OpenCloudOS-Kernel/drivers/media/dvb-frontends/ds3000.c

1143 lines
26 KiB
C

/*
Montage Technology DS3000 - DVBS/S2 Demodulator driver
Copyright (C) 2009-2012 Konstantin Dimitrov <kosio.dimitrov@gmail.com>
Copyright (C) 2009-2012 TurboSight.com
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
*/
#include <linux/slab.h>
#include <linux/kernel.h>
#include <linux/module.h>
#include <linux/moduleparam.h>
#include <linux/init.h>
#include <linux/firmware.h>
#include "dvb_frontend.h"
#include "ts2020.h"
#include "ds3000.h"
static int debug;
#define dprintk(args...) \
do { \
if (debug) \
printk(args); \
} while (0)
/* as of March 2009 current DS3000 firmware version is 1.78 */
/* DS3000 FW v1.78 MD5: a32d17910c4f370073f9346e71d34b80 */
#define DS3000_DEFAULT_FIRMWARE "dvb-fe-ds3000.fw"
#define DS3000_SAMPLE_RATE 96000 /* in kHz */
/* Register values to initialise the demod in DVB-S mode */
static u8 ds3000_dvbs_init_tab[] = {
0x23, 0x05,
0x08, 0x03,
0x0c, 0x00,
0x21, 0x54,
0x25, 0x82,
0x27, 0x31,
0x30, 0x08,
0x31, 0x40,
0x32, 0x32,
0x33, 0x35,
0x35, 0xff,
0x3a, 0x00,
0x37, 0x10,
0x38, 0x10,
0x39, 0x02,
0x42, 0x60,
0x4a, 0x40,
0x4b, 0x04,
0x4d, 0x91,
0x5d, 0xc8,
0x50, 0x77,
0x51, 0x77,
0x52, 0x36,
0x53, 0x36,
0x56, 0x01,
0x63, 0x43,
0x64, 0x30,
0x65, 0x40,
0x68, 0x26,
0x69, 0x4c,
0x70, 0x20,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x40,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x60,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x80,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0xa0,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x1f,
0x76, 0x00,
0x77, 0xd1,
0x78, 0x0c,
0x79, 0x80,
0x7f, 0x04,
0x7c, 0x00,
0x80, 0x86,
0x81, 0xa6,
0x85, 0x04,
0xcd, 0xf4,
0x90, 0x33,
0xa0, 0x44,
0xc0, 0x18,
0xc3, 0x10,
0xc4, 0x08,
0xc5, 0x80,
0xc6, 0x80,
0xc7, 0x0a,
0xc8, 0x1a,
0xc9, 0x80,
0xfe, 0x92,
0xe0, 0xf8,
0xe6, 0x8b,
0xd0, 0x40,
0xf8, 0x20,
0xfa, 0x0f,
0xfd, 0x20,
0xad, 0x20,
0xae, 0x07,
0xb8, 0x00,
};
/* Register values to initialise the demod in DVB-S2 mode */
static u8 ds3000_dvbs2_init_tab[] = {
0x23, 0x0f,
0x08, 0x07,
0x0c, 0x00,
0x21, 0x54,
0x25, 0x82,
0x27, 0x31,
0x30, 0x08,
0x31, 0x32,
0x32, 0x32,
0x33, 0x35,
0x35, 0xff,
0x3a, 0x00,
0x37, 0x10,
0x38, 0x10,
0x39, 0x02,
0x42, 0x60,
0x4a, 0x80,
0x4b, 0x04,
0x4d, 0x81,
0x5d, 0x88,
0x50, 0x36,
0x51, 0x36,
0x52, 0x36,
0x53, 0x36,
0x63, 0x60,
0x64, 0x10,
0x65, 0x10,
0x68, 0x04,
0x69, 0x29,
0x70, 0x20,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x40,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x60,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x80,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0xa0,
0x71, 0x70,
0x72, 0x04,
0x73, 0x00,
0x70, 0x1f,
0xa0, 0x44,
0xc0, 0x08,
0xc1, 0x10,
0xc2, 0x08,
0xc3, 0x10,
0xc4, 0x08,
0xc5, 0xf0,
0xc6, 0xf0,
0xc7, 0x0a,
0xc8, 0x1a,
0xc9, 0x80,
0xca, 0x23,
0xcb, 0x24,
0xce, 0x74,
0x90, 0x03,
0x76, 0x80,
0x77, 0x42,
0x78, 0x0a,
0x79, 0x80,
0xad, 0x40,
0xae, 0x07,
0x7f, 0xd4,
0x7c, 0x00,
0x80, 0xa8,
0x81, 0xda,
0x7c, 0x01,
0x80, 0xda,
0x81, 0xec,
0x7c, 0x02,
0x80, 0xca,
0x81, 0xeb,
0x7c, 0x03,
0x80, 0xba,
0x81, 0xdb,
0x85, 0x08,
0x86, 0x00,
0x87, 0x02,
0x89, 0x80,
0x8b, 0x44,
0x8c, 0xaa,
0x8a, 0x10,
0xba, 0x00,
0xf5, 0x04,
0xfe, 0x44,
0xd2, 0x32,
0xb8, 0x00,
};
struct ds3000_state {
struct i2c_adapter *i2c;
const struct ds3000_config *config;
struct dvb_frontend frontend;
/* previous uncorrected block counter for DVB-S2 */
u16 prevUCBS2;
};
static int ds3000_writereg(struct ds3000_state *state, int reg, int data)
{
u8 buf[] = { reg, data };
struct i2c_msg msg = { .addr = state->config->demod_address,
.flags = 0, .buf = buf, .len = 2 };
int err;
dprintk("%s: write reg 0x%02x, value 0x%02x\n", __func__, reg, data);
err = i2c_transfer(state->i2c, &msg, 1);
if (err != 1) {
printk(KERN_ERR "%s: writereg error(err == %i, reg == 0x%02x,"
" value == 0x%02x)\n", __func__, err, reg, data);
return -EREMOTEIO;
}
return 0;
}
static int ds3000_i2c_gate_ctrl(struct dvb_frontend *fe, int enable)
{
struct ds3000_state *state = fe->demodulator_priv;
if (enable)
ds3000_writereg(state, 0x03, 0x12);
else
ds3000_writereg(state, 0x03, 0x02);
return 0;
}
/* I2C write for 8k firmware load */
static int ds3000_writeFW(struct ds3000_state *state, int reg,
const u8 *data, u16 len)
{
int i, ret = 0;
struct i2c_msg msg;
u8 *buf;
buf = kmalloc(33, GFP_KERNEL);
if (buf == NULL) {
printk(KERN_ERR "Unable to kmalloc\n");
return -ENOMEM;
}
*(buf) = reg;
msg.addr = state->config->demod_address;
msg.flags = 0;
msg.buf = buf;
msg.len = 33;
for (i = 0; i < len; i += 32) {
memcpy(buf + 1, data + i, 32);
dprintk("%s: write reg 0x%02x, len = %d\n", __func__, reg, len);
ret = i2c_transfer(state->i2c, &msg, 1);
if (ret != 1) {
printk(KERN_ERR "%s: write error(err == %i, "
"reg == 0x%02x\n", __func__, ret, reg);
ret = -EREMOTEIO;
goto error;
}
}
ret = 0;
error:
kfree(buf);
return ret;
}
static int ds3000_readreg(struct ds3000_state *state, u8 reg)
{
int ret;
u8 b0[] = { reg };
u8 b1[] = { 0 };
struct i2c_msg msg[] = {
{
.addr = state->config->demod_address,
.flags = 0,
.buf = b0,
.len = 1
}, {
.addr = state->config->demod_address,
.flags = I2C_M_RD,
.buf = b1,
.len = 1
}
};
ret = i2c_transfer(state->i2c, msg, 2);
if (ret != 2) {
printk(KERN_ERR "%s: reg=0x%x(error=%d)\n", __func__, reg, ret);
return ret;
}
dprintk("%s: read reg 0x%02x, value 0x%02x\n", __func__, reg, b1[0]);
return b1[0];
}
static int ds3000_load_firmware(struct dvb_frontend *fe,
const struct firmware *fw);
static int ds3000_firmware_ondemand(struct dvb_frontend *fe)
{
struct ds3000_state *state = fe->demodulator_priv;
const struct firmware *fw;
int ret = 0;
dprintk("%s()\n", __func__);
ret = ds3000_readreg(state, 0xb2);
if (ret < 0)
return ret;
/* Load firmware */
/* request the firmware, this will block until someone uploads it */
printk(KERN_INFO "%s: Waiting for firmware upload (%s)...\n", __func__,
DS3000_DEFAULT_FIRMWARE);
ret = request_firmware(&fw, DS3000_DEFAULT_FIRMWARE,
state->i2c->dev.parent);
printk(KERN_INFO "%s: Waiting for firmware upload(2)...\n", __func__);
if (ret) {
printk(KERN_ERR "%s: No firmware uploaded (timeout or file not "
"found?)\n", __func__);
return ret;
}
ret = ds3000_load_firmware(fe, fw);
if (ret)
printk("%s: Writing firmware to device failed\n", __func__);
release_firmware(fw);
dprintk("%s: Firmware upload %s\n", __func__,
ret == 0 ? "complete" : "failed");
return ret;
}
static int ds3000_load_firmware(struct dvb_frontend *fe,
const struct firmware *fw)
{
struct ds3000_state *state = fe->demodulator_priv;
int ret = 0;
dprintk("%s\n", __func__);
dprintk("Firmware is %zu bytes (%02x %02x .. %02x %02x)\n",
fw->size,
fw->data[0],
fw->data[1],
fw->data[fw->size - 2],
fw->data[fw->size - 1]);
/* Begin the firmware load process */
ds3000_writereg(state, 0xb2, 0x01);
/* write the entire firmware */
ret = ds3000_writeFW(state, 0xb0, fw->data, fw->size);
ds3000_writereg(state, 0xb2, 0x00);
return ret;
}
static int ds3000_set_voltage(struct dvb_frontend *fe,
enum fe_sec_voltage voltage)
{
struct ds3000_state *state = fe->demodulator_priv;
u8 data;
dprintk("%s(%d)\n", __func__, voltage);
data = ds3000_readreg(state, 0xa2);
data |= 0x03; /* bit0 V/H, bit1 off/on */
switch (voltage) {
case SEC_VOLTAGE_18:
data &= ~0x03;
break;
case SEC_VOLTAGE_13:
data &= ~0x03;
data |= 0x01;
break;
case SEC_VOLTAGE_OFF:
break;
}
ds3000_writereg(state, 0xa2, data);
return 0;
}
static int ds3000_read_status(struct dvb_frontend *fe, enum fe_status *status)
{
struct ds3000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int lock;
*status = 0;
switch (c->delivery_system) {
case SYS_DVBS:
lock = ds3000_readreg(state, 0xd1);
if ((lock & 0x07) == 0x07)
*status = FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI | FE_HAS_SYNC |
FE_HAS_LOCK;
break;
case SYS_DVBS2:
lock = ds3000_readreg(state, 0x0d);
if ((lock & 0x8f) == 0x8f)
*status = FE_HAS_SIGNAL | FE_HAS_CARRIER |
FE_HAS_VITERBI | FE_HAS_SYNC |
FE_HAS_LOCK;
break;
default:
return 1;
}
if (state->config->set_lock_led)
state->config->set_lock_led(fe, *status == 0 ? 0 : 1);
dprintk("%s: status = 0x%02x\n", __func__, lock);
return 0;
}
/* read DS3000 BER value */
static int ds3000_read_ber(struct dvb_frontend *fe, u32* ber)
{
struct ds3000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u8 data;
u32 ber_reading, lpdc_frames;
dprintk("%s()\n", __func__);
switch (c->delivery_system) {
case SYS_DVBS:
/* set the number of bytes checked during
BER estimation */
ds3000_writereg(state, 0xf9, 0x04);
/* read BER estimation status */
data = ds3000_readreg(state, 0xf8);
/* check if BER estimation is ready */
if ((data & 0x10) == 0) {
/* this is the number of error bits,
to calculate the bit error rate
divide to 8388608 */
*ber = (ds3000_readreg(state, 0xf7) << 8) |
ds3000_readreg(state, 0xf6);
/* start counting error bits */
/* need to be set twice
otherwise it fails sometimes */
data |= 0x10;
ds3000_writereg(state, 0xf8, data);
ds3000_writereg(state, 0xf8, data);
} else
/* used to indicate that BER estimation
is not ready, i.e. BER is unknown */
*ber = 0xffffffff;
break;
case SYS_DVBS2:
/* read the number of LPDC decoded frames */
lpdc_frames = (ds3000_readreg(state, 0xd7) << 16) |
(ds3000_readreg(state, 0xd6) << 8) |
ds3000_readreg(state, 0xd5);
/* read the number of packets with bad CRC */
ber_reading = (ds3000_readreg(state, 0xf8) << 8) |
ds3000_readreg(state, 0xf7);
if (lpdc_frames > 750) {
/* clear LPDC frame counters */
ds3000_writereg(state, 0xd1, 0x01);
/* clear bad packets counter */
ds3000_writereg(state, 0xf9, 0x01);
/* enable bad packets counter */
ds3000_writereg(state, 0xf9, 0x00);
/* enable LPDC frame counters */
ds3000_writereg(state, 0xd1, 0x00);
*ber = ber_reading;
} else
/* used to indicate that BER estimation is not ready,
i.e. BER is unknown */
*ber = 0xffffffff;
break;
default:
return 1;
}
return 0;
}
static int ds3000_read_signal_strength(struct dvb_frontend *fe,
u16 *signal_strength)
{
if (fe->ops.tuner_ops.get_rf_strength)
fe->ops.tuner_ops.get_rf_strength(fe, signal_strength);
return 0;
}
/* calculate DS3000 snr value in dB */
static int ds3000_read_snr(struct dvb_frontend *fe, u16 *snr)
{
struct ds3000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u8 snr_reading, snr_value;
u32 dvbs2_signal_reading, dvbs2_noise_reading, tmp;
static const u16 dvbs_snr_tab[] = { /* 20 x Table (rounded up) */
0x0000, 0x1b13, 0x2aea, 0x3627, 0x3ede, 0x45fe, 0x4c03,
0x513a, 0x55d4, 0x59f2, 0x5dab, 0x6111, 0x6431, 0x6717,
0x69c9, 0x6c4e, 0x6eac, 0x70e8, 0x7304, 0x7505
};
static const u16 dvbs2_snr_tab[] = { /* 80 x Table (rounded up) */
0x0000, 0x0bc2, 0x12a3, 0x1785, 0x1b4e, 0x1e65, 0x2103,
0x2347, 0x2546, 0x2710, 0x28ae, 0x2a28, 0x2b83, 0x2cc5,
0x2df1, 0x2f09, 0x3010, 0x3109, 0x31f4, 0x32d2, 0x33a6,
0x3470, 0x3531, 0x35ea, 0x369b, 0x3746, 0x37ea, 0x3888,
0x3920, 0x39b3, 0x3a42, 0x3acc, 0x3b51, 0x3bd3, 0x3c51,
0x3ccb, 0x3d42, 0x3db6, 0x3e27, 0x3e95, 0x3f00, 0x3f68,
0x3fcf, 0x4033, 0x4094, 0x40f4, 0x4151, 0x41ac, 0x4206,
0x425e, 0x42b4, 0x4308, 0x435b, 0x43ac, 0x43fc, 0x444a,
0x4497, 0x44e2, 0x452d, 0x4576, 0x45bd, 0x4604, 0x4649,
0x468e, 0x46d1, 0x4713, 0x4755, 0x4795, 0x47d4, 0x4813,
0x4851, 0x488d, 0x48c9, 0x4904, 0x493f, 0x4978, 0x49b1,
0x49e9, 0x4a20, 0x4a57
};
dprintk("%s()\n", __func__);
switch (c->delivery_system) {
case SYS_DVBS:
snr_reading = ds3000_readreg(state, 0xff);
snr_reading /= 8;
if (snr_reading == 0)
*snr = 0x0000;
else {
if (snr_reading > 20)
snr_reading = 20;
snr_value = dvbs_snr_tab[snr_reading - 1] * 10 / 23026;
/* cook the value to be suitable for szap-s2
human readable output */
*snr = snr_value * 8 * 655;
}
dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__,
snr_reading, *snr);
break;
case SYS_DVBS2:
dvbs2_noise_reading = (ds3000_readreg(state, 0x8c) & 0x3f) +
(ds3000_readreg(state, 0x8d) << 4);
dvbs2_signal_reading = ds3000_readreg(state, 0x8e);
tmp = dvbs2_signal_reading * dvbs2_signal_reading >> 1;
if (tmp == 0) {
*snr = 0x0000;
return 0;
}
if (dvbs2_noise_reading == 0) {
snr_value = 0x0013;
/* cook the value to be suitable for szap-s2
human readable output */
*snr = 0xffff;
return 0;
}
if (tmp > dvbs2_noise_reading) {
snr_reading = tmp / dvbs2_noise_reading;
if (snr_reading > 80)
snr_reading = 80;
snr_value = dvbs2_snr_tab[snr_reading - 1] / 1000;
/* cook the value to be suitable for szap-s2
human readable output */
*snr = snr_value * 5 * 655;
} else {
snr_reading = dvbs2_noise_reading / tmp;
if (snr_reading > 80)
snr_reading = 80;
*snr = -(dvbs2_snr_tab[snr_reading - 1] / 1000);
}
dprintk("%s: raw / cooked = 0x%02x / 0x%04x\n", __func__,
snr_reading, *snr);
break;
default:
return 1;
}
return 0;
}
/* read DS3000 uncorrected blocks */
static int ds3000_read_ucblocks(struct dvb_frontend *fe, u32 *ucblocks)
{
struct ds3000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
u8 data;
u16 _ucblocks;
dprintk("%s()\n", __func__);
switch (c->delivery_system) {
case SYS_DVBS:
*ucblocks = (ds3000_readreg(state, 0xf5) << 8) |
ds3000_readreg(state, 0xf4);
data = ds3000_readreg(state, 0xf8);
/* clear packet counters */
data &= ~0x20;
ds3000_writereg(state, 0xf8, data);
/* enable packet counters */
data |= 0x20;
ds3000_writereg(state, 0xf8, data);
break;
case SYS_DVBS2:
_ucblocks = (ds3000_readreg(state, 0xe2) << 8) |
ds3000_readreg(state, 0xe1);
if (_ucblocks > state->prevUCBS2)
*ucblocks = _ucblocks - state->prevUCBS2;
else
*ucblocks = state->prevUCBS2 - _ucblocks;
state->prevUCBS2 = _ucblocks;
break;
default:
return 1;
}
return 0;
}
static int ds3000_set_tone(struct dvb_frontend *fe, enum fe_sec_tone_mode tone)
{
struct ds3000_state *state = fe->demodulator_priv;
u8 data;
dprintk("%s(%d)\n", __func__, tone);
if ((tone != SEC_TONE_ON) && (tone != SEC_TONE_OFF)) {
printk(KERN_ERR "%s: Invalid, tone=%d\n", __func__, tone);
return -EINVAL;
}
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
ds3000_writereg(state, 0xa2, data);
switch (tone) {
case SEC_TONE_ON:
dprintk("%s: setting tone on\n", __func__);
data = ds3000_readreg(state, 0xa1);
data &= ~0x43;
data |= 0x04;
ds3000_writereg(state, 0xa1, data);
break;
case SEC_TONE_OFF:
dprintk("%s: setting tone off\n", __func__);
data = ds3000_readreg(state, 0xa2);
data |= 0x80;
ds3000_writereg(state, 0xa2, data);
break;
}
return 0;
}
static int ds3000_send_diseqc_msg(struct dvb_frontend *fe,
struct dvb_diseqc_master_cmd *d)
{
struct ds3000_state *state = fe->demodulator_priv;
int i;
u8 data;
/* Dump DiSEqC message */
dprintk("%s(", __func__);
for (i = 0 ; i < d->msg_len;) {
dprintk("0x%02x", d->msg[i]);
if (++i < d->msg_len)
dprintk(", ");
}
/* enable DiSEqC message send pin */
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
ds3000_writereg(state, 0xa2, data);
/* DiSEqC message */
for (i = 0; i < d->msg_len; i++)
ds3000_writereg(state, 0xa3 + i, d->msg[i]);
data = ds3000_readreg(state, 0xa1);
/* clear DiSEqC message length and status,
enable DiSEqC message send */
data &= ~0xf8;
/* set DiSEqC mode, modulation active during 33 pulses,
set DiSEqC message length */
data |= ((d->msg_len - 1) << 3) | 0x07;
ds3000_writereg(state, 0xa1, data);
/* wait up to 150ms for DiSEqC transmission to complete */
for (i = 0; i < 15; i++) {
data = ds3000_readreg(state, 0xa1);
if ((data & 0x40) == 0)
break;
msleep(10);
}
/* DiSEqC timeout after 150ms */
if (i == 15) {
data = ds3000_readreg(state, 0xa1);
data &= ~0x80;
data |= 0x40;
ds3000_writereg(state, 0xa1, data);
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
data |= 0x80;
ds3000_writereg(state, 0xa2, data);
return 1;
}
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
data |= 0x80;
ds3000_writereg(state, 0xa2, data);
return 0;
}
/* Send DiSEqC burst */
static int ds3000_diseqc_send_burst(struct dvb_frontend *fe,
enum fe_sec_mini_cmd burst)
{
struct ds3000_state *state = fe->demodulator_priv;
int i;
u8 data;
dprintk("%s()\n", __func__);
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
ds3000_writereg(state, 0xa2, data);
/* DiSEqC burst */
if (burst == SEC_MINI_A)
/* Unmodulated tone burst */
ds3000_writereg(state, 0xa1, 0x02);
else if (burst == SEC_MINI_B)
/* Modulated tone burst */
ds3000_writereg(state, 0xa1, 0x01);
else
return -EINVAL;
msleep(13);
for (i = 0; i < 5; i++) {
data = ds3000_readreg(state, 0xa1);
if ((data & 0x40) == 0)
break;
msleep(1);
}
if (i == 5) {
data = ds3000_readreg(state, 0xa1);
data &= ~0x80;
data |= 0x40;
ds3000_writereg(state, 0xa1, data);
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
data |= 0x80;
ds3000_writereg(state, 0xa2, data);
return 1;
}
data = ds3000_readreg(state, 0xa2);
data &= ~0xc0;
data |= 0x80;
ds3000_writereg(state, 0xa2, data);
return 0;
}
static void ds3000_release(struct dvb_frontend *fe)
{
struct ds3000_state *state = fe->demodulator_priv;
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 0);
dprintk("%s\n", __func__);
kfree(state);
}
static struct dvb_frontend_ops ds3000_ops;
struct dvb_frontend *ds3000_attach(const struct ds3000_config *config,
struct i2c_adapter *i2c)
{
struct ds3000_state *state = NULL;
int ret;
dprintk("%s\n", __func__);
/* allocate memory for the internal state */
state = kzalloc(sizeof(struct ds3000_state), GFP_KERNEL);
if (state == NULL) {
printk(KERN_ERR "Unable to kmalloc\n");
goto error2;
}
state->config = config;
state->i2c = i2c;
state->prevUCBS2 = 0;
/* check if the demod is present */
ret = ds3000_readreg(state, 0x00) & 0xfe;
if (ret != 0xe0) {
printk(KERN_ERR "Invalid probe, probably not a DS3000\n");
goto error3;
}
printk(KERN_INFO "DS3000 chip version: %d.%d attached.\n",
ds3000_readreg(state, 0x02),
ds3000_readreg(state, 0x01));
memcpy(&state->frontend.ops, &ds3000_ops,
sizeof(struct dvb_frontend_ops));
state->frontend.demodulator_priv = state;
/*
* Some devices like T480 starts with voltage on. Be sure
* to turn voltage off during init, as this can otherwise
* interfere with Unicable SCR systems.
*/
ds3000_set_voltage(&state->frontend, SEC_VOLTAGE_OFF);
return &state->frontend;
error3:
kfree(state);
error2:
return NULL;
}
EXPORT_SYMBOL(ds3000_attach);
static int ds3000_set_carrier_offset(struct dvb_frontend *fe,
s32 carrier_offset_khz)
{
struct ds3000_state *state = fe->demodulator_priv;
s32 tmp;
tmp = carrier_offset_khz;
tmp *= 65536;
tmp = (2 * tmp + DS3000_SAMPLE_RATE) / (2 * DS3000_SAMPLE_RATE);
if (tmp < 0)
tmp += 65536;
ds3000_writereg(state, 0x5f, tmp >> 8);
ds3000_writereg(state, 0x5e, tmp & 0xff);
return 0;
}
static int ds3000_set_frontend(struct dvb_frontend *fe)
{
struct ds3000_state *state = fe->demodulator_priv;
struct dtv_frontend_properties *c = &fe->dtv_property_cache;
int i;
enum fe_status status;
s32 offset_khz;
u32 frequency;
u16 value;
dprintk("%s() ", __func__);
if (state->config->set_ts_params)
state->config->set_ts_params(fe, 0);
/* Tune */
if (fe->ops.tuner_ops.set_params)
fe->ops.tuner_ops.set_params(fe);
/* ds3000 global reset */
ds3000_writereg(state, 0x07, 0x80);
ds3000_writereg(state, 0x07, 0x00);
/* ds3000 build-in uC reset */
ds3000_writereg(state, 0xb2, 0x01);
/* ds3000 software reset */
ds3000_writereg(state, 0x00, 0x01);
switch (c->delivery_system) {
case SYS_DVBS:
/* initialise the demod in DVB-S mode */
for (i = 0; i < sizeof(ds3000_dvbs_init_tab); i += 2)
ds3000_writereg(state,
ds3000_dvbs_init_tab[i],
ds3000_dvbs_init_tab[i + 1]);
value = ds3000_readreg(state, 0xfe);
value &= 0xc0;
value |= 0x1b;
ds3000_writereg(state, 0xfe, value);
break;
case SYS_DVBS2:
/* initialise the demod in DVB-S2 mode */
for (i = 0; i < sizeof(ds3000_dvbs2_init_tab); i += 2)
ds3000_writereg(state,
ds3000_dvbs2_init_tab[i],
ds3000_dvbs2_init_tab[i + 1]);
if (c->symbol_rate >= 30000000)
ds3000_writereg(state, 0xfe, 0x54);
else
ds3000_writereg(state, 0xfe, 0x98);
break;
default:
return 1;
}
/* enable 27MHz clock output */
ds3000_writereg(state, 0x29, 0x80);
/* enable ac coupling */
ds3000_writereg(state, 0x25, 0x8a);
/* enhance symbol rate performance */
if ((c->symbol_rate / 1000) <= 5000) {
value = 29777 / (c->symbol_rate / 1000) + 1;
if (value % 2 != 0)
value++;
ds3000_writereg(state, 0xc3, 0x0d);
ds3000_writereg(state, 0xc8, value);
ds3000_writereg(state, 0xc4, 0x10);
ds3000_writereg(state, 0xc7, 0x0e);
} else if ((c->symbol_rate / 1000) <= 10000) {
value = 92166 / (c->symbol_rate / 1000) + 1;
if (value % 2 != 0)
value++;
ds3000_writereg(state, 0xc3, 0x07);
ds3000_writereg(state, 0xc8, value);
ds3000_writereg(state, 0xc4, 0x09);
ds3000_writereg(state, 0xc7, 0x12);
} else if ((c->symbol_rate / 1000) <= 20000) {
value = 64516 / (c->symbol_rate / 1000) + 1;
ds3000_writereg(state, 0xc3, value);
ds3000_writereg(state, 0xc8, 0x0e);
ds3000_writereg(state, 0xc4, 0x07);
ds3000_writereg(state, 0xc7, 0x18);
} else {
value = 129032 / (c->symbol_rate / 1000) + 1;
ds3000_writereg(state, 0xc3, value);
ds3000_writereg(state, 0xc8, 0x0a);
ds3000_writereg(state, 0xc4, 0x05);
ds3000_writereg(state, 0xc7, 0x24);
}
/* normalized symbol rate rounded to the closest integer */
value = (((c->symbol_rate / 1000) << 16) +
(DS3000_SAMPLE_RATE / 2)) / DS3000_SAMPLE_RATE;
ds3000_writereg(state, 0x61, value & 0x00ff);
ds3000_writereg(state, 0x62, (value & 0xff00) >> 8);
/* co-channel interference cancellation disabled */
ds3000_writereg(state, 0x56, 0x00);
/* equalizer disabled */
ds3000_writereg(state, 0x76, 0x00);
/*ds3000_writereg(state, 0x08, 0x03);
ds3000_writereg(state, 0xfd, 0x22);
ds3000_writereg(state, 0x08, 0x07);
ds3000_writereg(state, 0xfd, 0x42);
ds3000_writereg(state, 0x08, 0x07);*/
if (state->config->ci_mode) {
switch (c->delivery_system) {
case SYS_DVBS:
default:
ds3000_writereg(state, 0xfd, 0x80);
break;
case SYS_DVBS2:
ds3000_writereg(state, 0xfd, 0x01);
break;
}
}
/* ds3000 out of software reset */
ds3000_writereg(state, 0x00, 0x00);
/* start ds3000 build-in uC */
ds3000_writereg(state, 0xb2, 0x00);
if (fe->ops.tuner_ops.get_frequency) {
fe->ops.tuner_ops.get_frequency(fe, &frequency);
offset_khz = frequency - c->frequency;
ds3000_set_carrier_offset(fe, offset_khz);
}
for (i = 0; i < 30 ; i++) {
ds3000_read_status(fe, &status);
if (status & FE_HAS_LOCK)
break;
msleep(10);
}
return 0;
}
static int ds3000_tune(struct dvb_frontend *fe,
bool re_tune,
unsigned int mode_flags,
unsigned int *delay,
enum fe_status *status)
{
if (re_tune) {
int ret = ds3000_set_frontend(fe);
if (ret)
return ret;
}
*delay = HZ / 5;
return ds3000_read_status(fe, status);
}
static enum dvbfe_algo ds3000_get_algo(struct dvb_frontend *fe)
{
struct ds3000_state *state = fe->demodulator_priv;
if (state->config->set_lock_led)
state->config->set_lock_led(fe, 0);
dprintk("%s()\n", __func__);
return DVBFE_ALGO_HW;
}
/*
* Initialise or wake up device
*
* Power config will reset and load initial firmware if required
*/
static int ds3000_initfe(struct dvb_frontend *fe)
{
struct ds3000_state *state = fe->demodulator_priv;
int ret;
dprintk("%s()\n", __func__);
/* hard reset */
ds3000_writereg(state, 0x08, 0x01 | ds3000_readreg(state, 0x08));
msleep(1);
/* Load the firmware if required */
ret = ds3000_firmware_ondemand(fe);
if (ret != 0) {
printk(KERN_ERR "%s: Unable initialize firmware\n", __func__);
return ret;
}
return 0;
}
static struct dvb_frontend_ops ds3000_ops = {
.delsys = { SYS_DVBS, SYS_DVBS2 },
.info = {
.name = "Montage Technology DS3000",
.frequency_min = 950000,
.frequency_max = 2150000,
.frequency_stepsize = 1011, /* kHz for QPSK frontends */
.frequency_tolerance = 5000,
.symbol_rate_min = 1000000,
.symbol_rate_max = 45000000,
.caps = FE_CAN_INVERSION_AUTO |
FE_CAN_FEC_1_2 | FE_CAN_FEC_2_3 | FE_CAN_FEC_3_4 |
FE_CAN_FEC_4_5 | FE_CAN_FEC_5_6 | FE_CAN_FEC_6_7 |
FE_CAN_FEC_7_8 | FE_CAN_FEC_AUTO |
FE_CAN_2G_MODULATION |
FE_CAN_QPSK | FE_CAN_RECOVER
},
.release = ds3000_release,
.init = ds3000_initfe,
.i2c_gate_ctrl = ds3000_i2c_gate_ctrl,
.read_status = ds3000_read_status,
.read_ber = ds3000_read_ber,
.read_signal_strength = ds3000_read_signal_strength,
.read_snr = ds3000_read_snr,
.read_ucblocks = ds3000_read_ucblocks,
.set_voltage = ds3000_set_voltage,
.set_tone = ds3000_set_tone,
.diseqc_send_master_cmd = ds3000_send_diseqc_msg,
.diseqc_send_burst = ds3000_diseqc_send_burst,
.get_frontend_algo = ds3000_get_algo,
.set_frontend = ds3000_set_frontend,
.tune = ds3000_tune,
};
module_param(debug, int, 0644);
MODULE_PARM_DESC(debug, "Activates frontend debugging (default:0)");
MODULE_DESCRIPTION("DVB Frontend module for Montage Technology "
"DS3000 hardware");
MODULE_AUTHOR("Konstantin Dimitrov <kosio.dimitrov@gmail.com>");
MODULE_LICENSE("GPL");
MODULE_FIRMWARE(DS3000_DEFAULT_FIRMWARE);