages */
|
|
len = instr->len;
|
|
|
|
while (len) {
|
|
/* Check if we have a bad block, we do not erase bad blocks! */
|
|
if (nand_block_checkbad(chip, ((loff_t) page) <<
|
|
chip->page_shift, allowbbt)) {
|
|
pr_warn("%s: attempt to erase a bad block at page 0x%08x\n",
|
|
__func__, page);
|
|
ret = -EIO;
|
|
goto erase_exit;
|
|
}
|
|
|
|
/*
|
|
* Invalidate the page cache, if we erase the block which
|
|
* contains the current cached page.
|
|
*/
|
|
if (page <= chip->pagecache.page && chip->pagecache.page <
|
|
(page + pages_per_block))
|
|
chip->pagecache.page = -1;
|
|
|
|
ret = nand_erase_op(chip, (page & chip->pagemask) >>
|
|
(chip->phys_erase_shift - chip->page_shift));
|
|
if (ret) {
|
|
pr_debug("%s: failed erase, page 0x%08x\n",
|
|
__func__, page);
|
|
instr->fail_addr =
|
|
((loff_t)page << chip->page_shift);
|
|
goto erase_exit;
|
|
}
|
|
|
|
/* Increment page address and decrement length */
|
|
len -= (1ULL << chip->phys_erase_shift);
|
|
page += pages_per_block;
|
|
|
|
/* Check, if we cross a chip boundary */
|
|
if (len && !(page & chip->pagemask)) {
|
|
chipnr++;
|
|
nand_deselect_target(chip);
|
|
nand_select_target(chip, chipnr);
|
|
}
|
|
}
|
|
|
|
ret = 0;
|
|
erase_exit:
|
|
|
|
/* Deselect and wake up anyone waiting on the device */
|
|
nand_deselect_target(chip);
|
|
nand_release_device(chip);
|
|
|
|
/* Return more or less happy */
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_sync - [MTD Interface] sync
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Sync is actually a wait for chip ready function.
|
|
*/
|
|
static void nand_sync(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
pr_debug("%s: called\n", __func__);
|
|
|
|
/* Grab the lock and see if the device is available */
|
|
WARN_ON(nand_get_device(chip));
|
|
/* Release it and go back */
|
|
nand_release_device(chip);
|
|
}
|
|
|
|
/**
|
|
* nand_block_isbad - [MTD Interface] Check if block at offset is bad
|
|
* @mtd: MTD device structure
|
|
* @offs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_isbad(struct mtd_info *mtd, loff_t offs)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int chipnr = (int)(offs >> chip->chip_shift);
|
|
int ret;
|
|
|
|
/* Select the NAND device */
|
|
ret = nand_get_device(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
nand_select_target(chip, chipnr);
|
|
|
|
ret = nand_block_checkbad(chip, offs, 0);
|
|
|
|
nand_deselect_target(chip);
|
|
nand_release_device(chip);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_block_markbad - [MTD Interface] Mark block at the given offset as bad
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset relative to mtd start
|
|
*/
|
|
static int nand_block_markbad(struct mtd_info *mtd, loff_t ofs)
|
|
{
|
|
int ret;
|
|
|
|
ret = nand_block_isbad(mtd, ofs);
|
|
if (ret) {
|
|
/* If it was bad already, return success and do nothing */
|
|
if (ret > 0)
|
|
return 0;
|
|
return ret;
|
|
}
|
|
|
|
return nand_block_markbad_lowlevel(mtd_to_nand(mtd), ofs);
|
|
}
|
|
|
|
/**
|
|
* nand_suspend - [MTD Interface] Suspend the NAND flash
|
|
* @mtd: MTD device structure
|
|
*
|
|
* Returns 0 for success or negative error code otherwise.
|
|
*/
|
|
static int nand_suspend(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
int ret = 0;
|
|
|
|
mutex_lock(&chip->lock);
|
|
if (chip->ops.suspend)
|
|
ret = chip->ops.suspend(chip);
|
|
if (!ret)
|
|
chip->suspended = 1;
|
|
mutex_unlock(&chip->lock);
|
|
|
|
return ret;
|
|
}
|
|
|
|
/**
|
|
* nand_resume - [MTD Interface] Resume the NAND flash
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void nand_resume(struct mtd_info *mtd)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
mutex_lock(&chip->lock);
|
|
if (chip->suspended) {
|
|
if (chip->ops.resume)
|
|
chip->ops.resume(chip);
|
|
chip->suspended = 0;
|
|
} else {
|
|
pr_err("%s called for a chip which is not in suspended state\n",
|
|
__func__);
|
|
}
|
|
mutex_unlock(&chip->lock);
|
|
}
|
|
|
|
/**
|
|
* nand_shutdown - [MTD Interface] Finish the current NAND operation and
|
|
* prevent further operations
|
|
* @mtd: MTD device structure
|
|
*/
|
|
static void nand_shutdown(struct mtd_info *mtd)
|
|
{
|
|
nand_suspend(mtd);
|
|
}
|
|
|
|
/**
|
|
* nand_lock - [MTD Interface] Lock the NAND flash
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset byte address
|
|
* @len: number of bytes to lock (must be a multiple of block/page size)
|
|
*/
|
|
static int nand_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (!chip->ops.lock_area)
|
|
return -ENOTSUPP;
|
|
|
|
return chip->ops.lock_area(chip, ofs, len);
|
|
}
|
|
|
|
/**
|
|
* nand_unlock - [MTD Interface] Unlock the NAND flash
|
|
* @mtd: MTD device structure
|
|
* @ofs: offset byte address
|
|
* @len: number of bytes to unlock (must be a multiple of block/page size)
|
|
*/
|
|
static int nand_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len)
|
|
{
|
|
struct nand_chip *chip = mtd_to_nand(mtd);
|
|
|
|
if (!chip->ops.unlock_area)
|
|
return -ENOTSUPP;
|
|
|
|
return chip->ops.unlock_area(chip, ofs, len);
|
|
}
|
|
|
|
/* Set default functions */
|
|
static void nand_set_defaults(struct nand_chip *chip)
|
|
{
|
|
/* If no controller is provided, use the dummy, legacy one. */
|
|
if (!chip->controller) {
|
|
chip->controller = &chip->legacy.dummy_controller;
|
|
nand_controller_init(chip->controller);
|
|
}
|
|
|
|
nand_legacy_set_defaults(chip);
|
|
|
|
if (!chip->buf_align)
|
|
chip->buf_align = 1;
|
|
}
|
|
|
|
/* Sanitize ONFI strings so we can safely print them */
|
|
void sanitize_string(uint8_t *s, size_t len)
|
|
{
|
|
ssize_t i;
|
|
|
|
/* Null terminate */
|
|
s[len - 1] = 0;
|
|
|
|
/* Remove non printable chars */
|
|
for (i = 0; i < len - 1; i++) {
|
|
if (s[i] < ' ' || s[i] > 127)
|
|
s[i] = '?';
|
|
}
|
|
|
|
/* Remove trailing spaces */
|
|
strim(s);
|
|
}
|
|
|
|
/*
|
|
* nand_id_has_period - Check if an ID string has a given wraparound period
|
|
* @id_data: the ID string
|
|
* @arrlen: the length of the @id_data array
|
|
* @period: the period of repitition
|
|
*
|
|
* Check if an ID string is repeated within a given sequence of bytes at
|
|
* specific repetition interval period (e.g., {0x20,0x01,0x7F,0x20} has a
|
|
* period of 3). This is a helper function for nand_id_len(). Returns non-zero
|
|
* if the repetition has a period of @period; otherwise, returns zero.
|
|
*/
|
|
static int nand_id_has_period(u8 *id_data, int arrlen, int period)
|
|
{
|
|
int i, j;
|
|
for (i = 0; i < period; i++)
|
|
for (j = i + period; j < arrlen; j += period)
|
|
if (id_data[i] != id_data[j])
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/*
|
|
* nand_id_len - Get the length of an ID string returned by CMD_READID
|
|
* @id_data: the ID string
|
|
* @arrlen: the length of the @id_data array
|
|
|
|
* Returns the length of the ID string, according to known wraparound/trailing
|
|
* zero patterns. If no pattern exists, returns the length of the array.
|
|
*/
|
|
static int nand_id_len(u8 *id_data, int arrlen)
|
|
{
|
|
int last_nonzero, period;
|
|
|
|
/* Find last non-zero byte */
|
|
for (last_nonzero = arrlen - 1; last_nonzero >= 0; last_nonzero--)
|
|
if (id_data[last_nonzero])
|
|
break;
|
|
|
|
/* All zeros */
|
|
if (last_nonzero < 0)
|
|
return 0;
|
|
|
|
/* Calculate wraparound period */
|
|
for (period = 1; period < arrlen; period++)
|
|
if (nand_id_has_period(id_data, arrlen, period))
|
|
break;
|
|
|
|
/* There's a repeated pattern */
|
|
if (period < arrlen)
|
|
return period;
|
|
|
|
/* There are trailing zeros */
|
|
if (last_nonzero < arrlen - 1)
|
|
return last_nonzero + 1;
|
|
|
|
/* No pattern detected */
|
|
return arrlen;
|
|
}
|
|
|
|
/* Extract the bits of per cell from the 3rd byte of the extended ID */
|
|
static int nand_get_bits_per_cell(u8 cellinfo)
|
|
{
|
|
int bits;
|
|
|
|
bits = cellinfo & NAND_CI_CELLTYPE_MSK;
|
|
bits >>= NAND_CI_CELLTYPE_SHIFT;
|
|
return bits + 1;
|
|
}
|
|
|
|
/*
|
|
* Many new NAND share similar device ID codes, which represent the size of the
|
|
* chip. The rest of the parameters must be decoded according to generic or
|
|
* manufacturer-specific "extended ID" decoding patterns.
|
|
*/
|
|
void nand_decode_ext_id(struct nand_chip *chip)
|
|
{
|
|
struct nand_memory_organization *memorg;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
int extid;
|
|
u8 *id_data = chip->id.data;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
/* The 3rd id byte holds MLC / multichip data */
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
|
/* The 4th id byte is the important one */
|
|
extid = id_data[3];
|
|
|
|
/* Calc pagesize */
|
|
memorg->pagesize = 1024 << (extid & 0x03);
|
|
mtd->writesize = memorg->pagesize;
|
|
extid >>= 2;
|
|
/* Calc oobsize */
|
|
memorg->oobsize = (8 << (extid & 0x01)) * (mtd->writesize >> 9);
|
|
mtd->oobsize = memorg->oobsize;
|
|
extid >>= 2;
|
|
/* Calc blocksize. Blocksize is multiples of 64KiB */
|
|
memorg->pages_per_eraseblock = ((64 * 1024) << (extid & 0x03)) /
|
|
memorg->pagesize;
|
|
mtd->erasesize = (64 * 1024) << (extid & 0x03);
|
|
extid >>= 2;
|
|
/* Get buswidth information */
|
|
if (extid & 0x1)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_decode_ext_id);
|
|
|
|
/*
|
|
* Old devices have chip data hardcoded in the device ID table. nand_decode_id
|
|
* decodes a matching ID table entry and assigns the MTD size parameters for
|
|
* the chip.
|
|
*/
|
|
static void nand_decode_id(struct nand_chip *chip, struct nand_flash_dev *type)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_memory_organization *memorg;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
memorg->pages_per_eraseblock = type->erasesize / type->pagesize;
|
|
mtd->erasesize = type->erasesize;
|
|
memorg->pagesize = type->pagesize;
|
|
mtd->writesize = memorg->pagesize;
|
|
memorg->oobsize = memorg->pagesize / 32;
|
|
mtd->oobsize = memorg->oobsize;
|
|
|
|
/* All legacy ID NAND are small-page, SLC */
|
|
memorg->bits_per_cell = 1;
|
|
}
|
|
|
|
/*
|
|
* Set the bad block marker/indicator (BBM/BBI) patterns according to some
|
|
* heuristic patterns using various detected parameters (e.g., manufacturer,
|
|
* page size, cell-type information).
|
|
*/
|
|
static void nand_decode_bbm_options(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
/* Set the bad block position */
|
|
if (mtd->writesize > 512 || (chip->options & NAND_BUSWIDTH_16))
|
|
chip->badblockpos = NAND_BBM_POS_LARGE;
|
|
else
|
|
chip->badblockpos = NAND_BBM_POS_SMALL;
|
|
}
|
|
|
|
static inline bool is_full_id_nand(struct nand_flash_dev *type)
|
|
{
|
|
return type->id_len;
|
|
}
|
|
|
|
static bool find_full_id_nand(struct nand_chip *chip,
|
|
struct nand_flash_dev *type)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_memory_organization *memorg;
|
|
u8 *id_data = chip->id.data;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
if (!strncmp(type->id, id_data, type->id_len)) {
|
|
memorg->pagesize = type->pagesize;
|
|
mtd->writesize = memorg->pagesize;
|
|
memorg->pages_per_eraseblock = type->erasesize /
|
|
type->pagesize;
|
|
mtd->erasesize = type->erasesize;
|
|
memorg->oobsize = type->oobsize;
|
|
mtd->oobsize = memorg->oobsize;
|
|
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(id_data[2]);
|
|
memorg->eraseblocks_per_lun =
|
|
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
|
|
memorg->pagesize *
|
|
memorg->pages_per_eraseblock);
|
|
chip->options |= type->options;
|
|
chip->base.eccreq.strength = NAND_ECC_STRENGTH(type);
|
|
chip->base.eccreq.step_size = NAND_ECC_STEP(type);
|
|
|
|
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
|
|
if (!chip->parameters.model)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/*
|
|
* Manufacturer detection. Only used when the NAND is not ONFI or JEDEC
|
|
* compliant and does not have a full-id or legacy-id entry in the nand_ids
|
|
* table.
|
|
*/
|
|
static void nand_manufacturer_detect(struct nand_chip *chip)
|
|
{
|
|
/*
|
|
* Try manufacturer detection if available and use
|
|
* nand_decode_ext_id() otherwise.
|
|
*/
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
|
chip->manufacturer.desc->ops->detect) {
|
|
struct nand_memory_organization *memorg;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
/* The 3rd id byte holds MLC / multichip data */
|
|
memorg->bits_per_cell = nand_get_bits_per_cell(chip->id.data[2]);
|
|
chip->manufacturer.desc->ops->detect(chip);
|
|
} else {
|
|
nand_decode_ext_id(chip);
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Manufacturer initialization. This function is called for all NANDs including
|
|
* ONFI and JEDEC compliant ones.
|
|
* Manufacturer drivers should put all their specific initialization code in
|
|
* their ->init() hook.
|
|
*/
|
|
static int nand_manufacturer_init(struct nand_chip *chip)
|
|
{
|
|
if (!chip->manufacturer.desc || !chip->manufacturer.desc->ops ||
|
|
!chip->manufacturer.desc->ops->init)
|
|
return 0;
|
|
|
|
return chip->manufacturer.desc->ops->init(chip);
|
|
}
|
|
|
|
/*
|
|
* Manufacturer cleanup. This function is called for all NANDs including
|
|
* ONFI and JEDEC compliant ones.
|
|
* Manufacturer drivers should put all their specific cleanup code in their
|
|
* ->cleanup() hook.
|
|
*/
|
|
static void nand_manufacturer_cleanup(struct nand_chip *chip)
|
|
{
|
|
/* Release manufacturer private data */
|
|
if (chip->manufacturer.desc && chip->manufacturer.desc->ops &&
|
|
chip->manufacturer.desc->ops->cleanup)
|
|
chip->manufacturer.desc->ops->cleanup(chip);
|
|
}
|
|
|
|
static const char *
|
|
nand_manufacturer_name(const struct nand_manufacturer_desc *manufacturer_desc)
|
|
{
|
|
return manufacturer_desc ? manufacturer_desc->name : "Unknown";
|
|
}
|
|
|
|
/*
|
|
* Get the flash and manufacturer id and lookup if the type is supported.
|
|
*/
|
|
static int nand_detect(struct nand_chip *chip, struct nand_flash_dev *type)
|
|
{
|
|
const struct nand_manufacturer_desc *manufacturer_desc;
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_memory_organization *memorg;
|
|
int busw, ret;
|
|
u8 *id_data = chip->id.data;
|
|
u8 maf_id, dev_id;
|
|
u64 targetsize;
|
|
|
|
/*
|
|
* Let's start by initializing memorg fields that might be left
|
|
* unassigned by the ID-based detection logic.
|
|
*/
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
memorg->planes_per_lun = 1;
|
|
memorg->luns_per_target = 1;
|
|
|
|
/*
|
|
* Reset the chip, required by some chips (e.g. Micron MT29FxGxxxxx)
|
|
* after power-up.
|
|
*/
|
|
ret = nand_reset(chip, 0);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Select the device */
|
|
nand_select_target(chip, 0);
|
|
|
|
/* Send the command for reading device ID */
|
|
ret = nand_readid_op(chip, 0, id_data, 2);
|
|
if (ret)
|
|
return ret;
|
|
|
|
/* Read manufacturer and device IDs */
|
|
maf_id = id_data[0];
|
|
dev_id = id_data[1];
|
|
|
|
/*
|
|
* Try again to make sure, as some systems the bus-hold or other
|
|
* interface concerns can cause random data which looks like a
|
|
* possibly credible NAND flash to appear. If the two results do
|
|
* not match, ignore the device completely.
|
|
*/
|
|
|
|
/* Read entire ID string */
|
|
ret = nand_readid_op(chip, 0, id_data, sizeof(chip->id.data));
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (id_data[0] != maf_id || id_data[1] != dev_id) {
|
|
pr_info("second ID read did not match %02x,%02x against %02x,%02x\n",
|
|
maf_id, dev_id, id_data[0], id_data[1]);
|
|
return -ENODEV;
|
|
}
|
|
|
|
chip->id.len = nand_id_len(id_data, ARRAY_SIZE(chip->id.data));
|
|
|
|
/* Try to identify manufacturer */
|
|
manufacturer_desc = nand_get_manufacturer_desc(maf_id);
|
|
chip->manufacturer.desc = manufacturer_desc;
|
|
|
|
if (!type)
|
|
type = nand_flash_ids;
|
|
|
|
/*
|
|
* Save the NAND_BUSWIDTH_16 flag before letting auto-detection logic
|
|
* override it.
|
|
* This is required to make sure initial NAND bus width set by the
|
|
* NAND controller driver is coherent with the real NAND bus width
|
|
* (extracted by auto-detection code).
|
|
*/
|
|
busw = chip->options & NAND_BUSWIDTH_16;
|
|
|
|
/*
|
|
* The flag is only set (never cleared), reset it to its default value
|
|
* before starting auto-detection.
|
|
*/
|
|
chip->options &= ~NAND_BUSWIDTH_16;
|
|
|
|
for (; type->name != NULL; type++) {
|
|
if (is_full_id_nand(type)) {
|
|
if (find_full_id_nand(chip, type))
|
|
goto ident_done;
|
|
} else if (dev_id == type->dev_id) {
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!type->name || !type->pagesize) {
|
|
/* Check if the chip is ONFI compliant */
|
|
ret = nand_onfi_detect(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret)
|
|
goto ident_done;
|
|
|
|
/* Check if the chip is JEDEC compliant */
|
|
ret = nand_jedec_detect(chip);
|
|
if (ret < 0)
|
|
return ret;
|
|
else if (ret)
|
|
goto ident_done;
|
|
}
|
|
|
|
if (!type->name)
|
|
return -ENODEV;
|
|
|
|
chip->parameters.model = kstrdup(type->name, GFP_KERNEL);
|
|
if (!chip->parameters.model)
|
|
return -ENOMEM;
|
|
|
|
if (!type->pagesize)
|
|
nand_manufacturer_detect(chip);
|
|
else
|
|
nand_decode_id(chip, type);
|
|
|
|
/* Get chip options */
|
|
chip->options |= type->options;
|
|
|
|
memorg->eraseblocks_per_lun =
|
|
DIV_ROUND_DOWN_ULL((u64)type->chipsize << 20,
|
|
memorg->pagesize *
|
|
memorg->pages_per_eraseblock);
|
|
|
|
ident_done:
|
|
if (!mtd->name)
|
|
mtd->name = chip->parameters.model;
|
|
|
|
if (chip->options & NAND_BUSWIDTH_AUTO) {
|
|
WARN_ON(busw & NAND_BUSWIDTH_16);
|
|
nand_set_defaults(chip);
|
|
} else if (busw != (chip->options & NAND_BUSWIDTH_16)) {
|
|
/*
|
|
* Check, if buswidth is correct. Hardware drivers should set
|
|
* chip correct!
|
|
*/
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
|
maf_id, dev_id);
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
|
|
mtd->name);
|
|
pr_warn("bus width %d instead of %d bits\n", busw ? 16 : 8,
|
|
(chip->options & NAND_BUSWIDTH_16) ? 16 : 8);
|
|
ret = -EINVAL;
|
|
|
|
goto free_detect_allocation;
|
|
}
|
|
|
|
nand_decode_bbm_options(chip);
|
|
|
|
/* Calculate the address shift from the page size */
|
|
chip->page_shift = ffs(mtd->writesize) - 1;
|
|
/* Convert chipsize to number of pages per chip -1 */
|
|
targetsize = nanddev_target_size(&chip->base);
|
|
chip->pagemask = (targetsize >> chip->page_shift) - 1;
|
|
|
|
chip->bbt_erase_shift = chip->phys_erase_shift =
|
|
ffs(mtd->erasesize) - 1;
|
|
if (targetsize & 0xffffffff)
|
|
chip->chip_shift = ffs((unsigned)targetsize) - 1;
|
|
else {
|
|
chip->chip_shift = ffs((unsigned)(targetsize >> 32));
|
|
chip->chip_shift += 32 - 1;
|
|
}
|
|
|
|
if (chip->chip_shift - chip->page_shift > 16)
|
|
chip->options |= NAND_ROW_ADDR_3;
|
|
|
|
chip->badblockbits = 8;
|
|
|
|
nand_legacy_adjust_cmdfunc(chip);
|
|
|
|
pr_info("device found, Manufacturer ID: 0x%02x, Chip ID: 0x%02x\n",
|
|
maf_id, dev_id);
|
|
pr_info("%s %s\n", nand_manufacturer_name(manufacturer_desc),
|
|
chip->parameters.model);
|
|
pr_info("%d MiB, %s, erase size: %d KiB, page size: %d, OOB size: %d\n",
|
|
(int)(targetsize >> 20), nand_is_slc(chip) ? "SLC" : "MLC",
|
|
mtd->erasesize >> 10, mtd->writesize, mtd->oobsize);
|
|
return 0;
|
|
|
|
free_detect_allocation:
|
|
kfree(chip->parameters.model);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const char * const nand_ecc_modes[] = {
|
|
[NAND_ECC_NONE] = "none",
|
|
[NAND_ECC_SOFT] = "soft",
|
|
[NAND_ECC_HW] = "hw",
|
|
[NAND_ECC_HW_SYNDROME] = "hw_syndrome",
|
|
[NAND_ECC_ON_DIE] = "on-die",
|
|
};
|
|
|
|
static enum nand_ecc_engine_type
|
|
of_get_nand_ecc_engine_type(struct device_node *np)
|
|
{
|
|
enum nand_ecc_mode eng_type;
|
|
const char *pm;
|
|
int err;
|
|
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
if (err)
|
|
return NAND_ECC_ENGINE_TYPE_INVALID;
|
|
|
|
for (eng_type = NAND_ECC_NONE;
|
|
eng_type < ARRAY_SIZE(nand_ecc_modes); eng_type++) {
|
|
if (!strcasecmp(pm, nand_ecc_modes[eng_type])) {
|
|
switch (eng_type) {
|
|
case NAND_ECC_NONE:
|
|
return NAND_ECC_ENGINE_TYPE_NONE;
|
|
case NAND_ECC_SOFT:
|
|
return NAND_ECC_ENGINE_TYPE_SOFT;
|
|
case NAND_ECC_HW:
|
|
case NAND_ECC_HW_SYNDROME:
|
|
return NAND_ECC_ENGINE_TYPE_ON_HOST;
|
|
case NAND_ECC_ON_DIE:
|
|
return NAND_ECC_ENGINE_TYPE_ON_DIE;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For backward compatibility we support few obsoleted values that don't
|
|
* have their mappings into the nand_ecc_engine_providers enum anymore
|
|
* (they were merged with other enums).
|
|
*/
|
|
if (!strcasecmp(pm, "soft_bch"))
|
|
return NAND_ECC_ENGINE_TYPE_SOFT;
|
|
|
|
return NAND_ECC_ENGINE_TYPE_INVALID;
|
|
}
|
|
|
|
static const char * const nand_ecc_algos[] = {
|
|
[NAND_ECC_ALGO_HAMMING] = "hamming",
|
|
[NAND_ECC_ALGO_BCH] = "bch",
|
|
[NAND_ECC_ALGO_RS] = "rs",
|
|
};
|
|
|
|
static enum nand_ecc_algo of_get_nand_ecc_algo(struct device_node *np)
|
|
{
|
|
enum nand_ecc_algo ecc_algo;
|
|
const char *pm;
|
|
int err;
|
|
|
|
err = of_property_read_string(np, "nand-ecc-algo", &pm);
|
|
if (!err) {
|
|
for (ecc_algo = NAND_ECC_ALGO_HAMMING;
|
|
ecc_algo < ARRAY_SIZE(nand_ecc_algos);
|
|
ecc_algo++) {
|
|
if (!strcasecmp(pm, nand_ecc_algos[ecc_algo]))
|
|
return ecc_algo;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* For backward compatibility we also read "nand-ecc-mode" checking
|
|
* for some obsoleted values that were specifying ECC algorithm.
|
|
*/
|
|
err = of_property_read_string(np, "nand-ecc-mode", &pm);
|
|
if (!err) {
|
|
if (!strcasecmp(pm, "soft"))
|
|
return NAND_ECC_ALGO_HAMMING;
|
|
else if (!strcasecmp(pm, "soft_bch"))
|
|
return NAND_ECC_ALGO_BCH;
|
|
}
|
|
|
|
return NAND_ECC_ALGO_UNKNOWN;
|
|
}
|
|
|
|
static int of_get_nand_ecc_step_size(struct device_node *np)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-step-size", &val);
|
|
return ret ? ret : val;
|
|
}
|
|
|
|
static int of_get_nand_ecc_strength(struct device_node *np)
|
|
{
|
|
int ret;
|
|
u32 val;
|
|
|
|
ret = of_property_read_u32(np, "nand-ecc-strength", &val);
|
|
return ret ? ret : val;
|
|
}
|
|
|
|
static int of_get_nand_bus_width(struct device_node *np)
|
|
{
|
|
u32 val;
|
|
|
|
if (of_property_read_u32(np, "nand-bus-width", &val))
|
|
return 8;
|
|
|
|
switch (val) {
|
|
case 8:
|
|
case 16:
|
|
return val;
|
|
default:
|
|
return -EIO;
|
|
}
|
|
}
|
|
|
|
static bool of_get_nand_on_flash_bbt(struct device_node *np)
|
|
{
|
|
return of_property_read_bool(np, "nand-on-flash-bbt");
|
|
}
|
|
|
|
static int nand_dt_init(struct nand_chip *chip)
|
|
{
|
|
struct device_node *dn = nand_get_flash_node(chip);
|
|
enum nand_ecc_engine_type ecc_type;
|
|
enum nand_ecc_algo ecc_algo;
|
|
int ecc_strength, ecc_step;
|
|
|
|
if (!dn)
|
|
return 0;
|
|
|
|
if (of_get_nand_bus_width(dn) == 16)
|
|
chip->options |= NAND_BUSWIDTH_16;
|
|
|
|
if (of_property_read_bool(dn, "nand-is-boot-medium"))
|
|
chip->options |= NAND_IS_BOOT_MEDIUM;
|
|
|
|
if (of_get_nand_on_flash_bbt(dn))
|
|
chip->bbt_options |= NAND_BBT_USE_FLASH;
|
|
|
|
ecc_type = of_get_nand_ecc_engine_type(dn);
|
|
ecc_algo = of_get_nand_ecc_algo(dn);
|
|
ecc_strength = of_get_nand_ecc_strength(dn);
|
|
ecc_step = of_get_nand_ecc_step_size(dn);
|
|
|
|
if (ecc_type != NAND_ECC_ENGINE_TYPE_INVALID)
|
|
chip->ecc.engine_type = ecc_type;
|
|
|
|
if (ecc_algo != NAND_ECC_ALGO_UNKNOWN)
|
|
chip->ecc.algo = ecc_algo;
|
|
|
|
if (ecc_strength >= 0)
|
|
chip->ecc.strength = ecc_strength;
|
|
|
|
if (ecc_step > 0)
|
|
chip->ecc.size = ecc_step;
|
|
|
|
if (of_property_read_bool(dn, "nand-ecc-maximize"))
|
|
chip->ecc.options |= NAND_ECC_MAXIMIZE;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_scan_ident - Scan for the NAND device
|
|
* @chip: NAND chip object
|
|
* @maxchips: number of chips to scan for
|
|
* @table: alternative NAND ID table
|
|
*
|
|
* This is the first phase of the normal nand_scan() function. It reads the
|
|
* flash ID and sets up MTD fields accordingly.
|
|
*
|
|
* This helper used to be called directly from controller drivers that needed
|
|
* to tweak some ECC-related parameters before nand_scan_tail(). This separation
|
|
* prevented dynamic allocations during this phase which was unconvenient and
|
|
* as been banned for the benefit of the ->init_ecc()/cleanup_ecc() hooks.
|
|
*/
|
|
static int nand_scan_ident(struct nand_chip *chip, unsigned int maxchips,
|
|
struct nand_flash_dev *table)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_memory_organization *memorg;
|
|
int nand_maf_id, nand_dev_id;
|
|
unsigned int i;
|
|
int ret;
|
|
|
|
memorg = nanddev_get_memorg(&chip->base);
|
|
|
|
/* Assume all dies are deselected when we enter nand_scan_ident(). */
|
|
chip->cur_cs = -1;
|
|
|
|
mutex_init(&chip->lock);
|
|
|
|
/* Enforce the right timings for reset/detection */
|
|
chip->current_interface_config = nand_get_reset_interface_config();
|
|
|
|
ret = nand_dt_init(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
if (!mtd->name && mtd->dev.parent)
|
|
mtd->name = dev_name(mtd->dev.parent);
|
|
|
|
/* Set the default functions */
|
|
nand_set_defaults(chip);
|
|
|
|
ret = nand_legacy_check_hooks(chip);
|
|
if (ret)
|
|
return ret;
|
|
|
|
memorg->ntargets = maxchips;
|
|
|
|
/* Read the flash type */
|
|
ret = nand_detect(chip, table);
|
|
if (ret) {
|
|
if (!(chip->options & NAND_SCAN_SILENT_NODEV))
|
|
pr_warn("No NAND device found\n");
|
|
nand_deselect_target(chip);
|
|
return ret;
|
|
}
|
|
|
|
nand_maf_id = chip->id.data[0];
|
|
nand_dev_id = chip->id.data[1];
|
|
|
|
nand_deselect_target(chip);
|
|
|
|
/* Check for a chip array */
|
|
for (i = 1; i < maxchips; i++) {
|
|
u8 id[2];
|
|
|
|
/* See comment in nand_get_flash_type for reset */
|
|
ret = nand_reset(chip, i);
|
|
if (ret)
|
|
break;
|
|
|
|
nand_select_target(chip, i);
|
|
/* Send the command for reading device ID */
|
|
ret = nand_readid_op(chip, 0, id, sizeof(id));
|
|
if (ret)
|
|
break;
|
|
/* Read manufacturer and device IDs */
|
|
if (nand_maf_id != id[0] || nand_dev_id != id[1]) {
|
|
nand_deselect_target(chip);
|
|
break;
|
|
}
|
|
nand_deselect_target(chip);
|
|
}
|
|
if (i > 1)
|
|
pr_info("%d chips detected\n", i);
|
|
|
|
/* Store the number of chips and calc total size for mtd */
|
|
memorg->ntargets = i;
|
|
mtd->size = i * nanddev_target_size(&chip->base);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nand_scan_ident_cleanup(struct nand_chip *chip)
|
|
{
|
|
kfree(chip->parameters.model);
|
|
kfree(chip->parameters.onfi);
|
|
}
|
|
|
|
static int nand_set_ecc_soft_ops(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
|
|
if (WARN_ON(ecc->engine_type != NAND_ECC_ENGINE_TYPE_SOFT))
|
|
return -EINVAL;
|
|
|
|
switch (ecc->algo) {
|
|
case NAND_ECC_ALGO_HAMMING:
|
|
ecc->calculate = nand_calculate_ecc;
|
|
ecc->correct = nand_correct_data;
|
|
ecc->read_page = nand_read_page_swecc;
|
|
ecc->read_subpage = nand_read_subpage;
|
|
ecc->write_page = nand_write_page_swecc;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
if (!ecc->size)
|
|
ecc->size = 256;
|
|
ecc->bytes = 3;
|
|
ecc->strength = 1;
|
|
|
|
if (IS_ENABLED(CONFIG_MTD_NAND_ECC_SW_HAMMING_SMC))
|
|
ecc->options |= NAND_ECC_SOFT_HAMMING_SM_ORDER;
|
|
|
|
return 0;
|
|
case NAND_ECC_ALGO_BCH:
|
|
if (!mtd_nand_has_bch()) {
|
|
WARN(1, "CONFIG_MTD_NAND_ECC_SW_BCH not enabled\n");
|
|
return -EINVAL;
|
|
}
|
|
ecc->calculate = nand_bch_calculate_ecc;
|
|
ecc->correct = nand_bch_correct_data;
|
|
ecc->read_page = nand_read_page_swecc;
|
|
ecc->read_subpage = nand_read_subpage;
|
|
ecc->write_page = nand_write_page_swecc;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
|
|
/*
|
|
* Board driver should supply ecc.size and ecc.strength
|
|
* values to select how many bits are correctable.
|
|
* Otherwise, default to 4 bits for large page devices.
|
|
*/
|
|
if (!ecc->size && (mtd->oobsize >= 64)) {
|
|
ecc->size = 512;
|
|
ecc->strength = 4;
|
|
}
|
|
|
|
/*
|
|
* if no ecc placement scheme was provided pickup the default
|
|
* large page one.
|
|
*/
|
|
if (!mtd->ooblayout) {
|
|
/* handle large page devices only */
|
|
if (mtd->oobsize < 64) {
|
|
WARN(1, "OOB layout is required when using software BCH on small pages\n");
|
|
return -EINVAL;
|
|
}
|
|
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_ops);
|
|
|
|
}
|
|
|
|
/*
|
|
* We can only maximize ECC config when the default layout is
|
|
* used, otherwise we don't know how many bytes can really be
|
|
* used.
|
|
*/
|
|
if (mtd->ooblayout == &nand_ooblayout_lp_ops &&
|
|
ecc->options & NAND_ECC_MAXIMIZE) {
|
|
int steps, bytes;
|
|
|
|
/* Always prefer 1k blocks over 512bytes ones */
|
|
ecc->size = 1024;
|
|
steps = mtd->writesize / ecc->size;
|
|
|
|
/* Reserve 2 bytes for the BBM */
|
|
bytes = (mtd->oobsize - 2) / steps;
|
|
ecc->strength = bytes * 8 / fls(8 * ecc->size);
|
|
}
|
|
|
|
/* See nand_bch_init() for details. */
|
|
ecc->bytes = 0;
|
|
ecc->priv = nand_bch_init(mtd);
|
|
if (!ecc->priv) {
|
|
WARN(1, "BCH ECC initialization failed!\n");
|
|
return -EINVAL;
|
|
}
|
|
return 0;
|
|
default:
|
|
WARN(1, "Unsupported ECC algorithm!\n");
|
|
return -EINVAL;
|
|
}
|
|
}
|
|
|
|
/**
|
|
* nand_check_ecc_caps - check the sanity of preset ECC settings
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* When ECC step size and strength are already set, check if they are supported
|
|
* by the controller and the calculated ECC bytes fit within the chip's OOB.
|
|
* On success, the calculated ECC bytes is set.
|
|
*/
|
|
static int
|
|
nand_check_ecc_caps(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int preset_step = chip->ecc.size;
|
|
int preset_strength = chip->ecc.strength;
|
|
int ecc_bytes, nsteps = mtd->writesize / preset_step;
|
|
int i, j;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
|
|
if (stepinfo->stepsize != preset_step)
|
|
continue;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
if (stepinfo->strengths[j] != preset_strength)
|
|
continue;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(preset_step,
|
|
preset_strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
return ecc_bytes;
|
|
|
|
if (ecc_bytes * nsteps > oobavail) {
|
|
pr_err("ECC (step, strength) = (%d, %d) does not fit in OOB",
|
|
preset_step, preset_strength);
|
|
return -ENOSPC;
|
|
}
|
|
|
|
chip->ecc.bytes = ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
pr_err("ECC (step, strength) = (%d, %d) not supported on this controller",
|
|
preset_step, preset_strength);
|
|
|
|
return -ENOTSUPP;
|
|
}
|
|
|
|
/**
|
|
* nand_match_ecc_req - meet the chip's requirement with least ECC bytes
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC engine caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* If a chip's ECC requirement is provided, try to meet it with the least
|
|
* number of ECC bytes (i.e. with the largest number of OOB-free bytes).
|
|
* On success, the chosen ECC settings are set.
|
|
*/
|
|
static int
|
|
nand_match_ecc_req(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int req_step = chip->base.eccreq.step_size;
|
|
int req_strength = chip->base.eccreq.strength;
|
|
int req_corr, step_size, strength, nsteps, ecc_bytes, ecc_bytes_total;
|
|
int best_step, best_strength, best_ecc_bytes;
|
|
int best_ecc_bytes_total = INT_MAX;
|
|
int i, j;
|
|
|
|
/* No information provided by the NAND chip */
|
|
if (!req_step || !req_strength)
|
|
return -ENOTSUPP;
|
|
|
|
/* number of correctable bits the chip requires in a page */
|
|
req_corr = mtd->writesize / req_step * req_strength;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
step_size = stepinfo->stepsize;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
strength = stepinfo->strengths[j];
|
|
|
|
/*
|
|
* If both step size and strength are smaller than the
|
|
* chip's requirement, it is not easy to compare the
|
|
* resulted reliability.
|
|
*/
|
|
if (step_size < req_step && strength < req_strength)
|
|
continue;
|
|
|
|
if (mtd->writesize % step_size)
|
|
continue;
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
continue;
|
|
ecc_bytes_total = ecc_bytes * nsteps;
|
|
|
|
if (ecc_bytes_total > oobavail ||
|
|
strength * nsteps < req_corr)
|
|
continue;
|
|
|
|
/*
|
|
* We assume the best is to meet the chip's requrement
|
|
* with the least number of ECC bytes.
|
|
*/
|
|
if (ecc_bytes_total < best_ecc_bytes_total) {
|
|
best_ecc_bytes_total = ecc_bytes_total;
|
|
best_step = step_size;
|
|
best_strength = strength;
|
|
best_ecc_bytes = ecc_bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (best_ecc_bytes_total == INT_MAX)
|
|
return -ENOTSUPP;
|
|
|
|
chip->ecc.size = best_step;
|
|
chip->ecc.strength = best_strength;
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_maximize_ecc - choose the max ECC strength available
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC engine caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* Choose the max ECC strength that is supported on the controller, and can fit
|
|
* within the chip's OOB. On success, the chosen ECC settings are set.
|
|
*/
|
|
static int
|
|
nand_maximize_ecc(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
const struct nand_ecc_step_info *stepinfo;
|
|
int step_size, strength, nsteps, ecc_bytes, corr;
|
|
int best_corr = 0;
|
|
int best_step = 0;
|
|
int best_strength, best_ecc_bytes;
|
|
int i, j;
|
|
|
|
for (i = 0; i < caps->nstepinfos; i++) {
|
|
stepinfo = &caps->stepinfos[i];
|
|
step_size = stepinfo->stepsize;
|
|
|
|
/* If chip->ecc.size is already set, respect it */
|
|
if (chip->ecc.size && step_size != chip->ecc.size)
|
|
continue;
|
|
|
|
for (j = 0; j < stepinfo->nstrengths; j++) {
|
|
strength = stepinfo->strengths[j];
|
|
|
|
if (mtd->writesize % step_size)
|
|
continue;
|
|
|
|
nsteps = mtd->writesize / step_size;
|
|
|
|
ecc_bytes = caps->calc_ecc_bytes(step_size, strength);
|
|
if (WARN_ON_ONCE(ecc_bytes < 0))
|
|
continue;
|
|
|
|
if (ecc_bytes * nsteps > oobavail)
|
|
continue;
|
|
|
|
corr = strength * nsteps;
|
|
|
|
/*
|
|
* If the number of correctable bits is the same,
|
|
* bigger step_size has more reliability.
|
|
*/
|
|
if (corr > best_corr ||
|
|
(corr == best_corr && step_size > best_step)) {
|
|
best_corr = corr;
|
|
best_step = step_size;
|
|
best_strength = strength;
|
|
best_ecc_bytes = ecc_bytes;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!best_corr)
|
|
return -ENOTSUPP;
|
|
|
|
chip->ecc.size = best_step;
|
|
chip->ecc.strength = best_strength;
|
|
chip->ecc.bytes = best_ecc_bytes;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/**
|
|
* nand_ecc_choose_conf - Set the ECC strength and ECC step size
|
|
* @chip: nand chip info structure
|
|
* @caps: ECC engine caps info structure
|
|
* @oobavail: OOB size that the ECC engine can use
|
|
*
|
|
* Choose the ECC configuration according to following logic
|
|
*
|
|
* 1. If both ECC step size and ECC strength are already set (usually by DT)
|
|
* then check if it is supported by this controller.
|
|
* 2. If NAND_ECC_MAXIMIZE is set, then select maximum ECC strength.
|
|
* 3. Otherwise, try to match the ECC step size and ECC strength closest
|
|
* to the chip's requirement. If available OOB size can't fit the chip
|
|
* requirement then fallback to the maximum ECC step size and ECC strength.
|
|
*
|
|
* On success, the chosen ECC settings are set.
|
|
*/
|
|
int nand_ecc_choose_conf(struct nand_chip *chip,
|
|
const struct nand_ecc_caps *caps, int oobavail)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
|
|
if (WARN_ON(oobavail < 0 || oobavail > mtd->oobsize))
|
|
return -EINVAL;
|
|
|
|
if (chip->ecc.size && chip->ecc.strength)
|
|
return nand_check_ecc_caps(chip, caps, oobavail);
|
|
|
|
if (chip->ecc.options & NAND_ECC_MAXIMIZE)
|
|
return nand_maximize_ecc(chip, caps, oobavail);
|
|
|
|
if (!nand_match_ecc_req(chip, caps, oobavail))
|
|
return 0;
|
|
|
|
return nand_maximize_ecc(chip, caps, oobavail);
|
|
}
|
|
EXPORT_SYMBOL_GPL(nand_ecc_choose_conf);
|
|
|
|
/*
|
|
* Check if the chip configuration meet the datasheet requirements.
|
|
|
|
* If our configuration corrects A bits per B bytes and the minimum
|
|
* required correction level is X bits per Y bytes, then we must ensure
|
|
* both of the following are true:
|
|
*
|
|
* (1) A / B >= X / Y
|
|
* (2) A >= X
|
|
*
|
|
* Requirement (1) ensures we can correct for the required bitflip density.
|
|
* Requirement (2) ensures we can correct even when all bitflips are clumped
|
|
* in the same sector.
|
|
*/
|
|
static bool nand_ecc_strength_good(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int corr, ds_corr;
|
|
|
|
if (ecc->size == 0 || chip->base.eccreq.step_size == 0)
|
|
/* Not enough information */
|
|
return true;
|
|
|
|
/*
|
|
* We get the number of corrected bits per page to compare
|
|
* the correction density.
|
|
*/
|
|
corr = (mtd->writesize * ecc->strength) / ecc->size;
|
|
ds_corr = (mtd->writesize * chip->base.eccreq.strength) /
|
|
chip->base.eccreq.step_size;
|
|
|
|
return corr >= ds_corr && ecc->strength >= chip->base.eccreq.strength;
|
|
}
|
|
|
|
static int rawnand_erase(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
base);
|
|
unsigned int eb = nanddev_pos_to_row(nand, pos);
|
|
int ret;
|
|
|
|
eb >>= nand->rowconv.eraseblock_addr_shift;
|
|
|
|
nand_select_target(chip, pos->target);
|
|
ret = nand_erase_op(chip, eb);
|
|
nand_deselect_target(chip);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int rawnand_markbad(struct nand_device *nand,
|
|
const struct nand_pos *pos)
|
|
{
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
base);
|
|
|
|
return nand_markbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
|
|
}
|
|
|
|
static bool rawnand_isbad(struct nand_device *nand, const struct nand_pos *pos)
|
|
{
|
|
struct nand_chip *chip = container_of(nand, struct nand_chip,
|
|
base);
|
|
int ret;
|
|
|
|
nand_select_target(chip, pos->target);
|
|
ret = nand_isbad_bbm(chip, nanddev_pos_to_offs(nand, pos));
|
|
nand_deselect_target(chip);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static const struct nand_ops rawnand_ops = {
|
|
.erase = rawnand_erase,
|
|
.markbad = rawnand_markbad,
|
|
.isbad = rawnand_isbad,
|
|
};
|
|
|
|
/**
|
|
* nand_scan_tail - Scan for the NAND device
|
|
* @chip: NAND chip object
|
|
*
|
|
* This is the second phase of the normal nand_scan() function. It fills out
|
|
* all the uninitialized function pointers with the defaults and scans for a
|
|
* bad block table if appropriate.
|
|
*/
|
|
static int nand_scan_tail(struct nand_chip *chip)
|
|
{
|
|
struct mtd_info *mtd = nand_to_mtd(chip);
|
|
struct nand_ecc_ctrl *ecc = &chip->ecc;
|
|
int ret, i;
|
|
|
|
/* New bad blocks should be marked in OOB, flash-based BBT, or both */
|
|
if (WARN_ON((chip->bbt_options & NAND_BBT_NO_OOB_BBM) &&
|
|
!(chip->bbt_options & NAND_BBT_USE_FLASH))) {
|
|
return -EINVAL;
|
|
}
|
|
|
|
chip->data_buf = kmalloc(mtd->writesize + mtd->oobsize, GFP_KERNEL);
|
|
if (!chip->data_buf)
|
|
return -ENOMEM;
|
|
|
|
/*
|
|
* FIXME: some NAND manufacturer drivers expect the first die to be
|
|
* selected when manufacturer->init() is called. They should be fixed
|
|
* to explictly select the relevant die when interacting with the NAND
|
|
* chip.
|
|
*/
|
|
nand_select_target(chip, 0);
|
|
ret = nand_manufacturer_init(chip);
|
|
nand_deselect_target(chip);
|
|
if (ret)
|
|
goto err_free_buf;
|
|
|
|
/* Set the internal oob buffer location, just after the page data */
|
|
chip->oob_poi = chip->data_buf + mtd->writesize;
|
|
|
|
/*
|
|
* If no default placement scheme is given, select an appropriate one.
|
|
*/
|
|
if (!mtd->ooblayout &&
|
|
!(ecc->engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
|
|
ecc->algo == NAND_ECC_ALGO_BCH)) {
|
|
switch (mtd->oobsize) {
|
|
case 8:
|
|
case 16:
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_sp_ops);
|
|
break;
|
|
case 64:
|
|
case 128:
|
|
mtd_set_ooblayout(mtd, &nand_ooblayout_lp_hamming_ops);
|
|
break;
|
|
default:
|
|
/*
|
|
* Expose the whole OOB area to users if ECC_NONE
|
|
* is passed. We could do that for all kind of
|
|
* ->oobsize, but we must keep the old large/small
|
|
* page with ECC layout when ->oobsize <= 128 for
|
|
* compatibility reasons.
|
|
*/
|
|
if (ecc->engine_type == NAND_ECC_ENGINE_TYPE_NONE) {
|
|
mtd_set_ooblayout(mtd,
|
|
&nand_ooblayout_lp_ops);
|
|
break;
|
|
}
|
|
|
|
WARN(1, "No oob scheme defined for oobsize %d\n",
|
|
mtd->oobsize);
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Check ECC mode, default to software if 3byte/512byte hardware ECC is
|
|
* selected and we have 256 byte pagesize fallback to software ECC
|
|
*/
|
|
|
|
switch (ecc->engine_type) {
|
|
case NAND_ECC_ENGINE_TYPE_ON_HOST:
|
|
|
|
switch (ecc->placement) {
|
|
case NAND_ECC_PLACEMENT_UNKNOWN:
|
|
case NAND_ECC_PLACEMENT_OOB:
|
|
/* Use standard hwecc read page function? */
|
|
if (!ecc->read_page)
|
|
ecc->read_page = nand_read_page_hwecc;
|
|
if (!ecc->write_page)
|
|
ecc->write_page = nand_write_page_hwecc;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_std;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_std;
|
|
if (!ecc->read_subpage)
|
|
ecc->read_subpage = nand_read_subpage;
|
|
if (!ecc->write_subpage && ecc->hwctl && ecc->calculate)
|
|
ecc->write_subpage = nand_write_subpage_hwecc;
|
|
fallthrough;
|
|
|
|
case NAND_ECC_PLACEMENT_INTERLEAVED:
|
|
if ((!ecc->calculate || !ecc->correct || !ecc->hwctl) &&
|
|
(!ecc->read_page ||
|
|
ecc->read_page == nand_read_page_hwecc ||
|
|
!ecc->write_page ||
|
|
ecc->write_page == nand_write_page_hwecc)) {
|
|
WARN(1, "No ECC functions supplied; hardware ECC not possible\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
/* Use standard syndrome read/write page function? */
|
|
if (!ecc->read_page)
|
|
ecc->read_page = nand_read_page_syndrome;
|
|
if (!ecc->write_page)
|
|
ecc->write_page = nand_write_page_syndrome;
|
|
if (!ecc->read_page_raw)
|
|
ecc->read_page_raw = nand_read_page_raw_syndrome;
|
|
if (!ecc->write_page_raw)
|
|
ecc->write_page_raw = nand_write_page_raw_syndrome;
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_syndrome;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_syndrome;
|
|
break;
|
|
|
|
default:
|
|
pr_warn("Invalid NAND_ECC_PLACEMENT %d\n",
|
|
ecc->placement);
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
if (mtd->writesize >= ecc->size) {
|
|
if (!ecc->strength) {
|
|
WARN(1, "Driver must set ecc.strength when using hardware ECC\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
break;
|
|
}
|
|
pr_warn("%d byte HW ECC not possible on %d byte page size, fallback to SW ECC\n",
|
|
ecc->size, mtd->writesize);
|
|
ecc->engine_type = NAND_ECC_ENGINE_TYPE_SOFT;
|
|
ecc->algo = NAND_ECC_ALGO_HAMMING;
|
|
fallthrough;
|
|
|
|
case NAND_ECC_ENGINE_TYPE_SOFT:
|
|
ret = nand_set_ecc_soft_ops(chip);
|
|
if (ret) {
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
break;
|
|
|
|
case NAND_ECC_ENGINE_TYPE_ON_DIE:
|
|
if (!ecc->read_page || !ecc->write_page) {
|
|
WARN(1, "No ECC functions supplied; on-die ECC not possible\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
if (!ecc->read_oob)
|
|
ecc->read_oob = nand_read_oob_std;
|
|
if (!ecc->write_oob)
|
|
ecc->write_oob = nand_write_oob_std;
|
|
break;
|
|
|
|
case NAND_ECC_ENGINE_TYPE_NONE:
|
|
pr_warn("NAND_ECC_ENGINE_TYPE_NONE selected by board driver. This is not recommended!\n");
|
|
ecc->read_page = nand_read_page_raw;
|
|
ecc->write_page = nand_write_page_raw;
|
|
ecc->read_oob = nand_read_oob_std;
|
|
ecc->read_page_raw = nand_read_page_raw;
|
|
ecc->write_page_raw = nand_write_page_raw;
|
|
ecc->write_oob = nand_write_oob_std;
|
|
ecc->size = mtd->writesize;
|
|
ecc->bytes = 0;
|
|
ecc->strength = 0;
|
|
break;
|
|
|
|
default:
|
|
WARN(1, "Invalid NAND_ECC_MODE %d\n", ecc->engine_type);
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
if (ecc->correct || ecc->calculate) {
|
|
ecc->calc_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
ecc->code_buf = kmalloc(mtd->oobsize, GFP_KERNEL);
|
|
if (!ecc->calc_buf || !ecc->code_buf) {
|
|
ret = -ENOMEM;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
}
|
|
|
|
/* For many systems, the standard OOB write also works for raw */
|
|
if (!ecc->read_oob_raw)
|
|
ecc->read_oob_raw = ecc->read_oob;
|
|
if (!ecc->write_oob_raw)
|
|
ecc->write_oob_raw = ecc->write_oob;
|
|
|
|
/* propagate ecc info to mtd_info */
|
|
mtd->ecc_strength = ecc->strength;
|
|
mtd->ecc_step_size = ecc->size;
|
|
|
|
/*
|
|
* Set the number of read / write steps for one page depending on ECC
|
|
* mode.
|
|
*/
|
|
ecc->steps = mtd->writesize / ecc->size;
|
|
if (ecc->steps * ecc->size != mtd->writesize) {
|
|
WARN(1, "Invalid ECC parameters\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
ecc->total = ecc->steps * ecc->bytes;
|
|
if (ecc->total > mtd->oobsize) {
|
|
WARN(1, "Total number of ECC bytes exceeded oobsize\n");
|
|
ret = -EINVAL;
|
|
goto err_nand_manuf_cleanup;
|
|
}
|
|
|
|
/*
|
|
* The number of bytes available for a client to place data into
|
|
* the out of band area.
|
|
*/
|
|
ret = mtd_ooblayout_count_freebytes(mtd);
|
|
if (ret < 0)
|
|
ret = 0;
|
|
|
|
mtd->oobavail = ret;
|
|
|
|
/* ECC sanity check: warn if it's too weak */
|
|
if (!nand_ecc_strength_good(chip))
|
|
pr_warn("WARNING: %s: the ECC used on your system (%db/%dB) is too weak compared to the one required by the NAND chip (%db/%dB)\n",
|
|
mtd->name, chip->ecc.strength, chip->ecc.size,
|
|
chip->base.eccreq.strength,
|
|
chip->base.eccreq.step_size);
|
|
|
|
/* Allow subpage writes up to ecc.steps. Not possible for MLC flash */
|
|
if (!(chip->options & NAND_NO_SUBPAGE_WRITE) && nand_is_slc(chip)) {
|
|
switch (ecc->steps) {
|
|
case 2:
|
|
mtd->subpage_sft = 1;
|
|
break;
|
|
case 4:
|
|
case 8:
|
|
case 16:
|
|
mtd->subpage_sft = 2;
|
|
break;
|
|
}
|
|
}
|
|
chip->subpagesize = mtd->writesize >> mtd->subpage_sft;
|
|
|
|
/* Invalidate the pagebuffer reference */
|
|
chip->pagecache.page = -1;
|
|
|
|
/* Large page NAND with SOFT_ECC should support subpage reads */
|
|
switch (ecc->engine_type) {
|
|
case NAND_ECC_ENGINE_TYPE_SOFT:
|
|
if (chip->page_shift > 9)
|
|
chip->options |= NAND_SUBPAGE_READ;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
ret = nanddev_init(&chip->base, &rawnand_ops, mtd->owner);
|
|
if (ret)
|
|
goto err_nand_manuf_cleanup;
|
|
|
|
/* Adjust the MTD_CAP_ flags when NAND_ROM is set. */
|
|
if (chip->options & NAND_ROM)
|
|
mtd->flags = MTD_CAP_ROM;
|
|
|
|
/* Fill in remaining MTD driver data */
|
|
mtd->_erase = nand_erase;
|
|
mtd->_point = NULL;
|
|
mtd->_unpoint = NULL;
|
|
mtd->_panic_write = panic_nand_write;
|
|
mtd->_read_oob = nand_read_oob;
|
|
mtd->_write_oob = nand_write_oob;
|
|
mtd->_sync = nand_sync;
|
|
mtd->_lock = nand_lock;
|
|
mtd->_unlock = nand_unlock;
|
|
mtd->_suspend = nand_suspend;
|
|
mtd->_resume = nand_resume;
|
|
mtd->_reboot = nand_shutdown;
|
|
mtd->_block_isreserved = nand_block_isreserved;
|
|
mtd->_block_isbad = nand_block_isbad;
|
|
mtd->_block_markbad = nand_block_markbad;
|
|
mtd->_max_bad_blocks = nanddev_mtd_max_bad_blocks;
|
|
|
|
/*
|
|
* Initialize bitflip_threshold to its default prior scan_bbt() call.
|
|
* scan_bbt() might invoke mtd_read(), thus bitflip_threshold must be
|
|
* properly set.
|
|
*/
|
|
if (!mtd->bitflip_threshold)
|
|
mtd->bitflip_threshold = DIV_ROUND_UP(mtd->ecc_strength * 3, 4);
|
|
|
|
/* Find the fastest data interface for this chip */
|
|
ret = nand_choose_interface_config(chip);
|
|
if (ret)
|
|
goto err_nanddev_cleanup;
|
|
|
|
/* Enter fastest possible mode on all dies. */
|
|
for (i = 0; i < nanddev_ntargets(&chip->base); i++) {
|
|
ret = nand_setup_interface(chip, i);
|
|
if (ret)
|
|
goto err_free_interface_config;
|
|
}
|
|
|
|
/* Check, if we should skip the bad block table scan */
|
|
if (chip->options & NAND_SKIP_BBTSCAN)
|
|
return 0;
|
|
|
|
/* Build bad block table */
|
|
ret = nand_create_bbt(chip);
|
|
if (ret)
|
|
goto err_free_interface_config;
|
|
|
|
return 0;
|
|
|
|
err_free_interface_config:
|
|
kfree(chip->best_interface_config);
|
|
|
|
err_nanddev_cleanup:
|
|
nanddev_cleanup(&chip->base);
|
|
|
|
err_nand_manuf_cleanup:
|
|
nand_manufacturer_cleanup(chip);
|
|
|
|
err_free_buf:
|
|
kfree(chip->data_buf);
|
|
kfree(ecc->code_buf);
|
|
kfree(ecc->calc_buf);
|
|
|
|
return ret;
|
|
}
|
|
|
|
static int nand_attach(struct nand_chip *chip)
|
|
{
|
|
if (chip->controller->ops && chip->controller->ops->attach_chip)
|
|
return chip->controller->ops->attach_chip(chip);
|
|
|
|
return 0;
|
|
}
|
|
|
|
static void nand_detach(struct nand_chip *chip)
|
|
{
|
|
if (chip->controller->ops && chip->controller->ops->detach_chip)
|
|
chip->controller->ops->detach_chip(chip);
|
|
}
|
|
|
|
/**
|
|
* nand_scan_with_ids - [NAND Interface] Scan for the NAND device
|
|
* @chip: NAND chip object
|
|
* @maxchips: number of chips to scan for.
|
|
* @ids: optional flash IDs table
|
|
*
|
|
* This fills out all the uninitialized function pointers with the defaults.
|
|
* The flash ID is read and the mtd/chip structures are filled with the
|
|
* appropriate values.
|
|
*/
|
|
int nand_scan_with_ids(struct nand_chip *chip, unsigned int maxchips,
|
|
struct nand_flash_dev *ids)
|
|
{
|
|
int ret;
|
|
|
|
if (!maxchips)
|
|
return -EINVAL;
|
|
|
|
ret = nand_scan_ident(chip, maxchips, ids);
|
|
if (ret)
|
|
return ret;
|
|
|
|
ret = nand_attach(chip);
|
|
if (ret)
|
|
goto cleanup_ident;
|
|
|
|
ret = nand_scan_tail(chip);
|
|
if (ret)
|
|
goto detach_chip;
|
|
|
|
return 0;
|
|
|
|
detach_chip:
|
|
nand_detach(chip);
|
|
cleanup_ident:
|
|
nand_scan_ident_cleanup(chip);
|
|
|
|
return ret;
|
|
}
|
|
EXPORT_SYMBOL(nand_scan_with_ids);
|
|
|
|
/**
|
|
* nand_cleanup - [NAND Interface] Free resources held by the NAND device
|
|
* @chip: NAND chip object
|
|
*/
|
|
void nand_cleanup(struct nand_chip *chip)
|
|
{
|
|
if (chip->ecc.engine_type == NAND_ECC_ENGINE_TYPE_SOFT &&
|
|
chip->ecc.algo == NAND_ECC_ALGO_BCH)
|
|
nand_bch_free((struct nand_bch_control *)chip->ecc.priv);
|
|
|
|
nanddev_cleanup(&chip->base);
|
|
|
|
/* Free bad block table memory */
|
|
kfree(chip->bbt);
|
|
kfree(chip->data_buf);
|
|
kfree(chip->ecc.code_buf);
|
|
kfree(chip->ecc.calc_buf);
|
|
|
|
/* Free bad block descriptor memory */
|
|
if (chip->badblock_pattern && chip->badblock_pattern->options
|
|
& NAND_BBT_DYNAMICSTRUCT)
|
|
kfree(chip->badblock_pattern);
|
|
|
|
/* Free the data interface */
|
|
kfree(chip->best_interface_config);
|
|
|
|
/* Free manufacturer priv data. */
|
|
nand_manufacturer_cleanup(chip);
|
|
|
|
/* Free controller specific allocations after chip identification */
|
|
nand_detach(chip);
|
|
|
|
/* Free identification phase allocations */
|
|
nand_scan_ident_cleanup(chip);
|
|
}
|
|
|
|
EXPORT_SYMBOL_GPL(nand_cleanup);
|
|
|
|
MODULE_LICENSE("GPL");
|
|
MODULE_AUTHOR("Steven J. Hill <sjhill@realitydiluted.com>");
|
|
MODULE_AUTHOR("Thomas Gleixner <tglx@linutronix.de>");
|
|
MODULE_DESCRIPTION("Generic NAND flash driver code");
|