OpenCloudOS-Kernel/drivers/crypto/mxs-dcp.c

1103 lines
26 KiB
C

/*
* Freescale i.MX23/i.MX28 Data Co-Processor driver
*
* Copyright (C) 2013 Marek Vasut <marex@denx.de>
*
* The code contained herein is licensed under the GNU General Public
* License. You may obtain a copy of the GNU General Public License
* Version 2 or later at the following locations:
*
* http://www.opensource.org/licenses/gpl-license.html
* http://www.gnu.org/copyleft/gpl.html
*/
#include <linux/crypto.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/io.h>
#include <linux/kernel.h>
#include <linux/kthread.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/stmp_device.h>
#include <crypto/aes.h>
#include <crypto/sha.h>
#include <crypto/internal/hash.h>
#define DCP_MAX_CHANS 4
#define DCP_BUF_SZ PAGE_SIZE
#define DCP_ALIGNMENT 64
/* DCP DMA descriptor. */
struct dcp_dma_desc {
uint32_t next_cmd_addr;
uint32_t control0;
uint32_t control1;
uint32_t source;
uint32_t destination;
uint32_t size;
uint32_t payload;
uint32_t status;
};
/* Coherent aligned block for bounce buffering. */
struct dcp_coherent_block {
uint8_t aes_in_buf[DCP_BUF_SZ];
uint8_t aes_out_buf[DCP_BUF_SZ];
uint8_t sha_in_buf[DCP_BUF_SZ];
uint8_t aes_key[2 * AES_KEYSIZE_128];
struct dcp_dma_desc desc[DCP_MAX_CHANS];
};
struct dcp {
struct device *dev;
void __iomem *base;
uint32_t caps;
struct dcp_coherent_block *coh;
struct completion completion[DCP_MAX_CHANS];
struct mutex mutex[DCP_MAX_CHANS];
struct task_struct *thread[DCP_MAX_CHANS];
struct crypto_queue queue[DCP_MAX_CHANS];
};
enum dcp_chan {
DCP_CHAN_HASH_SHA = 0,
DCP_CHAN_CRYPTO = 2,
};
struct dcp_async_ctx {
/* Common context */
enum dcp_chan chan;
uint32_t fill;
/* SHA Hash-specific context */
struct mutex mutex;
uint32_t alg;
unsigned int hot:1;
/* Crypto-specific context */
struct crypto_ablkcipher *fallback;
unsigned int key_len;
uint8_t key[AES_KEYSIZE_128];
};
struct dcp_aes_req_ctx {
unsigned int enc:1;
unsigned int ecb:1;
};
struct dcp_sha_req_ctx {
unsigned int init:1;
unsigned int fini:1;
};
/*
* There can even be only one instance of the MXS DCP due to the
* design of Linux Crypto API.
*/
static struct dcp *global_sdcp;
/* DCP register layout. */
#define MXS_DCP_CTRL 0x00
#define MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES (1 << 23)
#define MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING (1 << 22)
#define MXS_DCP_STAT 0x10
#define MXS_DCP_STAT_CLR 0x18
#define MXS_DCP_STAT_IRQ_MASK 0xf
#define MXS_DCP_CHANNELCTRL 0x20
#define MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK 0xff
#define MXS_DCP_CAPABILITY1 0x40
#define MXS_DCP_CAPABILITY1_SHA256 (4 << 16)
#define MXS_DCP_CAPABILITY1_SHA1 (1 << 16)
#define MXS_DCP_CAPABILITY1_AES128 (1 << 0)
#define MXS_DCP_CONTEXT 0x50
#define MXS_DCP_CH_N_CMDPTR(n) (0x100 + ((n) * 0x40))
#define MXS_DCP_CH_N_SEMA(n) (0x110 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT(n) (0x120 + ((n) * 0x40))
#define MXS_DCP_CH_N_STAT_CLR(n) (0x128 + ((n) * 0x40))
/* DMA descriptor bits. */
#define MXS_DCP_CONTROL0_HASH_TERM (1 << 13)
#define MXS_DCP_CONTROL0_HASH_INIT (1 << 12)
#define MXS_DCP_CONTROL0_PAYLOAD_KEY (1 << 11)
#define MXS_DCP_CONTROL0_CIPHER_ENCRYPT (1 << 8)
#define MXS_DCP_CONTROL0_CIPHER_INIT (1 << 9)
#define MXS_DCP_CONTROL0_ENABLE_HASH (1 << 6)
#define MXS_DCP_CONTROL0_ENABLE_CIPHER (1 << 5)
#define MXS_DCP_CONTROL0_DECR_SEMAPHORE (1 << 1)
#define MXS_DCP_CONTROL0_INTERRUPT (1 << 0)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA256 (2 << 16)
#define MXS_DCP_CONTROL1_HASH_SELECT_SHA1 (0 << 16)
#define MXS_DCP_CONTROL1_CIPHER_MODE_CBC (1 << 4)
#define MXS_DCP_CONTROL1_CIPHER_MODE_ECB (0 << 4)
#define MXS_DCP_CONTROL1_CIPHER_SELECT_AES128 (0 << 0)
static int mxs_dcp_start_dma(struct dcp_async_ctx *actx)
{
struct dcp *sdcp = global_sdcp;
const int chan = actx->chan;
uint32_t stat;
unsigned long ret;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t desc_phys = dma_map_single(sdcp->dev, desc, sizeof(*desc),
DMA_TO_DEVICE);
reinit_completion(&sdcp->completion[chan]);
/* Clear status register. */
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(chan));
/* Load the DMA descriptor. */
writel(desc_phys, sdcp->base + MXS_DCP_CH_N_CMDPTR(chan));
/* Increment the semaphore to start the DMA transfer. */
writel(1, sdcp->base + MXS_DCP_CH_N_SEMA(chan));
ret = wait_for_completion_timeout(&sdcp->completion[chan],
msecs_to_jiffies(1000));
if (!ret) {
dev_err(sdcp->dev, "Channel %i timeout (DCP_STAT=0x%08x)\n",
chan, readl(sdcp->base + MXS_DCP_STAT));
return -ETIMEDOUT;
}
stat = readl(sdcp->base + MXS_DCP_CH_N_STAT(chan));
if (stat & 0xff) {
dev_err(sdcp->dev, "Channel %i error (CH_STAT=0x%08x)\n",
chan, stat);
return -EINVAL;
}
dma_unmap_single(sdcp->dev, desc_phys, sizeof(*desc), DMA_TO_DEVICE);
return 0;
}
/*
* Encryption (AES128)
*/
static int mxs_dcp_run_aes(struct dcp_async_ctx *actx,
struct ablkcipher_request *req, int init)
{
struct dcp *sdcp = global_sdcp;
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
int ret;
dma_addr_t key_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_key,
2 * AES_KEYSIZE_128,
DMA_TO_DEVICE);
dma_addr_t src_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
dma_addr_t dst_phys = dma_map_single(sdcp->dev, sdcp->coh->aes_out_buf,
DCP_BUF_SZ, DMA_FROM_DEVICE);
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_CIPHER;
/* Payload contains the key. */
desc->control0 |= MXS_DCP_CONTROL0_PAYLOAD_KEY;
if (rctx->enc)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_ENCRYPT;
if (init)
desc->control0 |= MXS_DCP_CONTROL0_CIPHER_INIT;
desc->control1 = MXS_DCP_CONTROL1_CIPHER_SELECT_AES128;
if (rctx->ecb)
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_ECB;
else
desc->control1 |= MXS_DCP_CONTROL1_CIPHER_MODE_CBC;
desc->next_cmd_addr = 0;
desc->source = src_phys;
desc->destination = dst_phys;
desc->size = actx->fill;
desc->payload = key_phys;
desc->status = 0;
ret = mxs_dcp_start_dma(actx);
dma_unmap_single(sdcp->dev, key_phys, 2 * AES_KEYSIZE_128,
DMA_TO_DEVICE);
dma_unmap_single(sdcp->dev, src_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
dma_unmap_single(sdcp->dev, dst_phys, DCP_BUF_SZ, DMA_FROM_DEVICE);
return ret;
}
static int mxs_dcp_aes_block_crypt(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct ablkcipher_request *req = ablkcipher_request_cast(arq);
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
struct scatterlist *dst = req->dst;
struct scatterlist *src = req->src;
const int nents = sg_nents(req->src);
const int out_off = DCP_BUF_SZ;
uint8_t *in_buf = sdcp->coh->aes_in_buf;
uint8_t *out_buf = sdcp->coh->aes_out_buf;
uint8_t *out_tmp, *src_buf, *dst_buf = NULL;
uint32_t dst_off = 0;
uint8_t *key = sdcp->coh->aes_key;
int ret = 0;
int split = 0;
unsigned int i, len, clen, rem = 0;
int init = 0;
actx->fill = 0;
/* Copy the key from the temporary location. */
memcpy(key, actx->key, actx->key_len);
if (!rctx->ecb) {
/* Copy the CBC IV just past the key. */
memcpy(key + AES_KEYSIZE_128, req->info, AES_KEYSIZE_128);
/* CBC needs the INIT set. */
init = 1;
} else {
memset(key + AES_KEYSIZE_128, 0, AES_KEYSIZE_128);
}
for_each_sg(req->src, src, nents, i) {
src_buf = sg_virt(src);
len = sg_dma_len(src);
do {
if (actx->fill + len > out_off)
clen = out_off - actx->fill;
else
clen = len;
memcpy(in_buf + actx->fill, src_buf, clen);
len -= clen;
src_buf += clen;
actx->fill += clen;
/*
* If we filled the buffer or this is the last SG,
* submit the buffer.
*/
if (actx->fill == out_off || sg_is_last(src)) {
ret = mxs_dcp_run_aes(actx, req, init);
if (ret)
return ret;
init = 0;
out_tmp = out_buf;
while (dst && actx->fill) {
if (!split) {
dst_buf = sg_virt(dst);
dst_off = 0;
}
rem = min(sg_dma_len(dst) - dst_off,
actx->fill);
memcpy(dst_buf + dst_off, out_tmp, rem);
out_tmp += rem;
dst_off += rem;
actx->fill -= rem;
if (dst_off == sg_dma_len(dst)) {
dst = sg_next(dst);
split = 0;
} else {
split = 1;
}
}
}
} while (len);
}
return ret;
}
static int dcp_chan_thread_aes(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_CRYPTO;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
int ret;
do {
__set_current_state(TASK_INTERRUPTIBLE);
mutex_lock(&sdcp->mutex[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
mutex_unlock(&sdcp->mutex[chan]);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
if (arq) {
ret = mxs_dcp_aes_block_crypt(arq);
arq->complete(arq, ret);
continue;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int mxs_dcp_block_fallback(struct ablkcipher_request *req, int enc)
{
struct crypto_tfm *tfm =
crypto_ablkcipher_tfm(crypto_ablkcipher_reqtfm(req));
struct dcp_async_ctx *ctx = crypto_ablkcipher_ctx(
crypto_ablkcipher_reqtfm(req));
int ret;
ablkcipher_request_set_tfm(req, ctx->fallback);
if (enc)
ret = crypto_ablkcipher_encrypt(req);
else
ret = crypto_ablkcipher_decrypt(req);
ablkcipher_request_set_tfm(req, __crypto_ablkcipher_cast(tfm));
return ret;
}
static int mxs_dcp_aes_enqueue(struct ablkcipher_request *req, int enc, int ecb)
{
struct dcp *sdcp = global_sdcp;
struct crypto_async_request *arq = &req->base;
struct dcp_async_ctx *actx = crypto_tfm_ctx(arq->tfm);
struct dcp_aes_req_ctx *rctx = ablkcipher_request_ctx(req);
int ret;
if (unlikely(actx->key_len != AES_KEYSIZE_128))
return mxs_dcp_block_fallback(req, enc);
rctx->enc = enc;
rctx->ecb = ecb;
actx->chan = DCP_CHAN_CRYPTO;
mutex_lock(&sdcp->mutex[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
mutex_unlock(&sdcp->mutex[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
return -EINPROGRESS;
}
static int mxs_dcp_aes_ecb_decrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 1);
}
static int mxs_dcp_aes_ecb_encrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 1);
}
static int mxs_dcp_aes_cbc_decrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 0, 0);
}
static int mxs_dcp_aes_cbc_encrypt(struct ablkcipher_request *req)
{
return mxs_dcp_aes_enqueue(req, 1, 0);
}
static int mxs_dcp_aes_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
unsigned int len)
{
struct dcp_async_ctx *actx = crypto_ablkcipher_ctx(tfm);
unsigned int ret;
/*
* AES 128 is supposed by the hardware, store key into temporary
* buffer and exit. We must use the temporary buffer here, since
* there can still be an operation in progress.
*/
actx->key_len = len;
if (len == AES_KEYSIZE_128) {
memcpy(actx->key, key, len);
return 0;
}
/* Check if the key size is supported by kernel at all. */
if (len != AES_KEYSIZE_192 && len != AES_KEYSIZE_256) {
tfm->base.crt_flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
return -EINVAL;
}
/*
* If the requested AES key size is not supported by the hardware,
* but is supported by in-kernel software implementation, we use
* software fallback.
*/
actx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
actx->fallback->base.crt_flags |=
tfm->base.crt_flags & CRYPTO_TFM_REQ_MASK;
ret = crypto_ablkcipher_setkey(actx->fallback, key, len);
if (!ret)
return 0;
tfm->base.crt_flags &= ~CRYPTO_TFM_RES_MASK;
tfm->base.crt_flags |=
actx->fallback->base.crt_flags & CRYPTO_TFM_RES_MASK;
return ret;
}
static int mxs_dcp_aes_fallback_init(struct crypto_tfm *tfm)
{
const char *name = crypto_tfm_alg_name(tfm);
const uint32_t flags = CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK;
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
struct crypto_ablkcipher *blk;
blk = crypto_alloc_ablkcipher(name, 0, flags);
if (IS_ERR(blk))
return PTR_ERR(blk);
actx->fallback = blk;
tfm->crt_ablkcipher.reqsize = sizeof(struct dcp_aes_req_ctx);
return 0;
}
static void mxs_dcp_aes_fallback_exit(struct crypto_tfm *tfm)
{
struct dcp_async_ctx *actx = crypto_tfm_ctx(tfm);
crypto_free_ablkcipher(actx->fallback);
actx->fallback = NULL;
}
/*
* Hashing (SHA1/SHA256)
*/
static int mxs_dcp_run_sha(struct ahash_request *req)
{
struct dcp *sdcp = global_sdcp;
int ret;
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
struct dcp_dma_desc *desc = &sdcp->coh->desc[actx->chan];
dma_addr_t digest_phys = 0;
dma_addr_t buf_phys = dma_map_single(sdcp->dev, sdcp->coh->sha_in_buf,
DCP_BUF_SZ, DMA_TO_DEVICE);
/* Fill in the DMA descriptor. */
desc->control0 = MXS_DCP_CONTROL0_DECR_SEMAPHORE |
MXS_DCP_CONTROL0_INTERRUPT |
MXS_DCP_CONTROL0_ENABLE_HASH;
if (rctx->init)
desc->control0 |= MXS_DCP_CONTROL0_HASH_INIT;
desc->control1 = actx->alg;
desc->next_cmd_addr = 0;
desc->source = buf_phys;
desc->destination = 0;
desc->size = actx->fill;
desc->payload = 0;
desc->status = 0;
/* Set HASH_TERM bit for last transfer block. */
if (rctx->fini) {
digest_phys = dma_map_single(sdcp->dev, req->result,
halg->digestsize, DMA_FROM_DEVICE);
desc->control0 |= MXS_DCP_CONTROL0_HASH_TERM;
desc->payload = digest_phys;
}
ret = mxs_dcp_start_dma(actx);
if (rctx->fini)
dma_unmap_single(sdcp->dev, digest_phys, halg->digestsize,
DMA_FROM_DEVICE);
dma_unmap_single(sdcp->dev, buf_phys, DCP_BUF_SZ, DMA_TO_DEVICE);
return ret;
}
static int dcp_sha_req_to_buf(struct crypto_async_request *arq)
{
struct dcp *sdcp = global_sdcp;
struct ahash_request *req = ahash_request_cast(arq);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
const int nents = sg_nents(req->src);
uint8_t *in_buf = sdcp->coh->sha_in_buf;
uint8_t *src_buf;
struct scatterlist *src;
unsigned int i, len, clen;
int ret;
int fin = rctx->fini;
if (fin)
rctx->fini = 0;
for_each_sg(req->src, src, nents, i) {
src_buf = sg_virt(src);
len = sg_dma_len(src);
do {
if (actx->fill + len > DCP_BUF_SZ)
clen = DCP_BUF_SZ - actx->fill;
else
clen = len;
memcpy(in_buf + actx->fill, src_buf, clen);
len -= clen;
src_buf += clen;
actx->fill += clen;
/*
* If we filled the buffer and still have some
* more data, submit the buffer.
*/
if (len && actx->fill == DCP_BUF_SZ) {
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
rctx->init = 0;
}
} while (len);
}
if (fin) {
rctx->fini = 1;
/* Submit whatever is left. */
if (!req->result)
return -EINVAL;
ret = mxs_dcp_run_sha(req);
if (ret)
return ret;
actx->fill = 0;
/* For some reason, the result is flipped. */
for (i = 0; i < halg->digestsize / 2; i++) {
swap(req->result[i],
req->result[halg->digestsize - i - 1]);
}
}
return 0;
}
static int dcp_chan_thread_sha(void *data)
{
struct dcp *sdcp = global_sdcp;
const int chan = DCP_CHAN_HASH_SHA;
struct crypto_async_request *backlog;
struct crypto_async_request *arq;
struct dcp_sha_req_ctx *rctx;
struct ahash_request *req;
int ret, fini;
do {
__set_current_state(TASK_INTERRUPTIBLE);
mutex_lock(&sdcp->mutex[chan]);
backlog = crypto_get_backlog(&sdcp->queue[chan]);
arq = crypto_dequeue_request(&sdcp->queue[chan]);
mutex_unlock(&sdcp->mutex[chan]);
if (backlog)
backlog->complete(backlog, -EINPROGRESS);
if (arq) {
req = ahash_request_cast(arq);
rctx = ahash_request_ctx(req);
ret = dcp_sha_req_to_buf(arq);
fini = rctx->fini;
arq->complete(arq, ret);
if (!fini)
continue;
}
schedule();
} while (!kthread_should_stop());
return 0;
}
static int dcp_sha_init(struct ahash_request *req)
{
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
struct hash_alg_common *halg = crypto_hash_alg_common(tfm);
/*
* Start hashing session. The code below only inits the
* hashing session context, nothing more.
*/
memset(actx, 0, sizeof(*actx));
if (strcmp(halg->base.cra_name, "sha1") == 0)
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA1;
else
actx->alg = MXS_DCP_CONTROL1_HASH_SELECT_SHA256;
actx->fill = 0;
actx->hot = 0;
actx->chan = DCP_CHAN_HASH_SHA;
mutex_init(&actx->mutex);
return 0;
}
static int dcp_sha_update_fx(struct ahash_request *req, int fini)
{
struct dcp *sdcp = global_sdcp;
struct dcp_sha_req_ctx *rctx = ahash_request_ctx(req);
struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
struct dcp_async_ctx *actx = crypto_ahash_ctx(tfm);
int ret;
/*
* Ignore requests that have no data in them and are not
* the trailing requests in the stream of requests.
*/
if (!req->nbytes && !fini)
return 0;
mutex_lock(&actx->mutex);
rctx->fini = fini;
if (!actx->hot) {
actx->hot = 1;
rctx->init = 1;
}
mutex_lock(&sdcp->mutex[actx->chan]);
ret = crypto_enqueue_request(&sdcp->queue[actx->chan], &req->base);
mutex_unlock(&sdcp->mutex[actx->chan]);
wake_up_process(sdcp->thread[actx->chan]);
mutex_unlock(&actx->mutex);
return -EINPROGRESS;
}
static int dcp_sha_update(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 0);
}
static int dcp_sha_final(struct ahash_request *req)
{
ahash_request_set_crypt(req, NULL, req->result, 0);
req->nbytes = 0;
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_finup(struct ahash_request *req)
{
return dcp_sha_update_fx(req, 1);
}
static int dcp_sha_digest(struct ahash_request *req)
{
int ret;
ret = dcp_sha_init(req);
if (ret)
return ret;
return dcp_sha_finup(req);
}
static int dcp_sha_cra_init(struct crypto_tfm *tfm)
{
crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
sizeof(struct dcp_sha_req_ctx));
return 0;
}
static void dcp_sha_cra_exit(struct crypto_tfm *tfm)
{
}
/* AES 128 ECB and AES 128 CBC */
static struct crypto_alg dcp_aes_algs[] = {
{
.cra_name = "ecb(aes)",
.cra_driver_name = "ecb-aes-dcp",
.cra_priority = 400,
.cra_alignmask = 15,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_init = mxs_dcp_aes_fallback_init,
.cra_exit = mxs_dcp_aes_fallback_exit,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_ecb_encrypt,
.decrypt = mxs_dcp_aes_ecb_decrypt
},
},
}, {
.cra_name = "cbc(aes)",
.cra_driver_name = "cbc-aes-dcp",
.cra_priority = 400,
.cra_alignmask = 15,
.cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
CRYPTO_ALG_ASYNC |
CRYPTO_ALG_NEED_FALLBACK,
.cra_init = mxs_dcp_aes_fallback_init,
.cra_exit = mxs_dcp_aes_fallback_exit,
.cra_blocksize = AES_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_type = &crypto_ablkcipher_type,
.cra_module = THIS_MODULE,
.cra_u = {
.ablkcipher = {
.min_keysize = AES_MIN_KEY_SIZE,
.max_keysize = AES_MAX_KEY_SIZE,
.setkey = mxs_dcp_aes_setkey,
.encrypt = mxs_dcp_aes_cbc_encrypt,
.decrypt = mxs_dcp_aes_cbc_decrypt,
.ivsize = AES_BLOCK_SIZE,
},
},
},
};
/* SHA1 */
static struct ahash_alg dcp_sha1_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.halg = {
.digestsize = SHA1_DIGEST_SIZE,
.base = {
.cra_name = "sha1",
.cra_driver_name = "sha1-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA1_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
/* SHA256 */
static struct ahash_alg dcp_sha256_alg = {
.init = dcp_sha_init,
.update = dcp_sha_update,
.final = dcp_sha_final,
.finup = dcp_sha_finup,
.digest = dcp_sha_digest,
.halg = {
.digestsize = SHA256_DIGEST_SIZE,
.base = {
.cra_name = "sha256",
.cra_driver_name = "sha256-dcp",
.cra_priority = 400,
.cra_alignmask = 63,
.cra_flags = CRYPTO_ALG_ASYNC,
.cra_blocksize = SHA256_BLOCK_SIZE,
.cra_ctxsize = sizeof(struct dcp_async_ctx),
.cra_module = THIS_MODULE,
.cra_init = dcp_sha_cra_init,
.cra_exit = dcp_sha_cra_exit,
},
},
};
static irqreturn_t mxs_dcp_irq(int irq, void *context)
{
struct dcp *sdcp = context;
uint32_t stat;
int i;
stat = readl(sdcp->base + MXS_DCP_STAT);
stat &= MXS_DCP_STAT_IRQ_MASK;
if (!stat)
return IRQ_NONE;
/* Clear the interrupts. */
writel(stat, sdcp->base + MXS_DCP_STAT_CLR);
/* Complete the DMA requests that finished. */
for (i = 0; i < DCP_MAX_CHANS; i++)
if (stat & (1 << i))
complete(&sdcp->completion[i]);
return IRQ_HANDLED;
}
static int mxs_dcp_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct dcp *sdcp = NULL;
int i, ret;
struct resource *iores;
int dcp_vmi_irq, dcp_irq;
if (global_sdcp) {
dev_err(dev, "Only one DCP instance allowed!\n");
return -ENODEV;
}
iores = platform_get_resource(pdev, IORESOURCE_MEM, 0);
dcp_vmi_irq = platform_get_irq(pdev, 0);
if (dcp_vmi_irq < 0)
return dcp_vmi_irq;
dcp_irq = platform_get_irq(pdev, 1);
if (dcp_irq < 0)
return dcp_irq;
sdcp = devm_kzalloc(dev, sizeof(*sdcp), GFP_KERNEL);
if (!sdcp)
return -ENOMEM;
sdcp->dev = dev;
sdcp->base = devm_ioremap_resource(dev, iores);
if (IS_ERR(sdcp->base))
return PTR_ERR(sdcp->base);
ret = devm_request_irq(dev, dcp_vmi_irq, mxs_dcp_irq, 0,
"dcp-vmi-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP VMI IRQ!\n");
return ret;
}
ret = devm_request_irq(dev, dcp_irq, mxs_dcp_irq, 0,
"dcp-irq", sdcp);
if (ret) {
dev_err(dev, "Failed to claim DCP IRQ!\n");
return ret;
}
/* Allocate coherent helper block. */
sdcp->coh = devm_kzalloc(dev, sizeof(*sdcp->coh) + DCP_ALIGNMENT,
GFP_KERNEL);
if (!sdcp->coh)
return -ENOMEM;
/* Re-align the structure so it fits the DCP constraints. */
sdcp->coh = PTR_ALIGN(sdcp->coh, DCP_ALIGNMENT);
/* Restart the DCP block. */
ret = stmp_reset_block(sdcp->base);
if (ret)
return ret;
/* Initialize control register. */
writel(MXS_DCP_CTRL_GATHER_RESIDUAL_WRITES |
MXS_DCP_CTRL_ENABLE_CONTEXT_CACHING | 0xf,
sdcp->base + MXS_DCP_CTRL);
/* Enable all DCP DMA channels. */
writel(MXS_DCP_CHANNELCTRL_ENABLE_CHANNEL_MASK,
sdcp->base + MXS_DCP_CHANNELCTRL);
/*
* We do not enable context switching. Give the context buffer a
* pointer to an illegal address so if context switching is
* inadvertantly enabled, the DCP will return an error instead of
* trashing good memory. The DCP DMA cannot access ROM, so any ROM
* address will do.
*/
writel(0xffff0000, sdcp->base + MXS_DCP_CONTEXT);
for (i = 0; i < DCP_MAX_CHANS; i++)
writel(0xffffffff, sdcp->base + MXS_DCP_CH_N_STAT_CLR(i));
writel(0xffffffff, sdcp->base + MXS_DCP_STAT_CLR);
global_sdcp = sdcp;
platform_set_drvdata(pdev, sdcp);
for (i = 0; i < DCP_MAX_CHANS; i++) {
mutex_init(&sdcp->mutex[i]);
init_completion(&sdcp->completion[i]);
crypto_init_queue(&sdcp->queue[i], 50);
}
/* Create the SHA and AES handler threads. */
sdcp->thread[DCP_CHAN_HASH_SHA] = kthread_run(dcp_chan_thread_sha,
NULL, "mxs_dcp_chan/sha");
if (IS_ERR(sdcp->thread[DCP_CHAN_HASH_SHA])) {
dev_err(dev, "Error starting SHA thread!\n");
return PTR_ERR(sdcp->thread[DCP_CHAN_HASH_SHA]);
}
sdcp->thread[DCP_CHAN_CRYPTO] = kthread_run(dcp_chan_thread_aes,
NULL, "mxs_dcp_chan/aes");
if (IS_ERR(sdcp->thread[DCP_CHAN_CRYPTO])) {
dev_err(dev, "Error starting SHA thread!\n");
ret = PTR_ERR(sdcp->thread[DCP_CHAN_CRYPTO]);
goto err_destroy_sha_thread;
}
/* Register the various crypto algorithms. */
sdcp->caps = readl(sdcp->base + MXS_DCP_CAPABILITY1);
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128) {
ret = crypto_register_algs(dcp_aes_algs,
ARRAY_SIZE(dcp_aes_algs));
if (ret) {
/* Failed to register algorithm. */
dev_err(dev, "Failed to register AES crypto!\n");
goto err_destroy_aes_thread;
}
}
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1) {
ret = crypto_register_ahash(&dcp_sha1_alg);
if (ret) {
dev_err(dev, "Failed to register %s hash!\n",
dcp_sha1_alg.halg.base.cra_name);
goto err_unregister_aes;
}
}
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256) {
ret = crypto_register_ahash(&dcp_sha256_alg);
if (ret) {
dev_err(dev, "Failed to register %s hash!\n",
dcp_sha256_alg.halg.base.cra_name);
goto err_unregister_sha1;
}
}
return 0;
err_unregister_sha1:
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
crypto_unregister_ahash(&dcp_sha1_alg);
err_unregister_aes:
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
err_destroy_aes_thread:
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
err_destroy_sha_thread:
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
return ret;
}
static int mxs_dcp_remove(struct platform_device *pdev)
{
struct dcp *sdcp = platform_get_drvdata(pdev);
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA256)
crypto_unregister_ahash(&dcp_sha256_alg);
if (sdcp->caps & MXS_DCP_CAPABILITY1_SHA1)
crypto_unregister_ahash(&dcp_sha1_alg);
if (sdcp->caps & MXS_DCP_CAPABILITY1_AES128)
crypto_unregister_algs(dcp_aes_algs, ARRAY_SIZE(dcp_aes_algs));
kthread_stop(sdcp->thread[DCP_CHAN_HASH_SHA]);
kthread_stop(sdcp->thread[DCP_CHAN_CRYPTO]);
platform_set_drvdata(pdev, NULL);
global_sdcp = NULL;
return 0;
}
static const struct of_device_id mxs_dcp_dt_ids[] = {
{ .compatible = "fsl,imx23-dcp", .data = NULL, },
{ .compatible = "fsl,imx28-dcp", .data = NULL, },
{ /* sentinel */ }
};
MODULE_DEVICE_TABLE(of, mxs_dcp_dt_ids);
static struct platform_driver mxs_dcp_driver = {
.probe = mxs_dcp_probe,
.remove = mxs_dcp_remove,
.driver = {
.name = "mxs-dcp",
.of_match_table = mxs_dcp_dt_ids,
},
};
module_platform_driver(mxs_dcp_driver);
MODULE_AUTHOR("Marek Vasut <marex@denx.de>");
MODULE_DESCRIPTION("Freescale MXS DCP Driver");
MODULE_LICENSE("GPL");
MODULE_ALIAS("platform:mxs-dcp");