OpenCloudOS-Kernel/drivers/mmc/host/sunplus-mmc.c

1001 lines
28 KiB
C

// SPDX-License-Identifier: GPL-2.0-only
/*
* Copyright (c) Sunplus Inc.
* Author: Tony Huang <tonyhuang.sunplus@gmail.com>
* Author: Li-hao Kuo <lhjeff911@gmail.com>
*/
#include <linux/bitfield.h>
#include <linux/clk.h>
#include <linux/delay.h>
#include <linux/dma-mapping.h>
#include <linux/interrupt.h>
#include <linux/iopoll.h>
#include <linux/mmc/core.h>
#include <linux/mmc/host.h>
#include <linux/mmc/mmc.h>
#include <linux/mmc/sdio.h>
#include <linux/mmc/slot-gpio.h>
#include <linux/module.h>
#include <linux/of.h>
#include <linux/platform_device.h>
#include <linux/pm.h>
#include <linux/pm_runtime.h>
#include <linux/reset.h>
#define SPMMC_MIN_CLK 400000
#define SPMMC_MAX_CLK 52000000
#define SPMMC_MAX_BLK_COUNT 65536
#define SPMMC_MAX_TUNABLE_DLY 7
#define SPMMC_TIMEOUT_US 500000
#define SPMMC_POLL_DELAY_US 10
#define SPMMC_CARD_MEDIATYPE_SRCDST_REG 0x0000
#define SPMMC_MEDIA_TYPE GENMASK(2, 0)
#define SPMMC_DMA_SOURCE GENMASK(6, 4)
#define SPMMC_DMA_DESTINATION GENMASK(10, 8)
#define SPMMC_MEDIA_NONE 0
#define SPMMC_MEDIA_SD 6
#define SPMMC_MEDIA_MS 7
#define SPMMC_SDRAM_SECTOR_0_SIZE_REG 0x0008
#define SPMMC_DMA_BASE_ADDR_REG 0x000C
#define SPMMC_HW_DMA_CTRL_REG 0x0010
#define SPMMC_HW_DMA_RST BIT(9)
#define SPMMC_DMAIDLE BIT(10)
#define SPMMC_MAX_DMA_MEMORY_SECTORS 8
#define SPMMC_SDRAM_SECTOR_1_ADDR_REG 0x0018
#define SPMMC_SDRAM_SECTOR_1_LENG_REG 0x001C
#define SPMMC_SDRAM_SECTOR_2_ADDR_REG 0x0020
#define SPMMC_SDRAM_SECTOR_2_LENG_REG 0x0024
#define SPMMC_SDRAM_SECTOR_3_ADDR_REG 0x0028
#define SPMMC_SDRAM_SECTOR_3_LENG_REG 0x002C
#define SPMMC_SDRAM_SECTOR_4_ADDR_REG 0x0030
#define SPMMC_SDRAM_SECTOR_4_LENG_REG 0x0034
#define SPMMC_SDRAM_SECTOR_5_ADDR_REG 0x0038
#define SPMMC_SDRAM_SECTOR_5_LENG_REG 0x003C
#define SPMMC_SDRAM_SECTOR_6_ADDR_REG 0x0040
#define SPMMC_SDRAM_SECTOR_6_LENG_REG 0x0044
#define SPMMC_SDRAM_SECTOR_7_ADDR_REG 0x0048
#define SPMMC_SDRAM_SECTOR_7_LENG_REG 0x004C
#define SPMMC_SD_INT_REG 0x0088
#define SPMMC_SDINT_SDCMPEN BIT(0)
#define SPMMC_SDINT_SDCMP BIT(1)
#define SPMMC_SDINT_SDCMPCLR BIT(2)
#define SPMMC_SDINT_SDIOEN BIT(3)
#define SPMMC_SDINT_SDIO BIT(4)
#define SPMMC_SDINT_SDIOCLR BIT(5)
#define SPMMC_SD_PAGE_NUM_REG 0x008C
#define SPMMC_SD_CONFIG0_REG 0x0090
#define SPMMC_SD_PIO_MODE BIT(0)
#define SPMMC_SD_DDR_MODE BIT(1)
#define SPMMC_SD_LEN_MODE BIT(2)
#define SPMMC_SD_TRANS_MODE GENMASK(5, 4)
#define SPMMC_SD_AUTO_RESPONSE BIT(6)
#define SPMMC_SD_CMD_DUMMY BIT(7)
#define SPMMC_SD_RSP_CHK_EN BIT(8)
#define SPMMC_SDIO_MODE BIT(9)
#define SPMMC_SD_MMC_MODE BIT(10)
#define SPMMC_SD_DATA_WD BIT(11)
#define SPMMC_RX4_EN BIT(14)
#define SPMMC_SD_RSP_TYPE BIT(15)
#define SPMMC_MMC8_EN BIT(18)
#define SPMMC_CLOCK_DIVISION GENMASK(31, 20)
#define SPMMC_SDIO_CTRL_REG 0x0094
#define SPMMC_INT_MULTI_TRIG BIT(6)
#define SPMMC_SD_RST_REG 0x0098
#define SPMMC_SD_CTRL_REG 0x009C
#define SPMMC_NEW_COMMAND_TRIGGER BIT(0)
#define SPMMC_DUMMY_CLOCK_TRIGGER BIT(1)
#define SPMMC_SD_STATUS_REG 0x00A0
#define SPMMC_SDSTATUS_DUMMY_READY BIT(0)
#define SPMMC_SDSTATUS_RSP_BUF_FULL BIT(1)
#define SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY BIT(2)
#define SPMMC_SDSTATUS_RX_DATA_BUF_FULL BIT(3)
#define SPMMC_SDSTATUS_CMD_PIN_STATUS BIT(4)
#define SPMMC_SDSTATUS_DAT0_PIN_STATUS BIT(5)
#define SPMMC_SDSTATUS_RSP_TIMEOUT BIT(6)
#define SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT BIT(7)
#define SPMMC_SDSTATUS_STB_TIMEOUT BIT(8)
#define SPMMC_SDSTATUS_RSP_CRC7_ERROR BIT(9)
#define SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR BIT(10)
#define SPMMC_SDSTATUS_RDATA_CRC16_ERROR BIT(11)
#define SPMMC_SDSTATUS_SUSPEND_STATE_READY BIT(12)
#define SPMMC_SDSTATUS_BUSY_CYCLE BIT(13)
#define SPMMC_SDSTATUS_DAT1_PIN_STATUS BIT(14)
#define SPMMC_SDSTATUS_SD_SENSE_STATUS BIT(15)
#define SPMMC_SDSTATUS_BOOT_ACK_TIMEOUT BIT(16)
#define SPMMC_SDSTATUS_BOOT_DATA_TIMEOUT BIT(17)
#define SPMMC_SDSTATUS_BOOT_ACK_ERROR BIT(18)
#define SPMMC_SD_STATE_REG 0x00A4
#define SPMMC_CRCTOKEN_CHECK_RESULT GENMASK(6, 4)
#define SPMMC_SDSTATE_ERROR BIT(13)
#define SPMMC_SDSTATE_FINISH BIT(14)
#define SPMMC_SD_HW_STATE_REG 0x00A8
#define SPMMC_SD_BLOCKSIZE_REG 0x00AC
#define SPMMC_SD_CONFIG1_REG 0x00B0
#define SPMMC_TX_DUMMY_NUM GENMASK(8, 0)
#define SPMMC_SD_HIGH_SPEED_EN BIT(31)
#define SPMMC_SD_TIMING_CONFIG0_REG 0x00B4
#define SPMMC_SD_CLOCK_DELAY GENMASK(2, 0)
#define SPMMC_SD_WRITE_DATA_DELAY GENMASK(6, 4)
#define SPMMC_SD_WRITE_COMMAND_DELAY GENMASK(10, 8)
#define SPMMC_SD_READ_RESPONSE_DELAY GENMASK(14, 12)
#define SPMMC_SD_READ_DATA_DELAY GENMASK(18, 16)
#define SPMMC_SD_READ_CRC_DELAY GENMASK(22, 20)
#define SPMMC_SD_PIODATATX_REG 0x00BC
#define SPMMC_SD_PIODATARX_REG 0x00C0
#define SPMMC_SD_CMDBUF0_3_REG 0x00C4
#define SPMMC_SD_CMDBUF4_REG 0x00C8
#define SPMMC_SD_RSPBUF0_3_REG 0x00CC
#define SPMMC_SD_RSPBUF4_5_REG 0x00D0
#define SPMMC_MAX_RETRIES (8 * 8)
struct spmmc_tuning_info {
int enable_tuning;
int need_tuning;
int retried; /* how many times has been retried */
u32 rd_crc_dly:3;
u32 rd_dat_dly:3;
u32 rd_rsp_dly:3;
u32 wr_cmd_dly:3;
u32 wr_dat_dly:3;
u32 clk_dly:3;
};
#define SPMMC_DMA_MODE 0
#define SPMMC_PIO_MODE 1
struct spmmc_host {
void __iomem *base;
struct clk *clk;
struct reset_control *rstc;
struct mmc_host *mmc;
struct mmc_request *mrq; /* current mrq */
int irq;
int dmapio_mode;
struct spmmc_tuning_info tuning_info;
int dma_int_threshold;
int dma_use_int;
};
static inline int spmmc_wait_finish(struct spmmc_host *host)
{
u32 state;
return readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, state,
(state & SPMMC_SDSTATE_FINISH),
SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US);
}
static inline int spmmc_wait_sdstatus(struct spmmc_host *host, unsigned int status_bit)
{
u32 status;
return readl_poll_timeout(host->base + SPMMC_SD_STATUS_REG, status,
(status & status_bit),
SPMMC_POLL_DELAY_US, SPMMC_TIMEOUT_US);
}
#define spmmc_wait_rspbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RSP_BUF_FULL)
#define spmmc_wait_rxbuf_full(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_RX_DATA_BUF_FULL)
#define spmmc_wait_txbuf_empty(host) spmmc_wait_sdstatus(host, SPMMC_SDSTATUS_TX_DATA_BUF_EMPTY)
static void spmmc_get_rsp(struct spmmc_host *host, struct mmc_command *cmd)
{
u32 value0_3, value4_5;
if (!(cmd->flags & MMC_RSP_PRESENT))
return;
if (cmd->flags & MMC_RSP_136) {
if (spmmc_wait_rspbuf_full(host))
return;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8);
cmd->resp[1] = value4_5 << 24;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[1] |= value0_3 >> 8;
cmd->resp[2] = value0_3 << 24;
cmd->resp[2] |= value4_5 << 8;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[2] |= value0_3 >> 24;
cmd->resp[3] = value0_3 << 8;
cmd->resp[3] |= value4_5 >> 8;
} else {
if (spmmc_wait_rspbuf_full(host))
return;
value0_3 = readl(host->base + SPMMC_SD_RSPBUF0_3_REG);
value4_5 = readl(host->base + SPMMC_SD_RSPBUF4_5_REG) & 0xffff;
cmd->resp[0] = (value0_3 << 8) | (value4_5 >> 8);
cmd->resp[1] = value4_5 << 24;
}
}
static void spmmc_set_bus_clk(struct spmmc_host *host, int clk)
{
unsigned int clkdiv;
int f_min = host->mmc->f_min;
int f_max = host->mmc->f_max;
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
if (clk < f_min)
clk = f_min;
if (clk > f_max)
clk = f_max;
clkdiv = (clk_get_rate(host->clk) + clk) / clk - 1;
if (clkdiv > 0xfff)
clkdiv = 0xfff;
value &= ~SPMMC_CLOCK_DIVISION;
value |= FIELD_PREP(SPMMC_CLOCK_DIVISION, clkdiv);
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_set_bus_timing(struct spmmc_host *host, unsigned int timing)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG1_REG);
int clkdiv = FIELD_GET(SPMMC_CLOCK_DIVISION, readl(host->base + SPMMC_SD_CONFIG0_REG));
int delay = clkdiv / 2 < 7 ? clkdiv / 2 : 7;
int hs_en = 1, ddr_enabled = 0;
switch (timing) {
case MMC_TIMING_LEGACY:
hs_en = 0;
break;
case MMC_TIMING_MMC_HS:
case MMC_TIMING_SD_HS:
case MMC_TIMING_UHS_SDR50:
case MMC_TIMING_UHS_SDR104:
case MMC_TIMING_MMC_HS200:
hs_en = 1;
break;
case MMC_TIMING_UHS_DDR50:
ddr_enabled = 1;
break;
case MMC_TIMING_MMC_DDR52:
ddr_enabled = 1;
break;
default:
hs_en = 0;
break;
}
if (hs_en) {
value |= SPMMC_SD_HIGH_SPEED_EN;
writel(value, host->base + SPMMC_SD_CONFIG1_REG);
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_WRITE_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY, delay);
value &= ~SPMMC_SD_WRITE_COMMAND_DELAY;
value |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY, delay);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
} else {
value &= ~SPMMC_SD_HIGH_SPEED_EN;
writel(value, host->base + SPMMC_SD_CONFIG1_REG);
}
if (ddr_enabled) {
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value |= SPMMC_SD_DDR_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
} else {
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value &= ~SPMMC_SD_DDR_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
}
static void spmmc_set_bus_width(struct spmmc_host *host, int width)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
switch (width) {
case MMC_BUS_WIDTH_8:
value &= ~SPMMC_SD_DATA_WD;
value |= SPMMC_MMC8_EN;
break;
case MMC_BUS_WIDTH_4:
value |= SPMMC_SD_DATA_WD;
value &= ~SPMMC_MMC8_EN;
break;
default:
value &= ~SPMMC_SD_DATA_WD;
value &= ~SPMMC_MMC8_EN;
break;
}
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
/*
* select the working mode of controller: sd/sdio/emmc
*/
static void spmmc_set_sdmmc_mode(struct spmmc_host *host)
{
u32 value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value |= SPMMC_SD_MMC_MODE;
value &= ~SPMMC_SDIO_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_sw_reset(struct spmmc_host *host)
{
u32 value;
/*
* Must reset dma operation first, or it will
* be stuck on sd_state == 0x1c00 because of
* a controller software reset bug
*/
value = readl(host->base + SPMMC_HW_DMA_CTRL_REG);
value |= SPMMC_DMAIDLE;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
value &= ~SPMMC_DMAIDLE;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
value = readl(host->base + SPMMC_HW_DMA_CTRL_REG);
value |= SPMMC_HW_DMA_RST;
writel(value, host->base + SPMMC_HW_DMA_CTRL_REG);
writel(0x7, host->base + SPMMC_SD_RST_REG);
readl_poll_timeout_atomic(host->base + SPMMC_SD_HW_STATE_REG, value,
!(value & BIT(6)), 1, SPMMC_TIMEOUT_US);
}
static void spmmc_prepare_cmd(struct spmmc_host *host, struct mmc_command *cmd)
{
u32 value;
/* add start bit, according to spec, command format */
value = ((cmd->opcode | 0x40) << 24) | (cmd->arg >> 8);
writel(value, host->base + SPMMC_SD_CMDBUF0_3_REG);
writeb(cmd->arg & 0xff, host->base + SPMMC_SD_CMDBUF4_REG);
/* disable interrupt if needed */
value = readl(host->base + SPMMC_SD_INT_REG);
value |= SPMMC_SDINT_SDCMPCLR;
value &= ~SPMMC_SDINT_SDCMPEN;
writel(value, host->base + SPMMC_SD_INT_REG);
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
value &= ~SPMMC_SD_TRANS_MODE;
value |= SPMMC_SD_CMD_DUMMY;
if (cmd->flags & MMC_RSP_PRESENT) {
value |= SPMMC_SD_AUTO_RESPONSE;
} else {
value &= ~SPMMC_SD_AUTO_RESPONSE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
return;
}
/*
* Currently, host is not capable of checking R2's CRC7,
* thus, enable crc7 check only for 48 bit response commands
*/
if (cmd->flags & MMC_RSP_CRC && !(cmd->flags & MMC_RSP_136))
value |= SPMMC_SD_RSP_CHK_EN;
else
value &= ~SPMMC_SD_RSP_CHK_EN;
if (cmd->flags & MMC_RSP_136)
value |= SPMMC_SD_RSP_TYPE;
else
value &= ~SPMMC_SD_RSP_TYPE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
static void spmmc_prepare_data(struct spmmc_host *host, struct mmc_data *data)
{
u32 value, srcdst;
writel(data->blocks - 1, host->base + SPMMC_SD_PAGE_NUM_REG);
writel(data->blksz - 1, host->base + SPMMC_SD_BLOCKSIZE_REG);
value = readl(host->base + SPMMC_SD_CONFIG0_REG);
if (data->flags & MMC_DATA_READ) {
value &= ~SPMMC_SD_TRANS_MODE;
value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 2);
value &= ~SPMMC_SD_AUTO_RESPONSE;
value &= ~SPMMC_SD_CMD_DUMMY;
srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
srcdst &= ~SPMMC_DMA_SOURCE;
srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x2);
srcdst &= ~SPMMC_DMA_DESTINATION;
srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x1);
writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
} else {
value &= ~SPMMC_SD_TRANS_MODE;
value |= FIELD_PREP(SPMMC_SD_TRANS_MODE, 1);
srcdst = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
srcdst &= ~SPMMC_DMA_SOURCE;
srcdst |= FIELD_PREP(SPMMC_DMA_SOURCE, 0x1);
srcdst &= ~SPMMC_DMA_DESTINATION;
srcdst |= FIELD_PREP(SPMMC_DMA_DESTINATION, 0x2);
writel(srcdst, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
}
value |= SPMMC_SD_LEN_MODE;
if (host->dmapio_mode == SPMMC_DMA_MODE) {
struct scatterlist *sg;
dma_addr_t dma_addr;
unsigned int dma_size;
int i, count = 1;
count = dma_map_sg(host->mmc->parent, data->sg, data->sg_len,
mmc_get_dma_dir(data));
if (!count || count > SPMMC_MAX_DMA_MEMORY_SECTORS) {
data->error = -EINVAL;
return;
}
for_each_sg(data->sg, sg, count, i) {
dma_addr = sg_dma_address(sg);
dma_size = sg_dma_len(sg) / data->blksz - 1;
if (i == 0) {
writel(dma_addr, host->base + SPMMC_DMA_BASE_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_0_SIZE_REG);
} else if (i == 1) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_1_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_1_LENG_REG);
} else if (i == 2) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_2_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_2_LENG_REG);
} else if (i == 3) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_3_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_3_LENG_REG);
} else if (i == 4) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_4_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_4_LENG_REG);
} else if (i == 5) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_5_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_5_LENG_REG);
} else if (i == 6) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_6_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_6_LENG_REG);
} else if (i == 7) {
writel(dma_addr, host->base + SPMMC_SDRAM_SECTOR_7_ADDR_REG);
writel(dma_size, host->base + SPMMC_SDRAM_SECTOR_7_LENG_REG);
}
}
value &= ~SPMMC_SD_PIO_MODE;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
/* enable interrupt if needed */
if (data->blksz * data->blocks > host->dma_int_threshold) {
host->dma_use_int = 1;
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 1); /* sdcmpen */
writel(value, host->base + SPMMC_SD_INT_REG);
}
} else {
value |= SPMMC_SD_PIO_MODE;
value |= SPMMC_RX4_EN;
writel(value, host->base + SPMMC_SD_CONFIG0_REG);
}
}
static inline void spmmc_trigger_transaction(struct spmmc_host *host)
{
u32 value = readl(host->base + SPMMC_SD_CTRL_REG);
value |= SPMMC_NEW_COMMAND_TRIGGER;
writel(value, host->base + SPMMC_SD_CTRL_REG);
}
static void spmmc_send_stop_cmd(struct spmmc_host *host)
{
struct mmc_command stop = {};
u32 value;
stop.opcode = MMC_STOP_TRANSMISSION;
stop.arg = 0;
stop.flags = MMC_RSP_R1B;
spmmc_prepare_cmd(host, &stop);
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
value |= FIELD_PREP(SPMMC_SDINT_SDCMPEN, 0);
writel(value, host->base + SPMMC_SD_INT_REG);
spmmc_trigger_transaction(host);
readl_poll_timeout(host->base + SPMMC_SD_STATE_REG, value,
(value & SPMMC_SDSTATE_FINISH), 1, SPMMC_TIMEOUT_US);
}
static int spmmc_check_error(struct spmmc_host *host, struct mmc_request *mrq)
{
int ret = 0;
struct mmc_command *cmd = mrq->cmd;
struct mmc_data *data = mrq->data;
u32 value = readl(host->base + SPMMC_SD_STATE_REG);
u32 crc_token = FIELD_GET(SPMMC_CRCTOKEN_CHECK_RESULT, value);
if (value & SPMMC_SDSTATE_ERROR) {
u32 timing_cfg0 = 0;
value = readl(host->base + SPMMC_SD_STATUS_REG);
if (host->tuning_info.enable_tuning) {
timing_cfg0 = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
host->tuning_info.rd_crc_dly = FIELD_GET(SPMMC_SD_READ_CRC_DELAY,
timing_cfg0);
host->tuning_info.rd_dat_dly = FIELD_GET(SPMMC_SD_READ_DATA_DELAY,
timing_cfg0);
host->tuning_info.rd_rsp_dly = FIELD_GET(SPMMC_SD_READ_RESPONSE_DELAY,
timing_cfg0);
host->tuning_info.wr_cmd_dly = FIELD_GET(SPMMC_SD_WRITE_COMMAND_DELAY,
timing_cfg0);
host->tuning_info.wr_dat_dly = FIELD_GET(SPMMC_SD_WRITE_DATA_DELAY,
timing_cfg0);
}
if (value & SPMMC_SDSTATUS_RSP_TIMEOUT) {
ret = -ETIMEDOUT;
host->tuning_info.wr_cmd_dly++;
} else if (value & SPMMC_SDSTATUS_RSP_CRC7_ERROR) {
ret = -EILSEQ;
host->tuning_info.rd_rsp_dly++;
} else if (data) {
if ((value & SPMMC_SDSTATUS_STB_TIMEOUT)) {
ret = -ETIMEDOUT;
host->tuning_info.rd_dat_dly++;
} else if (value & SPMMC_SDSTATUS_RDATA_CRC16_ERROR) {
ret = -EILSEQ;
host->tuning_info.rd_dat_dly++;
} else if (value & SPMMC_SDSTATUS_CARD_CRC_CHECK_TIMEOUT) {
ret = -ETIMEDOUT;
host->tuning_info.rd_crc_dly++;
} else if (value & SPMMC_SDSTATUS_CRC_TOKEN_CHECK_ERROR) {
ret = -EILSEQ;
if (crc_token == 0x5)
host->tuning_info.wr_dat_dly++;
else
host->tuning_info.rd_crc_dly++;
}
}
cmd->error = ret;
if (data) {
data->error = ret;
data->bytes_xfered = 0;
}
if (!host->tuning_info.need_tuning && host->tuning_info.enable_tuning)
cmd->retries = SPMMC_MAX_RETRIES;
spmmc_sw_reset(host);
if (host->tuning_info.enable_tuning) {
timing_cfg0 &= ~SPMMC_SD_READ_CRC_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY,
host->tuning_info.rd_crc_dly);
timing_cfg0 &= ~SPMMC_SD_READ_DATA_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY,
host->tuning_info.rd_dat_dly);
timing_cfg0 &= ~SPMMC_SD_READ_RESPONSE_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY,
host->tuning_info.rd_rsp_dly);
timing_cfg0 &= ~SPMMC_SD_WRITE_COMMAND_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_COMMAND_DELAY,
host->tuning_info.wr_cmd_dly);
timing_cfg0 &= ~SPMMC_SD_WRITE_DATA_DELAY;
timing_cfg0 |= FIELD_PREP(SPMMC_SD_WRITE_DATA_DELAY,
host->tuning_info.wr_dat_dly);
writel(timing_cfg0, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
}
} else if (data) {
data->error = 0;
data->bytes_xfered = data->blocks * data->blksz;
}
host->tuning_info.need_tuning = ret;
return ret;
}
/*
* the strategy is:
* 1. if several continuous delays are acceptable, we choose a middle one;
* 2. otherwise, we choose the first one.
*/
static inline int spmmc_find_best_delay(u8 candidate_dly)
{
int f, w, value;
if (!candidate_dly)
return 0;
f = ffs(candidate_dly) - 1;
w = hweight8(candidate_dly);
value = ((1 << w) - 1) << f;
if (0xff == (value & ~candidate_dly))
return (f + w / 2);
else
return (f);
}
static void spmmc_xfer_data_pio(struct spmmc_host *host, struct mmc_data *data)
{
u32 *buf;
int data_left = data->blocks * data->blksz;
int consumed, remain;
struct sg_mapping_iter sg_miter;
unsigned int flags = 0;
if (data->flags & MMC_DATA_WRITE)
flags |= SG_MITER_FROM_SG;
else
flags |= SG_MITER_TO_SG;
sg_miter_start(&sg_miter, data->sg, data->sg_len, flags);
while (data_left > 0) {
consumed = 0;
if (!sg_miter_next(&sg_miter))
break;
buf = sg_miter.addr;
remain = sg_miter.length;
do {
if (data->flags & MMC_DATA_WRITE) {
if (spmmc_wait_txbuf_empty(host))
goto done;
writel(*buf, host->base + SPMMC_SD_PIODATATX_REG);
} else {
if (spmmc_wait_rxbuf_full(host))
goto done;
*buf = readl(host->base + SPMMC_SD_PIODATARX_REG);
}
buf++;
/* tx/rx 4 bytes one time in pio mode */
consumed += 4;
remain -= 4;
} while (remain);
sg_miter.consumed = consumed;
data_left -= consumed;
}
done:
sg_miter_stop(&sg_miter);
}
static void spmmc_controller_init(struct spmmc_host *host)
{
u32 value;
int ret = reset_control_assert(host->rstc);
if (!ret) {
usleep_range(1000, 1250);
ret = reset_control_deassert(host->rstc);
}
value = readl(host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
value &= ~SPMMC_MEDIA_TYPE;
value |= FIELD_PREP(SPMMC_MEDIA_TYPE, SPMMC_MEDIA_SD);
writel(value, host->base + SPMMC_CARD_MEDIATYPE_SRCDST_REG);
}
/*
* 1. unmap scatterlist if needed;
* 2. get response & check error conditions;
* 3. notify mmc layer the request is done
*/
static void spmmc_finish_request(struct spmmc_host *host, struct mmc_request *mrq)
{
struct mmc_command *cmd;
struct mmc_data *data;
if (!mrq)
return;
cmd = mrq->cmd;
data = mrq->data;
if (data && SPMMC_DMA_MODE == host->dmapio_mode) {
dma_unmap_sg(host->mmc->parent, data->sg, data->sg_len, mmc_get_dma_dir(data));
host->dma_use_int = 0;
}
spmmc_get_rsp(host, cmd);
spmmc_check_error(host, mrq);
if (mrq->stop)
spmmc_send_stop_cmd(host);
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
}
/* Interrupt Service Routine */
static irqreturn_t spmmc_irq(int irq, void *dev_id)
{
struct spmmc_host *host = dev_id;
u32 value = readl(host->base + SPMMC_SD_INT_REG);
if ((value & SPMMC_SDINT_SDCMP) && (value & SPMMC_SDINT_SDCMPEN)) {
value &= ~SPMMC_SDINT_SDCMPEN;
value |= SPMMC_SDINT_SDCMPCLR;
writel(value, host->base + SPMMC_SD_INT_REG);
return IRQ_WAKE_THREAD;
}
return IRQ_HANDLED;
}
static void spmmc_request(struct mmc_host *mmc, struct mmc_request *mrq)
{
struct spmmc_host *host = mmc_priv(mmc);
struct mmc_data *data;
struct mmc_command *cmd;
host->mrq = mrq;
data = mrq->data;
cmd = mrq->cmd;
spmmc_prepare_cmd(host, cmd);
/* we need manually read response R2. */
if (cmd->flags & MMC_RSP_136) {
spmmc_trigger_transaction(host);
spmmc_get_rsp(host, cmd);
spmmc_wait_finish(host);
spmmc_check_error(host, mrq);
host->mrq = NULL;
mmc_request_done(host->mmc, mrq);
} else {
if (data)
spmmc_prepare_data(host, data);
if (host->dmapio_mode == SPMMC_PIO_MODE && data) {
u32 value;
/* pio data transfer do not use interrupt */
value = readl(host->base + SPMMC_SD_INT_REG);
value &= ~SPMMC_SDINT_SDCMPEN;
writel(value, host->base + SPMMC_SD_INT_REG);
spmmc_trigger_transaction(host);
spmmc_xfer_data_pio(host, data);
spmmc_wait_finish(host);
spmmc_finish_request(host, mrq);
} else {
if (host->dma_use_int) {
spmmc_trigger_transaction(host);
} else {
spmmc_trigger_transaction(host);
spmmc_wait_finish(host);
spmmc_finish_request(host, mrq);
}
}
}
}
static void spmmc_set_ios(struct mmc_host *mmc, struct mmc_ios *ios)
{
struct spmmc_host *host = (struct spmmc_host *)mmc_priv(mmc);
spmmc_set_bus_clk(host, ios->clock);
spmmc_set_bus_timing(host, ios->timing);
spmmc_set_bus_width(host, ios->bus_width);
/* ensure mode is correct, because we might have hw reset the controller */
spmmc_set_sdmmc_mode(host);
}
/*
* Return values for the get_cd callback should be:
* 0 for a absent card
* 1 for a present card
* -ENOSYS when not supported (equal to NULL callback)
* or a negative errno value when something bad happened
*/
static int spmmc_get_cd(struct mmc_host *mmc)
{
int ret = 0;
if (mmc_can_gpio_cd(mmc))
ret = mmc_gpio_get_cd(mmc);
if (ret < 0)
ret = 0;
return ret;
}
static int spmmc_execute_tuning(struct mmc_host *mmc, u32 opcode)
{
struct spmmc_host *host = mmc_priv(mmc);
u8 smpl_dly = 0, candidate_dly = 0;
u32 value;
host->tuning_info.enable_tuning = 0;
do {
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_READ_RESPONSE_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_CRC_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
if (!mmc_send_tuning(mmc, opcode, NULL)) {
candidate_dly |= (1 << smpl_dly);
break;
}
} while (smpl_dly++ <= SPMMC_MAX_TUNABLE_DLY);
host->tuning_info.enable_tuning = 1;
if (candidate_dly) {
smpl_dly = spmmc_find_best_delay(candidate_dly);
value = readl(host->base + SPMMC_SD_TIMING_CONFIG0_REG);
value &= ~SPMMC_SD_READ_RESPONSE_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_RESPONSE_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_DATA_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_DATA_DELAY, smpl_dly);
value &= ~SPMMC_SD_READ_CRC_DELAY;
value |= FIELD_PREP(SPMMC_SD_READ_CRC_DELAY, smpl_dly);
writel(value, host->base + SPMMC_SD_TIMING_CONFIG0_REG);
return 0;
}
return -EIO;
}
static const struct mmc_host_ops spmmc_ops = {
.request = spmmc_request,
.set_ios = spmmc_set_ios,
.get_cd = spmmc_get_cd,
.execute_tuning = spmmc_execute_tuning,
};
static irqreturn_t spmmc_func_finish_req(int irq, void *dev_id)
{
struct spmmc_host *host = dev_id;
spmmc_finish_request(host, host->mrq);
return IRQ_HANDLED;
}
static int spmmc_drv_probe(struct platform_device *pdev)
{
struct mmc_host *mmc;
struct resource *res;
struct spmmc_host *host;
int ret = 0;
mmc = mmc_alloc_host(sizeof(*host), &pdev->dev);
if (!mmc) {
ret = -ENOMEM;
goto probe_free_host;
}
host = mmc_priv(mmc);
host->mmc = mmc;
host->dmapio_mode = SPMMC_DMA_MODE;
host->dma_int_threshold = 1024;
host->base = devm_platform_get_and_ioremap_resource(pdev, 0, &res);
if (IS_ERR(host->base))
return PTR_ERR(host->base);
host->clk = devm_clk_get(&pdev->dev, NULL);
if (IS_ERR(host->clk))
return dev_err_probe(&pdev->dev, PTR_ERR(host->clk), "clk get fail\n");
host->rstc = devm_reset_control_get_exclusive(&pdev->dev, NULL);
if (IS_ERR(host->rstc))
return dev_err_probe(&pdev->dev, PTR_ERR(host->rstc), "rst get fail\n");
host->irq = platform_get_irq(pdev, 0);
if (host->irq <= 0)
return host->irq;
ret = devm_request_threaded_irq(&pdev->dev, host->irq,
spmmc_irq, spmmc_func_finish_req, IRQF_SHARED,
NULL, host);
if (ret)
return ret;
ret = clk_prepare_enable(host->clk);
if (ret)
return dev_err_probe(&pdev->dev, ret, "failed to enable clk\n");
ret = mmc_of_parse(mmc);
if (ret)
goto probe_free_host;
mmc->ops = &spmmc_ops;
mmc->f_min = SPMMC_MIN_CLK;
if (mmc->f_max > SPMMC_MAX_CLK)
mmc->f_max = SPMMC_MAX_CLK;
ret = mmc_regulator_get_supply(mmc);
if (ret)
goto probe_free_host;
if (!mmc->ocr_avail)
mmc->ocr_avail = MMC_VDD_32_33 | MMC_VDD_33_34;
mmc->max_seg_size = SPMMC_MAX_BLK_COUNT * 512;
mmc->max_segs = SPMMC_MAX_DMA_MEMORY_SECTORS;
mmc->max_req_size = SPMMC_MAX_BLK_COUNT * 512;
mmc->max_blk_size = 512;
mmc->max_blk_count = SPMMC_MAX_BLK_COUNT;
dev_set_drvdata(&pdev->dev, host);
spmmc_controller_init(host);
spmmc_set_sdmmc_mode(host);
host->tuning_info.enable_tuning = 1;
pm_runtime_set_active(&pdev->dev);
pm_runtime_enable(&pdev->dev);
mmc_add_host(mmc);
return ret;
probe_free_host:
if (mmc)
mmc_free_host(mmc);
return ret;
}
static int spmmc_drv_remove(struct platform_device *dev)
{
struct spmmc_host *host = platform_get_drvdata(dev);
mmc_remove_host(host->mmc);
pm_runtime_get_sync(&dev->dev);
clk_disable_unprepare(host->clk);
pm_runtime_put_noidle(&dev->dev);
pm_runtime_disable(&dev->dev);
platform_set_drvdata(dev, NULL);
mmc_free_host(host->mmc);
return 0;
}
static int spmmc_pm_runtime_suspend(struct device *dev)
{
struct spmmc_host *host;
host = dev_get_drvdata(dev);
clk_disable_unprepare(host->clk);
return 0;
}
static int spmmc_pm_runtime_resume(struct device *dev)
{
struct spmmc_host *host;
host = dev_get_drvdata(dev);
return clk_prepare_enable(host->clk);
}
static DEFINE_RUNTIME_DEV_PM_OPS(spmmc_pm_ops, spmmc_pm_runtime_suspend,
spmmc_pm_runtime_resume, NULL);
static const struct of_device_id spmmc_of_table[] = {
{
.compatible = "sunplus,sp7021-mmc",
},
{/* sentinel */}
};
MODULE_DEVICE_TABLE(of, spmmc_of_table);
static struct platform_driver spmmc_driver = {
.probe = spmmc_drv_probe,
.remove = spmmc_drv_remove,
.driver = {
.name = "spmmc",
.pm = pm_ptr(&spmmc_pm_ops),
.of_match_table = spmmc_of_table,
},
};
module_platform_driver(spmmc_driver);
MODULE_AUTHOR("Tony Huang <tonyhuang.sunplus@gmail.com>");
MODULE_AUTHOR("Li-hao Kuo <lhjeff911@gmail.com>");
MODULE_DESCRIPTION("Sunplus MMC controller driver");
MODULE_LICENSE("GPL");